
Diss. ETH No. 24607

A Constructive Treatment of
Enhanced Encryption Schemes

A thesis submitted to attain the degree of

Doctor of Sciences of ETH Zurich
(Dr. sc. ETH Zurich)

presented by

Christian Matt
Dipl.-Inform. Dipl.-Math.,

Karlsruhe Institute of Technology (KIT)

born on May 12, 1986
citizen of the Federal Republic of Germany

accepted on the recommendation of

Prof. Dr. Ueli Maurer, examiner
Prof. Dr. David Basin, co-examiner

Prof. Dr. Dennis Hofheinz, co-examiner

2017

Acknowledgements

First of all, I would like to thank my advisor Ueli Maurer. He always
had time for me and his abstract way of thinking led to many interesting
discussions. I also thank David Basin and Dennis Hofheinz for co-refereeing
this thesis.

Moreover, I want to thank Christian Badertscher, Dennis Hofheinz,
and Ueli Maurer for co-authoring the papers on which this thesis is based.
Further thanks go to Phil Rogaway for very helpful feedback on a draft
of the paper on functional encryption.

I also thank Christian Badertscher, Daniel Jost, Chen-Da Liu Zhang,
Ueli Maurer, Christopher Portmann, Renato Renner, Phil Rogaway, and
Björn Tackmann for co-authoring papers outside the scope of this thesis
with me during my time as a PhD student.

Last but not least, I would like to thank all the current and former
members of the cryptography group at ETH that have been my colleagues
for many interesting discussions and all the good times we have had
together.

Abstract

Encryption is a tool that has traditionally been used to allow confidential
communication between two parties. Over the years, several types of
encryption have been proposed, including public-key encryption, identity-
based encryption, deniable encryption, and functional encryption. These
variants provide different features and security guarantees. Their security
is typically defined by a game between an adversary and a challenger. Even
for ordinary public-key encryption, several different security definitions
have been proposed and identifying the “right” one is a nontrivial task. For
more complex primitives such as functional encryption, security definitions
are far more involved and it is way more difficult to evaluate whether a
given definition is appropriate.

The goal of this thesis is to better understand these definitions for
several types of encryption by analyzing them in the constructive cryp-
tography framework. In this framework, a cryptographic primitive can
be seen as providing a construction of a so-called ideal resource from a
so-called real resource, for a well-defined notion of construction. The real
resource formalizes what is available to the involved parties, e.g., a shared
secret key and an authenticated communication channel, and the ideal
resource formalizes what should be achieved by applying the encryption
scheme, e.g., a secure channel that does not leak the sent messages to
eavesdroppers. This paradigm makes the requirements and the achieved
guarantees explicit and helps to decide whether a given scheme is suitable
for a certain application.

The first and simplest encryption scheme we consider in this thesis
is the one-time pad. We show that it provides a guarantee that deniable
encryption targets, namely it remains secure if the receiver reveals the
secret key to the adversary after receiving the message. We model this in

vi ABSTRACT

constructive cryptography by allowing the receiver to become dishonest
after receiving the message.

We next consider identity-based encryption (IBE). In contrast to
deniable encryption, it does not provide stronger security guarantees,
but rather simplifies the key distribution. We formalize the standard
application of IBE, namely non-interactive secure communication, as
constructing an ideal resource that allows parties to be registered for
an identity, and to securely sent messages to other parties only known
by their identity. Quite surprisingly, we show that it is impossible to
construct this resource in the standard model. We show, however, how
to adjust any IBE scheme that satisfies the standard security definition
to achieve this goal in the random oracle model. We also show that the
impossibility result can be avoided in the standard model by considering
a weaker ideal resource.

Functional encryption is a very general concept, which encompasses
public-key encryption and identity-based encryption as special cases. It
allows the generation of restricted secret keys that enable to learn only
a specific function of the encrypted data. We formalize the security of
functional encryption as constructing an ideal resource that corresponds
to a repository with fine-grained access control, and compare this to
existing security notions. Again, we show that constructing the most
desirable ideal resource is impossible without random oracles, possible in
the random oracle model, and that constructing weaker ideal resources is
possible in the standard model.

Finally, we consider access control encryption (ACE). While the en-
cryption schemes discussed above allow to control which users can read
the encrypted data, ACE additionally allows to restrict write access. As
we argue, however, existing security notions are insufficient to provide
meaningful security guarantees in realistic settings. We therefore propose
new, substantially stronger security definitions and an ACE scheme that
provably satisfies them under standard assumptions.

Zusammenfassung

Verschlüsselung wird traditionell verwendet, um vertrauliche Kommuni-
kation zwischen zwei Parteien zu ermöglichen. Verschiedene Arten von
Verschlüsselungsverfahren wurden in den letzten Jahren vorgeschlagen,
darunter Public-Key Encryption, Identity-Based Encryption, Deniable En-
cryption und Functional Encryption. Diese Varianten bieten unterschiedli-
che Funktionen und Sicherheitsgarantien. Ihre Sicherheit ist üblicherweise
durch ein Spiel zwischen einem Angreifer und einem Herausforderer de-
finiert. Selbst für einfache Public-Key Encryption wurden verschiedene
Sicherheitsdefinitionen vorgeschlagen und es ist nichttrivial, die „richtige“
Definition zu identifizieren. Sicherheitsdefinitionen für komplexere Primi-
tive wie Functional Encryption sind deutlich involvierter und es ist noch
viel schwieriger zu evaluieren, ob eine gegebene Definition adäquat ist.

Das Ziel dieser Arbeit ist es, solche Definitionen für verschiedene
Arten von Verschlüsselungsverfahren besser zu verstehen, indem sie im
Constructive Cryptography Framework analysiert werden. In diesem Fra-
mework kann man eine kryptographische Primitive so verstehen, dass
sie eine sogenannte ideale Ressource von einer sogenannten realen Res-
source konstruiert, für einen wohldefinierten Konstruktionsbegriff. Die
reale Ressource formalisiert, was den beteiligten Parteien zur Verfügung
steht, zum Beispiel ein gemeinsamer geheimer Schlüssel und ein authenti-
scher Kommunikationskanal, und die ideale Ressource formalisiert, was
durch Anwendung des Verschlüsselungsverfahrens erreicht werden soll,
zum Beispiel ein sicherer Kanal, der die gesendeten Nachrichten vor An-
greifern geheim hält. Dieses Paradigma macht die Voraussetzungen und
die erreichten Garantien explizit und hilft bei der Entscheidung, ob ein
gegebenes Verfahren für eine bestimmte Anwendung geeignet ist.

Das erste und einfachste Verschlüsselungsverfahren, das wir in dieser

viii ZUSAMMENFASSUNG

Arbeit betrachten, ist das One-Time-Pad. Wir zeigen, dass es eine Garan-
tie liefert, die ein Ziel von Deniable Encryption ist: Es bleibt auch dann
sicher, wenn der Empfänger den Schlüssel nach Empfang der Nachricht
dem Angreifer offenlegt. Wir modellieren dies in Constructive Cryptogra-
phy, indem wir dem Empfänger ermöglichen, nach Erhalt der Nachricht
unehrlich zu werden.

Als Nächstes betrachten wir Identity-Based Encryption (IBE). Im
Gegensatz zu Deniable Encryption liefert es keine stärkeren Sicherheitsga-
rantien, sondern vereinfacht die Schlüsselverteilung. Wir formalisieren die
Standardanwendung von IBE, nichtinteraktive, sichere Kommunikation,
als Konstruktion einer idealen Ressource, die es Parteien erlaubt, für eine
Identität registriert zu werden, und anderen Parteien, die sie nur anhand
ihrer Identität kennen, sicher Nachrichten zu senden. Erstaunlicherweise
können wir zeigen, dass es unmöglich ist, diese Ressource im Standard-
modell zu konstruieren. Wir zeigen jedoch auch, wie man ein beliebiges
IBE-Verfahren, das die Standard-Sicherheitsdefinition erfüllt, verwenden
kann, um dieses Ziel im Random-Oracle-Modell zu erreichen. Wir zeigen
weiter, dass man das Unmöglichkeitsresultat im Standardmodell vermeiden
kann, indem man schwächere ideale Ressourcen betrachtet.

Functional Encryption ist ein sehr allgemeines Konzept, das Public-
Key Encryption und Identity-Based Encryption als Spezialfälle beinhaltet.
Es erlaubt, beschränkte geheime Schlüssel zu erstellen, mit denen man nur
eine spezifische Funktion der verschlüsselten Daten erfahren kann. Wir for-
malisieren die Sicherheit von Functional Encryption als Konstruktion einer
idealen Ressource, die einem Speicher mit feingranularer Zugriffskontrolle
entspricht, und vergleichen dies mit existierenden Sicherheitsdefinitionen.
Auch in diesem Fall zeigen wir, dass die wünschenswerteste ideale Res-
source nicht ohne Random Oracles konstruiert werden kann, und dass
die Konstruktion von schwächeren idealen Ressourcen im Standardmodell
möglich ist.

Schliesslich betrachten wir Access Control Encryption (ACE). Wäh-
rend oben genannte Verschlüsselungsverfahren die Kontrolle darüber er-
lauben, wer verschlüsselte Daten lesen kann, erlaubt ACE zusätzlich den
Schreibzugriff zu kontrollieren. Wie wir darlegen, sind existierende Sicher-
heitsdefinitionen jedoch unzureichend, um die Sicherheit in realistischen
Szenarien zu garantieren. Wir schlagen deshalb neue, signifikant stärkere
Sicherheitsdefinitionen zusammen mit einem ACE-Verfahren vor, das diese
Definitionen unter Standardannahmen beweisbar erfüllt.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Constructive Cryptography 3
1.3 Studied Encryption Types and Results 4

1.3.1 One-Time Pad . 4
1.3.2 Identity-Based Encryption 5
1.3.3 Functional Encryption 5
1.3.4 Access Control Encryption 6

1.4 Related Work . 7

2 Preliminaries 9
2.1 General Notation . 9
2.2 Security Definitions and Advantages 10
2.3 Cryptographic Primitives and Games 10

2.3.1 Decisional Diffie-Hellman Assumption 10
2.3.2 Pseudorandom Functions 11
2.3.3 Public-Key Encryption 11
2.3.4 Digital Signature Schemes 12
2.3.5 Non-Interactive Zero-Knowledge Proofs 13

2.4 Constructive Cryptography 15
2.4.1 Resources, Converters, and Distinguishers 15
2.4.2 Filtered Resources 18
2.4.3 Basic Resources . 18
2.4.4 Construction of Resources 20

x CONTENTS

3 Deniability of the One-Time Pad 25
3.1 Introduction . 25

3.1.1 Motivation . 25
3.1.2 Contributions . 26
3.1.3 Related Work . 27

3.2 Encryption with a Dishonest Receiver 27
3.2.1 General Limitations 27
3.2.2 The One-Time Pad with a Dishonest Receiver . . . 29

4 Identity-Based Encryption 35
4.1 Introduction . 35

4.1.1 Motivation . 35
4.1.2 Identity-Based Encryption and its Security 36
4.1.3 Contributions . 36
4.1.4 Related Work . 42

4.2 Delivery Controlled Channels 43
4.2.1 Overview and General Definition 43
4.2.2 Static Identity Management 45
4.2.3 Predetermined Identities 46

4.3 IBE Schemes and Protocols 46
4.3.1 Standard Definitions for IBE 46
4.3.2 Non-Adaptive Security 48
4.3.3 Using IBE Schemes in Constructions 49

4.4 Constructions with IBE 52
4.4.1 Impossibility Result 52
4.4.2 Construction Equivalent to IND-ID-CPA 53
4.4.3 Construction Equivalent to IND-sID-CPA 59

4.5 Construction with Random Oracles 62
4.5.1 Random Oracles 62
4.5.2 Construction of Delivery Controlled Channels . . . 63

5 Functional Encryption 67
5.1 Introduction . 67

5.1.1 Motivation . 67
5.1.2 Contributions . 69
5.1.3 Related Work and Relation to IBE 70

5.2 Definition of Functional Encryption 70
5.3 Repositories and Access Control 72

CONTENTS xi

5.3.1 Repository Resources 72
5.3.2 Access Control via Functional Encryption 74

5.4 Security of Functional Encryption 75
5.4.1 Definition of CFE Security 75
5.4.2 Equivalence of CFE Security and Construction . . 78
5.4.3 Alleged Insufficiency of BSW’s Definition 82

5.5 Special Cases and Impossibility Results 83
5.5.1 Public-Key Encryption and its Impossibility 83
5.5.2 Circumventing Impossibility Results 84

5.6 Construction with Random Oracles 85
5.7 Weaker Security Definitions 87

5.7.1 Definitions . 87
5.7.2 Sufficiency of NA-SIM Security 90

5.8 More General Notions of FE 94
5.8.1 Dishonest Senders 94
5.8.2 Randomized Functions 95
5.8.3 Functions of Several Variables 95

5.9 Application of Constructed Repository 96

6 Access Control Encryption 99
6.1 Introduction . 99

6.1.1 Model and Security Requirements 99
6.1.2 Contributions . 101
6.1.3 Related Work . 105

6.2 Existing Definitions for ACE 105
6.2.1 Access Control Encryption 105
6.2.2 Existing Security Definitions 108

6.3 Ciphertext-Revealing Attacks 110
6.3.1 Generic Description of Attack 110
6.3.2 DHO Scheme Based on ElGamal 112
6.3.3 FGKO Scheme Based on ElGamal 113

6.4 A Stronger Notion of ACE 114
6.4.1 ACE with Modification Detection 114
6.4.2 New Security Definitions 116
6.4.3 Relation to the Original Security Notions 121

6.5 Enhanced Sanitizable PKE 134
6.5.1 Definitions . 134
6.5.2 Constructing an sPKE Scheme 139

xii CONTENTS

6.6 Construction of an ACE Scheme 160
6.6.1 Construction for Equality 160
6.6.2 Lifting Equality to Disjunction of Equalities 185

6.7 ACE in Constructive Cryptography 193
6.7.1 The Natural Construction with ACE 193
6.7.2 Issues Preventing the Construction 194
6.7.3 Conclusions . 195

7 Conclusion 197

Chapter 1

Introduction

1.1 Motivation

Encryption has been used since ancient times to exchange messages
confidentially. In the simplest setting of symmetric encryption, two
parties share a secret key, and the sender uses an encryption algorithm
that on input the secret key and a message, produces a ciphertext. This
ciphertext is then sent to the other party, who uses a decryption algorithm
that on input the key and the ciphertext, recovers the message. Many
encryption schemes that have been used also have been broken. Instead
of relying on encryption schemes that have not been broken yet, it is
therefore desirable to have a mathematical proof that a given scheme
cannot be broken. Prior to being able to perform such a proof, one
needs to define what it means for a scheme to be secure, and without a
meaningful definition, all proofs are meaningless.

A minimal requirement for an encryption scheme is that it should
be infeasible for an attacker to recover the encrypted message from a
ciphertext (without the secret key). While schemes not satisfying this
notion are clearly too weak for most applications, even schemes that
provide this guarantee can be very weak. For example, it is not excluded
that an attacker can easily recover large parts of the message. Hence,
a better requirement seems to be that it should be hard to obtain any
information about the message from a ciphertext. Turning this intuition

2 CHAPTER 1. INTRODUCTION

into a precise mathematical definition, however, has been a nontrivial
task.

Shannon has formalized perfect secrecy as the message and the cipher-
text being statistically independent [Sha49]. This means that without the
key, a ciphertext provides no information about the message. Unfortu-
nately, Shannon has also shown in the same paper that perfect secrecy can
only be achieved if the key is at least as long as the message, which limits
the applicability of such schemes. Goldwasser and Micali introduced the
notion of semantic security, which can be seen as an analog to Shannon’s
perfect secrecy (for public-key encryption), where security is only guaran-
teed against computationally bounded adversaries [GM84]. They have
also shown that semantic security is implied by what is known today as
ciphertext indistinguishability under chosen-plaintext attacks (IND-CPA
security). Later, two variants of the even stronger notion of ciphertext
indistinguishability under chosen-ciphertext attacks (IND-CCA security)
were introduced [NY90; RS92]. Several additional notions have been
proposed and relations among them have been proven [DDN00; BDPR98;
CKN03].

The long history and large number of existing security definitions show
that there is no universally “right” notion and that it is generally difficult
to find a meaningful definition. Many of the aforementioned definitions
are also quite technical and it is often hard to tell which definitions are
sufficient to guarantee the desired security in a given application. For
more advanced types of encryption, as the ones considered in this thesis,
the situation only gets worse.

Security definitions and their semantics. Before explaining our
approach to analyzing security definitions, we point out that these defini-
tions can serve two entirely different purposes, which are often not clearly
distinguished.

The first purpose of a security definition is to serve as a (technical)
reference point, on the one hand for devising schemes provably satisfying
the definition based on a weak assumption (e.g., a CCA-secure PKE
scheme based on the DDH assumption [CS98]), and on the other hand
for building more sophisticated primitives from any scheme satisfying the
definition (e.g., constructing a CCA-secure PKE scheme from a CPA-
secure IBE scheme and a one-time signature scheme [BCHK07]). Results

1.2. CONSTRUCTIVE CRYPTOGRAPHY 3

about security definitions often take the form of a comparison, for example
an equivalence or a separation statement, meaning that one definition is
strictly stronger than another one.

The second purpose of a (technical) security definition is to assure
the security of a certain type of application when a scheme satisfying
the (technical) security definition is used. While definitions are usually
devised with much intuition for what is needed in a certain application
(and indeed the definition is often motivated by an application story),
it is important to point out that a conventional technical security def-
inition for a cryptographic primitive can generally not directly imply
the security of an associated application, for two independent reasons.
First, the particular use of the primitive within a protocol would have to
be precisely specified. For example how is the message to be encrypted
formed, to whom is it sent, over what kind of channel, and are certain
fields like an IP address included in the MAC? Second, the application
and its security requirements would also have to be formalized precisely.
For example, game-based security definitions for key agreement do not
explicitly guarantee that one can safely use the key in a given context,
nor what the requirements are for the channels over which the protocol is
executed (e.g., that they must be authenticated).

1.2 Constructive Cryptography

The general question of bridging the gap between a technical (e.g., game-
based) security definition and the security of an intended application
making use of the primitive is a foundational one. A goal of the con-
structive cryptography (CC) framework [Mau12; MR11] is to do exactly
this: provide constructive semantics for technical security definitions and,
based on the semantics, to compare definitions and identify the adequate
one(s).

The approach taken is well-established in cryptography and very
natural, and it can perhaps be seen as the only viable approach to
tightly link security definitions and applications. Namely, one formalizes
the application as an ideal-world system, called a resource in CC, which
captures both what one wants and what one does not want to happen. For
example, secure communication can be modeled as a secure channel where
the adversary learns at most the length of the message. Other frameworks

4 CHAPTER 1. INTRODUCTION

that capture security properties by defining an ideal functionality include
(variants of) Universal Composability (UC) [Can01; HS15; KT13] and
Reactive Simulatability (RSIM) [PW01; BPW07]. These frameworks have
a different focus and are designed bottom-up from a specific machine
model, while the constructive cryptography framework follows a top-down
approach, leading to simpler descriptions and avoiding technicalities.

The use of a cryptographic scheme can be understood as constructing
a certain (ideal) resource from certain assumed (real) resources. For
example, symmetric encryption can then be understood as constructing a
secure (length-leaking) channel from an authenticated channel and a secret
key, and a key-agreement protocol can be understood as constructing a
secret key (distributed to two parties A and B, where the adversary learns
nothing) from a bidirectional authenticated channel. This constructive
approach provides composition of constructions, i.e., the constructed
resource (e.g., a secret key) can be used in any other construction as an
assumed resource, and we have modularity since the overall security follows
automatically from the individual security proofs and the composition
theorem of constructive cryptography.

1.3 Studied Encryption Types and Results

1.3.1 One-Time Pad

We first analyze the one-time pad in Chapter 3. In contrast to the other
types of encryption we consider in this thesis, the one-time pad has
not been designed to have enhanced features except for its well known
information-theoretic security. We focus on another, completely different
aspect, which surfaces only when the receiver (not only the eavesdropper)
is considered potentially dishonest, as can be the case in a larger protocol
context in which encryption is used as a sub-protocol.

For example, such a dishonest receiver (who is, say, coerced by the
eavesdropper) can in normal encryption verifiably leak the message to
the eavesdropper by revealing the secret key. While this leakage feature
can provably not be avoided completely, it is more limited if the one-time
pad is used. This is due to the fact that the one-time pad, as deniable
encryption, has the property that the receiver can after obtaining the
ciphertext, present a key that decrypts this ciphertext to an arbitrary

1.3. STUDIED ENCRYPTION TYPES AND RESULTS 5

message of the receiver’s choice. We use the constructive cryptography
framework to make these statements precise.

The results in that chapter have been published in [MM13].

1.3.2 Identity-Based Encryption

In Chapter 4, we look at identity-based encryption (IBE). An IBE scheme
includes an algorithm to generate a master public key and a master secret
key, and an algorithm to generate user secret keys for a given identity
using the master secret key. To encrypt a message, only the master public
key and the identity of the recipient is needed, and the resulting ciphertext
can be decrypted with the user secret key for that identity.

We formalize the standard application of identity-based encryption as
constructing an ideal resource which we call delivery controlled channel
(DCC). This resource allows users to be registered (by a central authority)
for an identity and to send messages securely to other users only known
by their identity.

Quite surprisingly, we show that existing security definitions for IBE
are not sufficient to construct DCC. In fact, it is impossible to do so in
the standard model. We show, however, how to adjust any IBE scheme
that satisfies the standard security definition IND-ID-CPA to achieve this
goal in the random oracle model.

We also show that the impossibility result can be avoided in the
standard model by considering a weaker ideal resource that requires all
users to be registered in an initial phase before any messages are sent. To
achieve this, a weaker security notion, which we introduce and call IND-
ID1-CPA, is actually sufficient. This justifies our new security definition
and might open the door for more efficient schemes. We further investigate
which ideal resources can be constructed with schemes satisfying the
standard notion and variants of selective security.

The results in that chapter have been published in [HMM15].

1.3.3 Functional Encryption

In Chapter 5, we consider Functional encryption (FE), which is a powerful
generalization of various types of encryption. Like IBE, it allows to
generate a master public key and a master secret key. The master secret
key for FE schemes, however, can be used to generate decryption keys for

6 CHAPTER 1. INTRODUCTION

a given function. When data x is encrypted using the master public key
and the resulting ciphertext is decrypted using a decryption key for the
function f , one learns f(x).

We investigate how functional encryption can be used by a trusted
authority to enforce access-control policies to data stored in an untrusted
repository. Intuitively, if (functionally) encrypted data items are put
in a publicly-readable repository, the effect of the encryption should
be that users have access to exactly (and only) those functions of the
data items for which they have previously received the corresponding
decryption key. That is, in an ideal-world view, the key authority can
flexibly manage read access of users to the repository. This appears to
be exactly what functional encryption is supposed to achieve, and most
natural applications of thereof can be understood as specific uses of such
a repository with access control.

We formalize the described ideal-world interpretation as a resource
and propose a new conventional security definition, called composable
functional encryption security (CFE security), which we prove to be
equivalent to the construction of this resource. This definition (and hence
the described application) is shown to be unachievable in the standard
model but achievable in the random oracle model. Moreover, we show that
somewhat weaker definitions, which are achievable in the standard model,
can be obtained by certain operational restrictions of the ideal-world
repository, making explicit how schemes satisfying such a definition can
(and cannot) meaningfully be used.

The results in that chapter have been published in [MM15].

1.3.4 Access Control Encryption

Finally, we consider access control encryption (ACE) in Chapter 6. This
recently introduced type of encryption enables to control the information
flow between several parties according to a given policy specifying which
parties are, or are not, allowed to communicate. By involving a special
party, called the sanitizer, policy-compliant communication is enabled
while policy-violating communication is prevented, even if sender and
receiver are dishonest. To allow outsourcing of the sanitizer, the secrecy of
the message contents and the anonymity of the involved communication
partners is guaranteed not only against dishonest users, but also against
the sanitizer.

1.4. RELATED WORK 7

We show that in order to be resilient against realistic attacks, existing
security definitions of ACE must be considerably strengthened in several
ways. A new, substantially stronger security definition is proposed, and an
ACE scheme is constructed which provably satisfies the strong definition
under standard assumptions.

Three aspects in which the security of ACE is strengthened are as
follows. First, CCA security (rather than only CPA security) is guaranteed,
which is important since senders can be dishonest in the considered setting.
Second, the revealing of an (unsanitized) ciphertext (e.g., by a faulty
sanitizer) cannot be exploited to communicate more in a policy-violating
manner than the information contained in the ciphertext. We illustrate
that this is not only a definitional subtlety by showing how in known ACE
schemes, a single leaked unsanitized ciphertext allows for an arbitrary
amount of policy-violating communication. Third, it is enforced that
parties specified to receive a message according to the policy cannot be
excluded from receiving it, not even by a dishonest sender.

At the end of the chapter, we sketch the natural ideal resource and the
construction thereof one would expect ACE to achieve. We then explain
why ACE actually only provides very weak guarantees in constructive
cryptography and conclude by hinting at ways to resolve this.

Except for the discussion of the modeling in constructive cryptography,
the results in that chapter have been published in [BMM17].

1.4 Related Work
Several other types of encryption have been considered in the constructive
cryptography framework. These include symmetric encryption [MRT12],
(anonymous) public-key encryption [CMT13; KMO+13], and (robust)
authenticated encryption [BMM+15a; BMM+15b].

What encryption achieves in an ideal-world sense has also been inves-
tigated in the UC framework for public-key encryption [Can01; CKN03]
and for symmetric encryption [KT09], and in the RSIM framework for
public-key encryption [PW01].

Since those papers consider different types of encryption schemes and
have different goals, the results are significantly different from the ones
obtained in this thesis. Work related to the types of encryption we consider
is referenced in the corresponding chapters.

Chapter 2

Preliminaries

2.1 General Notation

The algorithms and systems in this thesis are described by pseudocode
using the following conventions: We write x← y for assigning the value y
to the variable x. For a finite set X, x � X denotes assigning to x a
uniformly random value in X. If A is an algorithm, y ← A(x) denotes
executing A on input x and assigning the returned value to y. For a
probabilistic algorithm A and a (sufficiently long) bit string r ∈ {0, 1}∗,
A(x; r) denotes the execution of A on input x with randomness r, and
A(x) denotes the execution with uniformly chosen randomness. For
algorithms A and O, AO(·)(x) denotes the execution of A on input x,
where A has oracle access to O.

We denote the set of natural numbers by N = {0, 1, 2, . . .}, and the
set of integers by Z. For n ∈ N, we use the convention

[n] := {1, . . . , n}.

ByZn we denote the ring of integers modulo n, and byZ∗n its multiplicative
group of units. We denote the length of a bit string s by |s| and for
s1, . . . , sn, |(s1, . . . , sn)| denotes the bit length of (some fixed) unique
encoding of (s1, . . . , sn).

The probability of an event A in an experiment E is denoted by PrE [A],
e.g., Prx�{0,1}[x = 0] = 1

2 . If the experiment is clear from the context, we

10 CHAPTER 2. PRELIMINARIES

omit the superscript. The conditional probability of A given B is denoted
by Pr[A | B] and the complement of the event A is denoted by ¬A.

2.2 Security Definitions and Advantages
The security of a cryptographic scheme is usually defined via a random
experiment (or game) involving an adversary algorithm A. For a given
scheme E and adversary A, one defines the advantage of A, which is
a function of the security parameter κ. To simplify the notation, we
omit the security parameter when writing the advantage, e.g., we write
AdvSig-EUF-CMA

E,A instead of AdvSig-EUF-CMA
E,A (κ) for the advantage of A in the

existential unforgeability game for the signature scheme E . Such a scheme
is considered secure if AdvSig-EUF-CMA

E,A is negligible (in κ) for all efficient A.
An algorithm A is efficient if it runs in probabilistic polynomial time
(PPT), i.e., A has access to random bits and there is a polynomial p such
that A(x) terminates after at most p(|x|) steps (in some computational
model, e.g., Turing machines) for all inputs x. A function f is negligible if
for every polynomial p, there exists n0 ∈ N such that f(n) < 1/p(n) for all
n ≥ n0. While these asymptotic definitions yield concise statements, we
will mostly derive precise bounds on the advantages, following a concrete
security approach.

2.3 Cryptographic Primitives and Games

2.3.1 Decisional Diffie-Hellman Assumption
Definition 2.3.1. Let G = ⟨g⟩ be a cyclic group of prime-order q and
let g be a generator. Let A be a probabilistic algorithm that on input
q, g, and three elements X,Y, T ∈ G returns a bit d. Let DDHreal

g,A be the
experiment where A is given two random group elements X = ga, Y = gb,
and the value T = gab. Let DDHrand

g,A be the experiment where A is given
three random group elements X = ga, Y = gb, and T = gc. We define
the decisional Diffie-Hellman (DDH) advantage of A as

AdvDDH
g,A := PrDDHreal

g,A [d = 1]− PrDDHrand
g,A [d = 1].

The decisional Diffie-Hellman (DDH) assumption for the group G states
that AdvDDH

g,A is negligible for all efficient A.

2.3. CRYPTOGRAPHIC PRIMITIVES AND GAMES 11

2.3.2 Pseudorandom Functions
Definition 2.3.2. For κ ∈ N, let Kκ, Xκ, and Yκ be finite sets and let
Fκ : Kκ × Xκ → Yκ be a function. For K ∈ Kκ, we use the notation
FK := Fκ(K, ·). Further let A be a probabilistic algorithm and consider
the experiment in which A outputs a bit after interacting with an oracle
that either corresponds to FK for a uniformly chosen K ∈ Kκ, or to a
uniformly chosen function U : Xκ → Yκ. We define the pseudorandom
function advantage of A as

AdvPRFF,A := Pr
[
AFK(·)(1κ) = 1

]
− Pr

[
AU(·)(1κ) = 1

]
,

where the first probability is over the random coins of A and the choice
of K, and the second probability is over the random coins of A and the
choice of U . The function family F is called pseudorandom if AdvPRFF,A is
negligible for all efficient A.

2.3.3 Public-Key Encryption
Definition 2.3.3. A public-key encryption (PKE) scheme consist of the
following three PPT algorithms:

Key generation: The algorithm Gen on input a security parameter 1κ,
outputs a public key ek and a private key dk .

Encryption: The algorithm Enc on input a public key ek and a mes-
sage m ∈M, outputs a ciphertext c.

Decryption: The algorithm Dec on input a private key dk and a cipher-
text c, outputs a message m ∈M∪ {⊥}.

We require for all (ek , dk) in the range of Gen and all m ∈M that

Dec
(
dk ,Enc(ek ,m)

)
= m

with probability 1.

Definition 2.3.4. Let E = (Gen,Enc,Dec) be a PKE scheme and let
A = (A1,A2) be a pair of probabilistic algorithms. Consider the exper-
iment ExpPKE-IND-CPA

E,A in Figure 2.1. We define the ciphertext indistin-
guishability under chosen-plaintext attacks advantage of A as

AdvPKE-IND-CPA
E,A := 2 · Pr

[
b′ = b ∧ |m0| = |m1|

]
− 1,

12 CHAPTER 2. PRELIMINARIES

Experiment ExpPKE-IND-CPA
E,A

Input: 1κ, κ ∈ N
(ek , dk)← Gen(1κ)
(m0,m1, st)← A1(ek)
b � {0, 1}
c∗ ← Enc(ek ,mb)
b′ ← A2(st, c

∗)

Experiment ExpSig-EUF-CMA
E,A

Input: 1κ, κ ∈ N
(vk , sk)← Gen(1κ)

(m,σ)← ASign(sk,·)(vk)

Figure 2.1: Experiments for the security definitions of public-key encryp-
tion and digital signature schemes.

where the probability is over the randomness in ExpPKE-IND-CPA
E,A . The

scheme E has indistinguishable ciphertexts under chosen-plaintext attacks
(is IND-CPA secure) if AdvPKE-IND-CPA

E,A is negligible for all efficient A.

2.3.4 Digital Signature Schemes
Definition 2.3.5. A (digital) signature scheme consist of the following
three PPT algorithms:

Key generation: The algorithm Gen on input a security parameter 1κ,
outputs a public key vk and a private key sk .

Signing: The algorithm Sign on input a private key sk and a messagem ∈
M, outputs a signature σ.

Verification: The algorithm Ver is deterministic and on input a public
key vk , a message m, and a signature σ, outputs a bit b (where
b = 1 means “valid” and b = 0 means “invalid”).

We require for all (vk , sk) in the range of Gen and all m ∈M that

Ver
(
vk ,m,Sign(sk ,m)

)
= 1

with probability 1.

Definition 2.3.6. Let E = (Gen,Sign,Ver) be a signature scheme and let
A be a probabilistic algorithm. Consider the experiment ExpSig-EUF-CMA

E,A

2.3. CRYPTOGRAPHIC PRIMITIVES AND GAMES 13

in Figure 2.1 and let Q be the set of queries A issued to its oracle. We
define the existential unforgeability under adaptive chosen-message attacks
advantage of A as

AdvSig-EUF-CMA
E,A := Pr

[
Ver(vk ,m, σ) = 1 ∧ m /∈ Q

]
,

where the probability is over the randomness in ExpSig-EUF-CMA
E,A . The

scheme E is existentially unforgeable under adaptive chosen-message at-
tacks (EUF-CMA secure) if AdvSig-EUF-CMA

E,A is negligible for all efficient A.

2.3.5 Non-Interactive Zero-Knowledge Proofs
We define non-interactive zero-knowledge proofs following Groth [Gro06].

Definition 2.3.7. Let R be an efficiently computable binary relation and
consider the language L := {x | ∃w (x,w) ∈ R}. A non-interactive proof
system for L (or for R) consists of the following three PPT algorithms:

Key generation: The algorithm Gen on input a security parameter 1κ,
outputs a common reference string crs.

Proving: The algorithm Prove on input a common reference string crs,
a statement x, and a witness w, outputs a proof π.

Verification: The algorithm Ver on input a common reference string crs ,
a statement x, and a proof π, outputs a bit b (where b = 1 means
“accept” and b = 0 means “reject”).

We require perfect completeness, i.e., for all crs in the range of Gen and
for all (x,w) ∈ R, we have

Ver
(
crs, x,Prove(crs, x, w)

)
= 1

with probability 1.

Definition 2.3.8 (Soundness). Let E = (Gen,Prove,Ver) be a non-
interactive proof system for a language L and let A be a probabilistic
algorithm. We define the soundness advantage of A as

AdvNIZK-snd
E,A := Prcrs←Gen(1κ); (x,π)←A(crs)

[
x /∈ L ∧ Ver(crs, x, π) = 1

]
.

14 CHAPTER 2. PRELIMINARIES

The scheme E is computationally sound if AdvNIZK-snd
E,A is negligible for all

efficient A and perfectly sound if AdvNIZK-snd
E,A = 0 for all A.

Definition 2.3.9 (Computational zero-knowledge). Let E = (Gen,Prove,
Ver) be a non-interactive proof system for a relation R and let S = (S1, S2)
be a pair of PPT algorithms, called simulator. Further let S′(crs, τ, x, w) =
S2(crs, τ, x) for (x,w) ∈ R, and S′(crs, τ, x, w) = failure for (x,w) /∈ R.
We define the zero-knowledge advantage of a probabilistic algorithm A as

AdvNIZK-ZK
E,S,A := Prcrs←Gen(1κ)

[
AProve(crs,·,·)(crs) = 1

]
− Pr(crs,τ)←S1(1

κ)
[
AS

′(crs,τ,·,·)(crs) = 1
]
.

We call (Gen,Prove,Ver, S1, S2) a non-interactive zero-knowledge (NIZK)
proof system for R if AdvNIZK-ZK

E,S,A is negligible for all efficient A; it is
called single-theorem NIZK proof system if AdvNIZK-ZK

E,S,A is negligible for all
efficient A that make at most one query to their oracle.

Definition 2.3.10 (Knowledge extraction). Let E = (Gen,Prove,Ver)
be a non-interactive proof system for a relation R and let E = (E1, E2)
be a pair of PPT algorithms, called knowledge extractor. We define the
knowledge extraction advantages of a probabilistic algorithm A as

AdvNIZK-ext1
E,E,A := Prcrs←Gen(1κ)

[
A(crs) = 1

]
− Pr(crs,ξ)←E1(1

κ)
[
A(crs) = 1

]
,

AdvNIZK-ext2
E,E,A := Pr(crs,ξ)←E1(1

κ); (x,π)←A(crs); w←E2(crs,ξ,x,π)[
Ver(crs, x, π) = 1 ∧ (x,w) /∈ R

]
.

We call (Gen,Prove,Ver, E1, E2) a non-interactive proof of knowledge sys-
tem for R if AdvNIZK-ext1

E,E,A and AdvNIZK-ext2
E,E,A are negligible for all efficient A.

Definition 2.3.11 (Simulation soundness). Let E = (Gen,Prove,Ver)
be a non-interactive proof system for a language L, let S = (S1, S2)
be a pair of PPT algorithms, and let A be a probabilistic algorithm.
Consider the experiment ExpNIZK-sim-snd

E,S,A that executes (crs, τ) ← S1(1
κ)

and (x, π)← AS2(crs,τ,·)(crs). Further let Q be the set of all (x′, π′) such
that A queried x′ to its oracle and received π′ as a response. We define
the simulation soundness advantage of A as

AdvNIZK-sim-snd
E,S,A := Pr

[
(x, π) /∈ Q ∧ x /∈ L ∧ Ver(crs, x, π) = 1

]
.

2.4. CONSTRUCTIVE CRYPTOGRAPHY 15

We say (Gen,Prove,Ver, S1, S2) is simulation sound if AdvNIZK-sim-snd
E,S,A is

negligible for all efficient A, and it is one-time simulation sound if
AdvNIZK-sim-snd

E,S,A is negligible for all efficient A that make at most one
query to the oracle S2.

Note that in the above definition, A is allowed to issue queries x′ /∈ L
to its oracle. This means that soundness is preserved even if an adversary
sees simulated proofs of false statements.

2.4 Constructive Cryptography

The results in this thesis are formulated using a simulation-based notion of
security. There are many protocol frameworks based on such a simulation-
based security notion (e.g., [GMW87; Bea92; MR92; Can01; PW01;
BPW07; MR11; Mau12]). However, in this work, we use the constructive
cryptography (CC) framework [Mau12; MR11].

Briefly, CC makes statements about constructions of resources from
other resources. A resource is a system with interfaces via which the
resource interacts with its environment and which can be thought of as
being assigned to parties. Converters are systems that can be attached
to an interface of a resource to change the inputs and outputs at that
interface, which yields another resource. The protocols of honest parties
and simulators correspond to converters. Dishonest behavior at an in-
terface is captured by not applying the protocol (instead of modeling an
explicit adversary). An ideal resource is constructed from a real resource
by a protocol, if the real resource with the protocol converters attached
at the honest interfaces is indistinguishable from the ideal resource with
the simulators attached at the dishonest interfaces.

We introduce the relevant concepts in more detail, following [MR11],
in the following subsections. For readers more familiar with the Universal
Composability (UC) framework [Can01], we also include explanations of
how the presented concepts relate to similar concepts in UC.

2.4.1 Resources, Converters, and Distinguishers

We consider different types of systems, which are objects with interfaces
via which they interact with their environment. Interfaces are denoted

16 CHAPTER 2. PRELIMINARIES

by uppercase letters. One can compose two systems by connecting one
interface of each system. The composed object is again a system.

Two types of systems we consider here are resources and convert-
ers. Resources are denoted by (partially) capitalized sans serif fonts,
e.g., R or AutCA,B, and have a finite set I of interfaces. Resources with
interface set I are called I-resources. Converters have one inside and
one outside interface and are denoted by lowercase Greek letters or sans
serif fonts. In figures, resources are drawn with rectangular boxes and
converters with boxes with rounded corners. The inside interface of a
converter α can be connected to interface I ∈ I of a resource R. The
outside interface of α then serves as the new interface I of the composed
resource, which is denoted by αIR. We also write αIR instead of αIIR
for a converter αI . For a tuple of converters α = (αI1 , . . . , αIn) with
I1, . . . , In ∈ I and a set P ⊆ {I1, . . . , In} of interfaces, αPR denotes
the I-resource that results from connecting αI to interface I of R for
every I ∈ P. Moreover, αPR denotes the I-resource one gets when
αI is connected to interface I of R for every I ∈ {I1, . . . , In} \ P. For
I-resources R1, . . . ,Rm, the parallel composition [R1, . . . ,Rm] is defined
as the I-resource where each interface I ∈ I allows to access the corre-
sponding interfaces of all sub-systems Ri as sub-interfaces. Similarly, for
converters α1, . . . , αm, we define the parallel composition [α1, . . . , αm] via
[α1, . . . , αm]I [R1, . . . ,Rm] := [αI1R1, . . . , α

I
mRm].

A distinguisher D for resources with n interfaces is a system with
n+ 1 interfaces, where n of them connect to the interfaces of a resource
and a bit is output at the remaining one. We write Pr[DR = 1] to denote
the probability that D outputs the bit 1 when connected to resource R.
The goal of a distinguisher is to distinguish two resources by outputting
a different bit when connected to a different resource. Its success is
measured by the distinguishing advantage.

Definition 2.4.1. The distinguishing advantage of a distinguisher D for
resources R and S is defined as

∆D(R,S) := Pr[DR = 1]− Pr[DS = 1].

If ∆D(R,S) = 0 for all distinguishers D, we say R and S are equivalent,
denoted as R ≡ S. If the distinguishing advantage is negligible for all effi-
cient distinguishers, we say R and S are computationally indistinguishable,
denoted as R ≈ S.

2.4. CONSTRUCTIVE CRYPTOGRAPHY 17

Remark. One can also consider statistical indistinguishability by allow-
ing a negligible distinguishing advantage for all (including inefficient)
distinguishers, but we do not need that concept in this thesis.

We introduce two special converters 1 and ⊥. The converter 1 forwards
all inputs at one of its interfaces to the other one. We thus have for all
I-resources R and all I ∈ I

1IR ≡ R.

One can equivalently understand connecting 1 to interface I of a resource
as not connecting any converter to that interface. Moreover, the con-
verter ⊥ blocks all inputs at the connected interface. That is, interface I of
⊥IR does not accept any inputs and there are no outputs at this interface.

Defining systems. We define systems by specifying their input/output
behavior either using pseudocode or with a textual description. Such a
specification describes how the system reacts to inputs at its interfaces.
We use the convention that inputs not matching any of the described cases
are ignored. Systems can have an optional initialization phase, which is
executed before any inputs are processed.

Efficiency of systems. For defining computational security, one needs
a notion of an efficient system. The class of these systems can be defined
by fixing a model of computation and considering all systems satisfying
certain conditions on the number of computational steps and the lengths
of the inputs and outputs. The important property needed from such a
notion is that connecting efficient systems again yields an efficient system
[MR11]. Precisely defining this in a meaningful way is rather involved
and the details are not important to understand the results in this thesis.

Relation to UC concepts. In UC, systems as above can correspond
to protocols, ideal functionalities, or simulators that interact with the
protocol environment. More specifically, resources correspond to ideal
functionalities, while converters can correspond to real or hybrid protocols,
or to simulators. Namely, a UC protocol can be viewed as a way to
convert calls to that protocol to calls to an underlying communication
infrastructure (or hybrid functionality). Conversely, a UC simulator can

18 CHAPTER 2. PRELIMINARIES

be viewed as a way to convert the network interface of one protocol into
that of another one. (In CC, there is no a-priori distinction between I/O
and network interfaces; hence, both UC protocols and UC simulators
correspond to converters.) Distinguishers as above correspond to the UC
protocol environments. In contrast to CC, the systems in UC are fixed
to a very specific type of Turing machines. To be compatible with that,
the class of efficient systems in CC can be instantiated by such Turing
machines.

2.4.2 Filtered Resources
In some situations, specific interactions with a resource might not be guar-
anteed but only potentially available. To model such situations, we extend
the concept of a resource. Let R be an I-resource and let φ = (φI)I∈I
be a tuple of converters. We define the filtered resource Rφ as a resource
with the same set of interfaces I. For a party connected to interface I of
Rφ, interactions through the converter φI are guaranteed to be available,
while interactions with R directly are only potentially available to dis-
honest parties. The converter φI can be seen as a filter shielding specific
functionality of interface I. Dishonest parties can potentially remove the
filter to get access to all features of the resource R. Formally, Rφ is defined
as the set of all resources that allows all interactions allowed by φIR but
not more than allowed by R; see [MR11] for more details.

2.4.3 Basic Resources
An important cryptographic resource is a shared secret key between A
and B, which outputs the same random value at the interfaces A and B
and nothing at the interface of an eavesdropper.

Definition 2.4.2. A shared secret key, denoted as sKeyA,B , is a resource
with three interfaces A, B, and E. It outputs a uniformly random value
at the interfaces A and B and does not output anything at interface E.
All inputs are ignored.

Another important example of resources are communication channels,
which allow the sender A to send messages from some message spaceM⊆
{0, 1}∗ to the receiver B. We define two such channels, which differ in
the capabilities of the adversary E.

2.4. CONSTRUCTIVE CRYPTOGRAPHY 19

Definition 2.4.3. An authenticated channel from A to B for n ∈ N
messages and message space M, denoted as AutCn,A,B, and a secure
channel from A to B for n ∈ N messages and message space M, denoted
as SecCn,A,B , are resources with three interfaces A, B, and E.1 On input
a message m ∈M at interface A, they both output the same message m
at interface B if less than n messages have been sent before. Additionally,
AutCn,A,B outputs m at interface E and SecCn,A,B outputs the length |m|
of the message at interface E. Other inputs as well as attempts to send
more than n messages are ignored. Authenticated and secure channels
that allow arbitrarily many messages to be sent are denoted by AutCA,B

and SecCA,B , respectively.

Remark. Alternatively, one could define authenticated and secure channels
such that E also has the ability to delete messages. Most results in this
thesis can be adapted to such a setting, but our assumption that sent
messages are always delivered allows to simplify the presentation.

For authenticated channels, we do not want to guarantee that an
adversary learns the message, it is rather not excluded. Similarly, secure
channels should not guarantee that the length of the message leaks. To
model this, we introduce filters that block all outputs at interface E.
We then have that a secure channel is also authenticated, i.e., the set of
(filtered) secure channels is a subset of the set of (filtered) authenticated
channels.

Definition 2.4.4. Let φAutC = φSecC := (1,1,⊥). We will consider the
filtered resources AutCA,B

φAutC and SecCA,B
φSecC .

Note that

φAutC{A,B,E}AutC
A,B = 1A1B⊥EAutCA,B

≡ 1A1B⊥ESecCA,B = φSecC{A,B,E}SecC
A,B

accepts messages at interface A and outputs them at interface B where
interface E is inactive.

We finally introduce a more advanced communication resource that
has many interfaces and allows a sender to send messages to all other

1Since the message space is typically either irrelevant or clear from the context, we
do not include it in the notation.

20 CHAPTER 2. PRELIMINARIES

interfaces. It is authenticated in the sense that the messages cannot be
modified and everyone receives the same message.

Definition 2.4.5. The broadcast resource BCastA,B for a set B has inter-
face set {A} ∪ B. On input a message m ∈ M at interface A, the same
message is output at all interfaces B ∈ B. Other inputs are ignored.

Relation to UC concepts. The presented resources directly corre-
spond to UC ideal functionalities for authenticated, secure, or broadcast
channels. The different interfaces of the presented resources correspond
to what different parties in UC could send or receive. (Here we note a
common design difference in UC and CC: in UC, typically one would
assume parties as fixed entities, and model communication and interfaces
around them. In CC, one would typically start with the interfaces that
reflect the semantic types of in- and outputs of a resource, and only later
think of connecting entities like parties.)

2.4.4 Construction of Resources
A protocol is a tuple of converters with the purpose of constructing a
so-called ideal resource from an available real resource. Depending on
which parties are considered potentially dishonest, we get a different
notion of construction.

As an example from [CMT13], consider the setting for public-key
encryption with honest A and B where we want to construct a secure
channel SecCA,B

φSecC from authenticated channels AutC1,B,A
φAutC and AutCA,B

φAutC

in presence of a dishonest eavesdropper E. Here, the real resource is
R :=

[
AutC1,B,A

φAutC ,AutC
A,B
φAutC

]
and the ideal resource is S := SecCA,B

φSecC . In this
setting, a protocol π = (πA, πB , πE) constructs S from R with potentially
dishonest E if there exists a converter σE (called simulator) such that

πAπBπE
[
φAutCA φAutCB φAutCE AutC1,B,A, φAutCA φAutCB φAutCE AutCA,B

]
≈ φSecCA φSecCB φSecCE SecCA,B

and

πAπB
[
φAutCA φAutCB AutC1,B,A, φAutCA φAutCB AutCA,B

]
≈ φAutCA φAutCB σESecC

A,B ,

2.4. CONSTRUCTIVE CRYPTOGRAPHY 21

RφAπA
A

φB πB
B

φE

πE

E

≈

SψA
A

ψB
B

ψE

E

(a) Correctness condition.

RφAπA
A

φB πB
B

E

≈

SψA
A

ψB
B

σE

E

(b) Security condition.

Figure 2.2: Depiction of the two conditions for the construction of a
filtered {A,B,E}-resource Sψ from the filtered {A,B,E}-resource Rφ
with potentially dishonest E by the protocol π.

where σE provides a sub-interface to the distinguisher for each channel that
constitutes the real resource. See Figure 2.2 for a graphical representation
of these two conditions. The first condition ensures that the protocol
implements the required functionality and the second condition ensures
that whatever Eve can do when connected to the real resource without
necessarily following the protocol, she could do as well when connected
to the ideal resource by using the simulator σE . Since Eve is here only a
hypothetical entity, we typically have πE = ⊥.

In this thesis, we consider the more general setting that includes
several potentially dishonest parties that (in contrast to Eve in the above
example) also get certain guarantees if they are honest while unable to
do more than specified by the ideal resource even if they are dishonest.
We define a secure construction as follows.

22 CHAPTER 2. PRELIMINARIES

Definition 2.4.6. Let Rφ and Sψ be filtered I-resources and let π =
(πI)I∈I be a protocol. Further let U ⊆ I be the set of interfaces with
potentially dishonest behavior. We say π constructs Sψ from Rφ with
potentially dishonest U , denoted by

Rφ
π

U
Sψ,

if there exist converters σ = (σU)U∈U such that

∀P ⊆ U : πPφPR ≈ σPψPS.

For singleton sets U = {E}, we here write E instead of {E} to simplify
the notation. The converters σU are called simulators.2

For U = I, this definition corresponds to the abstraction notion from
[MR11], which considers all parties as potentially dishonest. To apply the
above definition to an unfiltered resource R, one can formally introduce
trivial filters φI := 1 for I ∈ I and consider the filtered resource Rφ which
is identical to R. In such cases, we will omit the filters.

Composition of constructions. The notion of construction is compos-
able in the following sense: We have for all filtered resources Rφ, R′φ′ , Sψ,
S′ψ′ , and Tτ , and for all protocols π = (πA, πB , πC) and π′ = (π′A, π

′
B , π

′
C),

Rφ
π

U
Sψ ∧ Sψ

π′

U
Tτ =⇒ Rφ

π′ ◦ π
U

Tτ ,

Rφ
π

U
Sψ ∧ R′φ′

π′

U
S′ψ′ =⇒ [Rφ,R

′
φ′]

[π, π′]

U
[Sψ,S

′
ψ′],

where π′ ◦ π := (π′A ◦ πA, π′B ◦ πB , π′C ◦ πC) and [π, π′] :=
(
[πA, π

′
A],

[πB , π
′
B], [πC , π

′
C]
)
. The first property guarantees that the composition

of construction steps yields a secure overall construction and the second
property ensures that a construction remains secure in any context, i.e.,
regardless of what happens in parallel. See [Mau12; MR11] for a proof of
these statements and further discussions.3

2Note that we require the existence of one simulator for all efficient distinguishers.
This simulator does therefore not depend on the distinguisher and hence is black-box.

3In fact, [Mau12] only proves the special case for {A,B,E}-resources with potentially
dishonest E, and [MR11] only considers the case U = I. The more general statement
we need, however, follows analogously since the implications can be shown for each
P ⊆ U separately.

2.4. CONSTRUCTIVE CRYPTOGRAPHY 23

Relation to UC concepts. The “constructs” notion presented above
directly corresponds to the UC notion of secure realization. (The combina-
tion of π and R corresponds to the real protocol in UC, while S matches the
UC ideal protocol.) The “constructs” notion does not consider an explicit
adversary on the real protocol. (Instead, in UC terms, a dummy adversary
is considered without loss of generality.) There is a difference, however,
in the modeling of corruptions. Generally, in UC, adaptive corruptions
are considered. In the CC modeling above, only static corruptions of
parties are considered. Moreover, instead of modeling corruptions through
special “corrupt” messages sent from the adversary or environment, in CC
corruptions are modeled simply be letting the distinguisher connect to
the interfaces of corrupted parties.

Finally, a subtle difference between CC and UC security is that CC
security requires “local” simulators for each interface, whereas in UC, one
simulator is required that handles all parties (resp. interfaces) at once.
While this makes CC security a stricter notion than UC security, this
difference is not important for our results; in particular, our impossibility
results have nothing to do with the fact that CC security requires local
simulation.

Chapter 3

Deniability of the
One-Time Pad

3.1 Introduction

3.1.1 Motivation

The purpose of symmetric encryption in constructive cryptography can
be seen as constructing a secure channel from a sender Alice to a receiver
Bob from a shared secret key and an authenticated channel. Given a
key as long as the message, Alice can encrypt her message by bitwise
XORing the key to the message, which yields the corresponding ciphertext.
She then sends this ciphertext over the channel to Bob, who can recover
the message by bitwise XORing the key to the ciphertext. If the key is
uniformly random and used only once, this cryptosystem is called one-
time pad. It was shown in [Sha49] that an eavesdropper Eve does not
learn anything about the message given only the ciphertext. This means
constructively that the one-time pad can be used to construct a secure
channel from a shared secret key and an authenticated channel if Eve is
the only dishonest party, regardless of her computational power.

This analysis assumes that Alice and Bob are always honest, which
is a standard assumption when analyzing symmetric encryption schemes.
However, when channels are used in a more complex system with several

26 CHAPTER 3. DENIABILITY OF THE ONE-TIME PAD

parties, this assumption does not always hold. We analyze the one-time
pad when the receiver Bob is potentially dishonest. This allows us to
understand situations in which Bob is coerced to give the secret key to
another party or in which Bob wants to betray Alice by convincing a third
party that she has sent a specific message. If Bob sends Eve the key and
Alice sends a message to Bob, Eve can learn the message. Of course, Bob
can just send Eve the message, but if she does not trust him, there is no
reason for her to believe that he sent her the correct message. However,
receiving a key that later decrypts the ciphertext to a meaningful message
is more convincing because it might be much harder or even impossible
for Bob to find such a key. Hence, the resource generally constructed
by encryption schemes cannot exclude that Bob convincingly leaks the
message to Eve.

It is known that the one-time pad shares a feature with so-called
deniable encryption schemes introduced in [CDNO97], which allows one to
find a key for each pair of message and ciphertext such that the ciphertext
decrypts to the given message with this key. Hence, once Bob knows the
message, he can create a fake key that yields an arbitrary message of his
choice. Intuitively, this means that receiving a key from a dishonest Bob
after a message was sent is meaningless. We show that this intuition can
be formalized in the constructive cryptography framework as follows: The
one-time pad can be used to construct a resource which potentially allows
Bob at the beginning to decide whether he wants to leak the message
to Eve or not. However, he has to make this decision before Alice sends
the message, i.e., his choice to leak the message or not cannot depend on
the message. In contrast, when using ordinary encryption, one cannot
exclude that Bob is still able to verifiably leak the message after it was
sent. Hence, in addition to perfect secrecy, the one-time pad provides
stronger guarantees than other encryption schemes.

3.1.2 Contributions

The main contribution of this chapter is the description of an ideal
resource that can be constructed using the one-time pad in a setting
with a potentially dishonest receiver. Furthermore, we show that it is
impossible to construct a fully secure channel from a shared secret key
and an authenticated channel if the receiver is dishonest.

These have been the first results of this form involving more than one

3.2. ENCRYPTION WITH A DISHONEST RECEIVER 27

potentially dishonest party, which is of independent interest as a new type
of example in the constructive cryptography framework.

3.1.3 Related Work

The security of the one-time pad has been analyzed in constructive
cryptography by Maurer [Mau12], and in the reactive simulatability
framework by Raub, Steinwandt, and Müller-Quade [RSM05]. These
works, however, only consider the standard setting with honest sender
and receiver.

Deniability and incoercibility have been considered in (variants of) the
UC framework [UM10; CV12; AOZZ15]. In comparison to these works,
our approach is much simpler since we neither need new definitions nor
to modify the constructive cryptography framework.

3.2 Encryption with a Dishonest Receiver

3.2.1 General Limitations

In this section, we examine encryption schemes in general. All results hold
with respect to information-theoretic security as well as computational
security. We investigate which resources one can construct from a shared
secret key and an authenticated channel using encryption in the setting
in which not only Eve but also Bob could be dishonest. If this is used
as part of a larger protocol which allows Bob to exchange messages with
Eve, a dishonest Bob could send her the key, resulting in Eve learning the
message. Since the security guarantees are preserved under composition
in our framework, the ideal resource constructed by an encryption scheme
has to reflect this. That is, the ideal resource potentially gives Bob
the option to leak the message to Eve. However, this option is not
guaranteed. One reason for this is that Bob cannot leak the message in a
more restricted setting where he does not have a communication channel
to Eve. Therefore, we have a filtered resource where Bob’s leakage button
is shielded by a filter.

Something else has to be taken into account. Consider for example
the one-time pad. The ciphertext there is a uniformly random bit string.
Hence, when Alice sends an encrypted message, Bob and Eve get common

28 CHAPTER 3. DENIABILITY OF THE ONE-TIME PAD

randomness. For other types of encryption, they could potentially extract
the randomness of the key from the ciphertext and thereby also get
common randomness. Even if this is not considered to be an issue, it
has to be reflected in the ideal resource. Altogether, the resource a
typical encryption scheme constructs from a shared secret key and an
authenticated channel is a secure channel which potentially gives Bob the
option to leak the message to Eve and which potentially gives common
randomness to Bob and Eve.

As we have just argued, ordinary encryption does not construct a
secure channel without additional features from an authenticated channel
and a shared secret key if Bob and Eve are potentially dishonest. We now
show that this construction is generally impossible, not by any type of
encryption scheme nor a completely different protocol (a variant of this
was already stated in the appendix of [MR11] without proof). We assume
here and for the rest of this chapter that the message space of all channels
isM := {0, 1}ℓ for some fixed ℓ ∈ N, and we only consider channels for
sending a single message.

Theorem 3.2.1. There exists no protocol π = (πA, πB , πE) that con-
structs a secure channel SecC1,A,B from a shared secret key sKeyA,B and
an authenticated channel AutC1,A,B with potentially dishonest B and E.

Proof. Assume such a protocol π exists. Then, there exist simulators σB
and σE such that the following conditions hold:

πAπBπE
[
sKeyA,B ,AutC1,A,B

]
≡ SecC1,A,B , (3.1)

πAπE
[
sKeyA,B ,AutC1,A,B

]
≡ σBSecC1,A,B , (3.2)

πAπB
[
sKeyA,B ,AutC1,A,B

]
≡ σESecC1,A,B , (3.3)

πA
[
sKeyA,B ,AutC1,A,B

]
≡ σBσESecC1,A,B . (3.4)

At the beginning, the resource πA
[
sKeyA,B ,AutC1,A,B

]
outputs a key at

interface B. Hence, (3.4) implies that σBσESecC1,A,B also outputs a
key at interface B. Furthermore, (3.4) implies that on input a message
m ∈M = {0, 1}ℓ at interface A of σBσESecC1,A,B afterwards, the outputs
at interfaces B and E agree. Since σE does not get any information about
the message and the key had been output before the message was input,
no output of σB depends on the message. However, we can conclude
from (3.1) and (3.2) that (πBσB)

BSecC1,A,B ≡ SecC1,A,B, i.e., applying

3.2. ENCRYPTION WITH A DISHONEST RECEIVER 29

protocol πB to the output of σB gives the correct message. This is only
possible with probability 2−ℓ, yielding a contradiction.

3.2.2 The One-Time Pad with a Dishonest Receiver

As discussed in the preceding section, ordinary encryption at best con-
structs a secure channel that potentially allows the receiver Bob to leak
the message to an eavesdropper Eve and potentially gives common ran-
domness to Bob and Eve if they are both dishonest. In this section, we
show that, even though it is impossible to construct a secure channel
without additional features from a shared secret key and an authenticated
channel, the one-time pad can be used to construct a stronger resource
than the one constructed by ordinary encryption, namely a resource that
does not allow Bob to leak the message anymore once he has received it.

Intuitively, this is because the one-time pad shares the feature with
so-called deniable encryption [CDNO97] that for each pair of message
and ciphertext one can find a key such that the ciphertext decrypts to
the given message with this key. In case of the one-time pad, such a key
can be obtained by computing the bitwise XOR of the message and the
ciphertext. Therefore, Bob can generate a fake key to yield any message
of his choice if he already knows the message. This makes receiving a key
from Bob in that case useless because there is no way to verify whether it
is the correct key. This translates to the ideal resource by not allowing
Bob to leak the message after receiving it. Note that this does not work
before Bob knows the message. Then, he cannot find a key that will
decrypt the ciphertext to a message of his choice.

To capture the fact that Bob can leak the message before he receives it
but not afterwards, we split the receiver into two phases, B1 that is active
at the beginning and B2 that is active after receiving a message. This is
necessary to model for example that a receiver is following the protocol
at first but changes his strategy depending on the received message. We
first describe the real resource used in our construction, which consists of
a key, an authenticated channel, and a memory, and is denoted by KAcM.

Definition 3.2.2. The resource KAcM has the four interfaces A, B1, B2,
and E and consists of a shared secret key sKeyA,B1 between A and B1,
an authenticated channel AutC1,A,B2 from A to B2, and an ℓ-bit memory
MemB1,B2 writable by B1 and readable by B2. At interface B1, one can

30 CHAPTER 3. DENIABILITY OF THE ONE-TIME PAD

KAcMπA

s

sKeyA,B

A B1

$

AutC1,A,B

A B2

E

πB1

Mem B1

B2
s πB2read

πE

Figure 3.1: The resource KAcM, which consists of sKeyA,B1 , AutC1,A,B2 ,
and MemB1,B2 composed in parallel, with the protocol converters attached.

input x ∈ {0, 1}ℓ to store x in the memory. On input read at interface B2,
the beforehand stored value x is returned to B2. To model that B1 and
B2 exist in different phases of the protocol, all inputs at interface B1 after
something is input at interface A and all inputs at interface B2 before are
ignored.

Now we describe the protocol π = (πA, πB1
, πB2

, πE). Let πA internally
store the key it receives at its inside interface, and on input a message
at the outside interface, compute the bitwise XOR of this message and
the key and input the result into the authenticated channel to B2. When
πB1 receives the key, it stores it in the memory. When πB2 receives a
ciphertext from A, it reads the key from the memory, computes the bitwise
XOR of the key and the ciphertext and outputs the result at its outside
interface. Eve’s (hypothetical) protocol πE := ⊥ ignores all inputs. See
Figure 3.1 for an overview of the protocol and the involved resources.

We next describe the ideal resource which is constructed from KAcM
by that protocol. The guaranteed functionality allows A to send a message
m ∈ M to B2. Moreover, it potentially allows E to learn the length of
the message and B1 to flip a switch such that E afterwards potentially
receives the message instead of only its length. Also, B2 can potentially
see whether the switch was flipped. For the same reason we explained

3.2. ENCRYPTION WITH A DISHONEST RECEIVER 31

in the case of general encryption, B1, B2, and E could potentially get
common randomness. If B1 and B2 are both dishonest, they cannot
be prevented from using the memory in KAcM to exchange information.
Hence, the ideal resource potentially also allows B1 to store an ℓ-bit string
which can later be read by B2. We call this resource secure channel with
limited leakability and formally define it as follows.

Definition 3.2.3. The resource SecCLL has the four interfaces A, B1,
B2, and E and works as described and illustrated in Figure 3.2. Since
some of the functionality of SecCLL is not guaranteed by the protocol but
only potentially available, we introduce the following filters: φB1

:= ⊥
and φE := ⊥ ignore all inputs, φB2

converts inputs of the form (r, b,m) at
its inside interface to m and ignores other inputs, and φA := 1 forwards
all inputs. Let φ := (φA, φB1

, φB2
, φE).

We finally prove that this protocol actually achieves the construction.

Theorem 3.2.4. The protocol π defined above constructs SecCLLφ from
KAcM with potentially dishonest B1, B2, and E, i.e.,

KAcM
π

{B1, B2, E}
SecCLLφ.

Proof. Let σ := (σB1
, σB2

, σE) for the simulators σB1
, σB2

, and σE defined
in Figure 3.3. We have to show that

∀P ⊆ {B1, B2, E} πPKAcM ≡ σPφPSecCLL.

We first verify the conditions with B1 ∈ P, i.e., with σB1
present on

the right hand side. In this case, σB1
outputs a uniformly random ℓ-bit

string r at the beginning, as the resource on the left hand side does at
interface B1. Since σB1 outputs leak at its inside interface, the local
variable b in SecCLL is true when a message m is input at interface A.
Hence, σB2

and σE (if present) both output m⊕ r. As in the resource on
the left hand side, the bitwise XOR of the outputs at interfaces B1 and
B2 as well as the outputs at interfaces B1 and E yields the input message
m = r ⊕ (m⊕ r). On input read at interface B2, σB2 returns the value
stored before a message was input at interface A. Therefore, the resources
on the left and those on the right hand side are indistinguishable in these
four cases.

32 CHAPTER 3. DENIABILITY OF THE ONE-TIME PAD

Resource SecCLL

Initialization
b← false
t← 1
r � {0, 1}ℓ
output r at interface B1

Interface A
Input: m ∈M

if t = 1 then
t← 2
output (r, b,m) at interface B2

if b then
output (r,m) at interface E

else
output (r, |m|) at interface E

Interface B1

Input: leak

if t = 1 then
b← true

Input: (store, x), x ∈ {0, 1}ℓ
if t = 1 then

s← x

Interface B2

Input: read

if t = 2 then
output s at interface B2

(a) Definition of the resource SecCLL.

SecCLLφ

A B2

|·|

E

$
B1

s

(b) Illustration of the resource SecCLLφ. Interactions that are not guaranteed
but only potentially available to dishonest parties are drawn with dotted lines.

Figure 3.2: The resource SecCLLφ.

3.2. ENCRYPTION WITH A DISHONEST RECEIVER 33

Converter σB1

Inside interface
Input: r

output leak at inside interface
output r at outside interface

Outside interface
Input: x ∈ {0, 1}ℓ

output (store, x) at inside interface

Converter σE

Inside interface
Input: (r,m)

output m⊕ r at outside interface

Input: (r, |m|)
output r at outside interface

Converter σB2

Initialization
s← null

Inside interface
Input: (r, b,m)

if b then
s← returned value from read

at inside interface
output m⊕r at outside interface

else
s← m⊕ r
output r at outside interface

Outside interface
Input: read

if s ̸= null then
output s at outside interface

Figure 3.3: Simulators for the construction of SecCLLφ from KAcM.

Now consider the cases with B1 /∈ P. There, b is false when a
message m is input at interface A, so σE will output a uniformly random
ℓ-bit string r in case E ∈ P . If B2 /∈ P , this is indistinguishable from the
output at interface E of the resource on the left hand side. Otherwise, σB2

outputs r as well and sets its internal variable s to m⊕r. Hence, inputting
read and computing the bitwise XOR of the returned value s and the
previous output at interface B2 results in the message m = (m⊕ r)⊕ r,
as in the resource on the left hand side. Therefore, the resources are
indistinguishable in all cases.

Chapter 4

Identity-Based Encryption

4.1 Introduction

4.1.1 Motivation

Identity-based encryption (IBE) is a generalization of public-key encryp-
tion where messages can be encrypted using a master public key and
the identity of a user, which can be an arbitrary bit string, such as the
user’s e-mail address. Ciphertexts can be decrypted with a user secret key
for the corresponding identity, where user secret keys are derived from a
master secret key, which is generated together with the master public key.

The apparent standard application of IBE is non-interactive secure
communication. More specifically, we assume a setting with many parties,
and the goal is to enable each party to send any other party (known only
by his/her identity) messages in a secure way. This secure communication
should be non-interactive (or “one-shot”) in the sense that the sending
party should not be required to, e.g., look up a public key of the receiving
party, or to communicate in any other way (beyond of course sending one
message to the receiver). In fact, our requirements and expectations can
be described as follows. We define a resource that provides the following
basic services (via appropriate calls to the resource):

Registration. Each party is able to register his/her identity id . (Intu-
itively, an identity could be an email address or telephone number,

36 CHAPTER 4. IDENTITY-BASED ENCRYPTION

that—presumably uniquely—identifies the registering party.)

Communication. Each party is able to send a message m to another
party with identity id .

While an IBE scheme can be used in an obvious way to syntactically
realize this functionality, the application is only secure if the IBE scheme
satisfies a suitable security definition.

4.1.2 Identity-Based Encryption and its Security
The concept of identity-based encryption has been conceived as early as
1984 [Sha85]. A first candidate of an IBE scheme was presented in 1991
in [MY91], although without a detailed security model. In the 2000s,
however, both a detailed security model [BF01] and a number of concrete
IBE schemes (with security proofs under various assumptions) emerged,
e.g., [BF01; Coc01; Wat05; GPV08].

Both standard IBE security notions (IND-ID-CPA and IND-ID-CCA)
are formalized as a security game. In this game, a hypothetical adver-
sary A chooses an identity id∗, and messages m∗0 and m∗1, and tries to
distinguish an encryption of m∗0 from an encryption of m∗1 (both prepared
for receiver identity id∗). Besides, A may (adaptively) ask for arbitrary
user secret keys for identities id ̸= id∗. (In case of IND-ID-CCA security,
A additionally gets access to a decryption oracle for arbitrary identities.)
If no efficient A can successfully distinguish these ciphertexts, we consider
the system secure.

At this point, we note that these game-based notions of security do
allow for a form of adaptivity (in the sense that A may adaptively ask for
user secret keys), but do not directly consider a concrete communication
scenario.

4.1.3 Contributions
In this chapter, we investigate the goal of non-interactive communication,
and in particular the use of IBE schemes to achieve that goal. Perhaps
surprisingly, it turns out that the standard notions of IBE security do not
imply non-interactive communication in the standard model. However,
we prove that standard IBE security notions do imply non-interactive
communication in the random oracle model and also weaker forms of

4.1. INTRODUCTION 37

non-interactive communication in the standard model. (Loosely speaking,
standard IBE security notions achieve non-interactive communication
in a setting in which registrations always occur before any attempt is
made to send messages to the respective receiving party.) Furthermore,
we introduce a new security notion that is weaker than the standard
notion, but still implies a very natural weaker notion of non-interactive
communication in the standard model.

A more technical view. A little more technically, we model non-
interactive communication as a “delivery controlled channels” resource
DCC.1 This resource has a number of interfaces, called A, B1, . . . , Bn,
and C, to the involved users. Intuitively, interface C is used to register
parties, A is used to send messages2, and the interfaces Bi are used to
receive messages by different parties.

More specifically, our resource admits the following types of queries:

• Registration queries (made at interface C) register an interface Bi
for receiving messages sent to an identity id . (Depending on the
envisioned physical registration process, the fact that Bi was reg-
istered under identity id may become public. We model this by
leaking the pair (id , i) at all interfaces Bj .)

• Send queries (at interface A) send a message m to a given identity id .
(The message will then be delivered to all interfaces which have been
registered for this identity. Besides, any interface Bi which is later
registered for that identity id will also receive m upon registration.)

• When thinking of an IBE scheme as realizing DCC, we cannot
prevent dishonest parties from sharing their keys in the real world.
As a result, also the messages sent to that party are shared with
every party that got the key. Our ideal system DCC has to make
this explicit, so we admit share queries (at any interface Bi) that

1The name “delivery controlled channels” indicates that a user can specify (or,
control) to which recipient the message should be delivered.

2In this chapter, we focus on passive attacks (i.e., on eavesdropping adversaries).
In particular, we will not consider adversarially sent messages. Thus, for simplicity, we
will assume that all incoming requests to send a message arrive at a single interface A.

38 CHAPTER 4. IDENTITY-BASED ENCRYPTION

cause all messages sent to this interface to be potentially3 published
at all other interfaces Bj that have also made a share query.

Furthermore, all parties (i.e., all interfaces Bi) at the beginning (poten-
tially) receive an honestly generated random string (that corresponds
to the randomness in the master public key of an IBE scheme that can
potentially be extracted). We deem an IBE scheme secure if it implements
this resource (when used in the straightforward way) in the sense of
constructive cryptography. (In particular, this means that the view of any
given party using the real IBE scheme can be simulated efficiently with
access to the ideal non-interactive communication resource only.) We note
that we do not model secret keys or ciphertexts in our ideal resource.

We remark that a possible ideal functionality in the UC setting would
not use interfaces, but instead restrict the registration, send, and share
queries to different parties. That is, only a designated “master party”
could register other parties for receiving messages under certain identities.
Every party P could send messages, and also issue a share query (with
the same consequences as in our CC-based formulation).

Why current game-based definitions do not realize DCC. Our
first observation is that existing game-based definitions of IBE security
(such as IND-ID-CPA or IND-ID-CCA) do not appear to realize the above
resource. To explain the reason, suppose that one party P performs
its own registration (under an arbitrary identity and at an arbitrary
interface Bi) after messages are sent to P . (Naturally, P will not be able
to receive these messages before obtaining his/her own user secret key
during registration.) Now we claim that P ’s view in that scenario cannot
be simulated efficiently. Concretely, observe that P ’s view with a real
IBE scheme essentially consists of two elements: first, a ciphertext c of a
yet-unknown message m sent by another party; and second, a user secret
key usk that allows to decrypt c to m. In order to simulate P ’s view, a
simulator must thus first produce a ciphertext c at a point at which P
is not registered as a receiving party. Since at that point, m is not yet
known to P , c must in fact be simulated without knowledge of m. Later

3Sharing is not guaranteed because our real system does not include channels
between the Bi (since they are not needed). When composed with other systems, it
might however be the case that such channels become available, so sharing cannot be
excluded in a composable framework.

4.1. INTRODUCTION 39

on, however, the simulator must also produce a user secret key usk that
opens c as an encryption of m.

Put differently, the simulation thus faces a commitment problem: first,
it has to commit to a ciphertext c, and later explain this ciphertext as
an encryption of an arbitrary message m. For technically very similar
reasons, public-key encryption cannot be simulated in the face of adaptive
corruptions [Nie02]. (However, we stress that in our case, no adaptive
corruptions occur; see also the remark below.) As a consequence, we can
show that non-interactive communication (as formalized by our resource
DCC) cannot be achieved in the standard model.

Weaker notions of non-interactive communication. Our negative
result for the above resource DCC raises the question what we can do
to achieve some form of non-interactive communication and also what
existing, game-based IBE security notions actually achieve.

Recall that the commitment problem that arises with DCC occurs
only when identities are registered after messages have been sent to
this identity. A natural way to avoid this scenario is to assume first a
registration phase (in which no message transmissions are allowed), and
second a transmission phase (in which no registrations are allowed). This
separation into two phases can be modeled as a resource st2DCC that
only allows message transmissions (and from then on ignores registration
attempts) after a specific input at the “registration” interface C.4 We can
show that st2DCC can be achieved by IND-ID-CPA secure IBE schemes.
In that sense, the commitment problem of DCC is the only reason why
we cannot achieve that resource. Interestingly, achieving st2DCC actually
corresponds to a game-based notion of IBE security that we introduce
and call IND-ID1-CPA security and that is weaker than IND-ID-CPA
security.

We also show that IND-ID-CPA security exactly corresponds to a
resource stDCC which only allows registrations of identities to which
no message has been sent so far. (In that sense, stDCC implements a
“local” version of the two-phase separation of st2DCC. Again, we stress

4While this separation is easily modeled as a resource, we stress that it is the respon-
sibility of the (designer of the) implementation to physically enforce this separation.
For instance, in face of a passive adversary, such a separation into phases could be
enforced simply by telling honest parties not to send any messages until the second
phase.

40 CHAPTER 4. IDENTITY-BASED ENCRYPTION

IND-ID-CPA

IND-sID-CPA

IND-ID1-CPA

IND-sID1-CPA

stDCC st2DCC

preDCC pre2DCC

Theorem 4.4.4 Theorem 4.4.5

Theorem 4.4.8 Theorem 4.4.9

Figure 4.1: Implications among security definitions and the constructed
resources. Security definitions are drawn in boxes with rounded corners
and resources are shown in rectangular boxes. The figure says for example
that by Theorem 4.4.4, an IBE scheme can be used to construct the
resource stDCC if and only if it is IND-ID-CPA secure, while IND-ID-CPA
security implies IND-sID-CPA security and IND-ID1-CPA security.

that it is the responsibility of the implementation to enforce such a local
separation.)

Finally, we provide relaxed resources preDCC and pre2DCC that are
“selective” versions of stDCC and st2DCC, respectively. (Here, “selective”
means that the set of identities id that can be registered has to be specified
initially, over interface A.) We proceed to show that resource preDCC is
achieved precisely by selective IND-ID-CPA secure IBE schemes. Similarly,
the resource pre2DCC is equivalent to a selective version of the game-based
notion associated with the resource st2DCC. The relations among security
definitions and the achieved constructions are summarized in Figure 4.1.

Relevance of the impossibility result. While it perhaps appears
natural to process all registrations before messages for the corresponding
identities are sent, this restriction substantially weakens the usefulness
of IBE. For example, if IBE is used in a large context to encrypt emails
where the encryption service is independent of the email providers, it

4.1. INTRODUCTION 41

seems desirable to be able to send encrypted emails to anyone with a valid
email address, without knowing whether they have already registered for
the encryption service. In fact, if one has to “ask” whether a user has
already received his key before being able to send him a message, one
gives up non-interactivity and does not gain much compared to standard
public-key encryption.

Moreover, an interesting application, which was suggested in [BF01],
is impossible: Assume the key authority every day publishes a key for
the identity that corresponds to the current date. One should now be
able to send a message “to the future” by encrypting it for the identity
corresponding to, e.g., the following day. We are here precisely in the
situation where a ciphertext is received before the corresponding key, so
standard IBE does not guarantee the security of this application (our
construction with random oracles, however, does provide this guarantee).5

On dishonest senders. The results in this chapter only consider pas-
sive attacks, i.e., we assume only honest parties send messages. This
makes our impossibility result only stronger, and all positive results can
in principle be lifted to a setting with potentially dishonest senders by
replacing the CPA-definitions with their (R)CCA-counterparts. How-
ever, this leads to some subtleties in the modeling. For example, one
needs to simulate a dishonest sender sending some nonsensical bit string
(which does not constitute a valid ciphertext) to a dishonest receiver.
Furthermore, the two phases in the results with a separate registration
and transmission phase become intermixed, because only honest parties
are prevented from sending during the registration phase. To avoid such
technicalities and simplify the presentation, we formulate all results only
for honest senders.

5One can give a less technical argument why standard definitions are insufficient
for this application than the inability to simulate: It is not excluded by IND-ID-CPA
or IND-ID-CCA that first providing a ciphertext and later the user secret key for the
corresponding identity yields a binding commitment (maybe only for some specific
subset of the message space). In this case, a dishonest recipient Bob of a ciphertext
for the following day can use this ciphertext to commit himself (to some third party)
to the encrypted value, and open the commitment on the next day. Note that Bob
committed himself to a value he did not know, possibly misleading the third party
into believing he knew it, which is not possible when an ideal “sending-to-the-future”
functionality is used.

42 CHAPTER 4. IDENTITY-BASED ENCRYPTION

4.1.4 Related Work

On the difference to the ideal IBE functionality of Nishimaki,
Manabe, and Okamoto. We note that an ideal functionality for
identity-based encryption has already been presented by Nishimaki et
al. [NMO06] in the UC framework. However, unlike our resources (when
interpreted as UC functionalities as sketched above), their functionality
was constructed directly along the IBE algorithms, and not to model
the goal of non-interactive communication. Besides, their functionality
does not guarantee secrecy for ciphertexts generated before the respective
receiver has been initialized. (This relaxed guarantee can be understood as
corresponding to our relaxed resource stDCC that disallows registrations
after communication attempts to the given identity, where instead of
disallowing such registrations, the functionality by Nishimaki et al. allows
them, but then gives up the security guarantees.)

As a consequence, [NMO06] could indeed show that the standard game-
based definition of security for IBE schemes is equivalent to realizing their
ideal functionality. Specifically, their IBE abstraction thus compares
differently from ours to game-based IBE security notions.

Relation to adaptive corruptions in the public-key setting. As
noted, technically, the commitment problem we encounter is very sim-
ilar to the commitment problem faced in adaptively secure public-key
encryption [Nie02]. There, a simulation would have to first produce a
ciphertext (without knowing the supposed plaintext). Later, upon an
adaptive corruption of the respective receiver, the simulation would have
to provide a secret key that opens that ciphertext suitably.

However, in our case, the actual setting in which the problem occurs
is not directly related to corruptions. Namely, in our setting, a similar
commitment problem occurs because messages may be sent to an identity
prior to an “activation” of the corresponding communication channel.
(In fact, since the mapping of receiving parties to identities may not be
clear beforehand, prior to such an activation it is not even clear where to
route the corresponding sent messages.) Hence, we can argue that the
commitment problem we face is inherent to the IBE setting, independently
of adaptive corruptions (all results in this thesis are actually formulated
for static corruptions).

4.2. DELIVERY CONTROLLED CHANNELS 43

4.2 Delivery Controlled Channels

4.2.1 Overview and General Definition
A broadcast channel allows a sender A to send messages to recipients
B1, . . . , Bn. One can understand the application of an IBE scheme to
add some form of delivery control to such a channel. More specifically,
the enhanced channel allows A to send a message for some identity id
in an identity space ID such that only the Bi that are registered for
this identity receive the message, even if several other Bi are dishonest.
We assume this registration is managed by a central authority C. We
formalize this by a delivery controlled channel DCC. This resource also
allows the registration of identities after messages have been sent for this
identity. In this case, the corresponding user after registration learns all
such messages.

Because the public key and each ciphertext contain randomness, during
initialization and for each sent message, all parties (potentially) receive
common randomness. Moreover, when someone gets registered for an
identity, this identity together with a corresponding user secret key is
sent to this party over a secure channel. By definition, a secure channel
can leak the length of the transmitted messages. Since the length of
user secret keys can depend on the identity for which the key has been
generated and also on the used randomness, dishonest users potentially
learn which identity has just been registered for whom and potentially
even which randomness was used to generate the corresponding secret
key. Furthermore, dishonest recipients can share their secret keys with
others in the real world, which has the effect in the ideal world that the
other recipients also learn the messages sent for an identity that has been
registered for the user who shared his keys. We model this by a special
symbol share that Bi can input. A message sent for identity id is then
received by Bi if id has been registered for Bi or if there is a Bj such
that Bi and Bj have input share and id has been registered for Bj .

Definition 4.2.1. Let n, ρ ∈ N,M := {0, 1}∗, and let ID be a nonempty
set. The resource DCCn,ID,ρ has the interfaces A, C, and Bi for i ∈
{1, . . . , n}. The resource internally manages the set S ⊆ {B1, . . . , Bn}
of interface names that want to share their identities and for each i ∈
{1, . . . , n}, the set Ii ⊆ ID of identities registered for interfaceBi. Initially,
these sets are empty. The resource works as described in Figure 4.2.

44 CHAPTER 4. IDENTITY-BASED ENCRYPTION

Resource DCCn,ID,ρ

Initialization
S ← ∅
j ← 1
r � {0, 1}ρ
for all i ∈ {1, . . . , n} do

Ii ← ∅
output r at interface Bi

Interface A
Input: (idj ,mj) ∈ ID ×M
rj � {0, 1}ρ
for all i ∈ {1, . . . , n} do

if idj ∈ Ii ∨
(
Bi ∈ S

∧ idj ∈
⋃

Bk∈S Ik
)

then
output (idj ,mj , rj) at int. Bi

else
output (idj , |mj |, rj) at int. Bi

j ← j + 1

Interface Bi

Input: share

S ← S ∪ {Bi}

Interface C
Input: (id, i) ∈ ID × {1, . . . , n}
Ii ← Ii ∪ {id}
r � {0, 1}ρ
for all k ∈ {1, . . . , n} do

output (id, i, r) at interface Bk

if k = i ∨ {Bi, Bk} ⊆ S then
for all l ∈ {1, . . . , j − 1} do

if idl = id then
output ml at int. Bk

Figure 4.2: Definition of the resource DCCn,ID,ρ.

The randomness that the Bi get corresponds to randomness one can
potentially extract from the public key, the ciphertexts, and the length of
the user secret keys of an IBE scheme. Honest users are not guaranteed to
receive this randomness, we rather cannot exclude that dishonest parties
do so. Similarly, we cannot exclude that dishonest parties share their
identities, learn the identity for which a message is designated and the
length of the message without being registered for that identity, or learn
who gets registered for which identity. To model that these interactions
are not guaranteed, we introduce the following filters: For i ∈ {1, . . . , n},
let φDCC

Bi
be the converter that on input (id ,m, r) ∈ ID ×M× {0, 1}ρ

at its inside interface, outputs (id ,m) at its outside interface, on input
m ∈ M at its inside interface, outputs m at its outside interface, and
on input (id , k, r) ∈ ID × {1, . . . , n} × {0, 1}ρ with k = i at its inside
interface, outputs id at its outside interface. All other inputs at any of its
interfaces are ignored and thereby blocked. Further let φDCC

A := φDCC
C := 1

be the converter that forwards all inputs at one of its interfaces to the
other one and let φDCC := (φDCC

A , φDCC
C , φDCC

B1
, . . . , φDCC

Bn
). We will consider

the filtered resource DCCn,ID,ρ
φDCC .

4.2. DELIVERY CONTROLLED CHANNELS 45

Remark. The resource defined above assumes that a central authority C
registers all identities and allows one party to have more than one identity
and one identity to be registered for several users. That resource can now
be used in larger context where this registration process is regulated. For
example, one can have a protocol programmed on top of DCC that requires
Bi to send his identity together with a copy of his passport to C. Moreover,
C could ensure that each identity is registered for at most one user. In
such an application, the resource DCC could directly be used without
considering how it was constructed. Due to composition of the constructive
cryptography framework, we can thus focus on the construction of DCC
and decouple confidentiality from the actual registration process.

4.2.2 Static Identity Management
We now define a more restricted resource that only allows the registration
of an identity as long as no message has been sent for this identity.

Definition 4.2.2. Let n, ρ ∈ N,M := {0, 1}∗, and let ID be a nonempty
set. The resource stDCCn,ID,ρ is identical to DCCn,ID,ρ except that inputs
(id , i) ∈ ID×{1, . . . , n} at interface C are ignored if id ∈

⋃j−1
k=1{idk}. We

will use the same filters as above and consider the resource stDCCn,ID,ρ
φDCC .

The above resource prevents identities for which messages have been
sent to be registered, but other identities can still be registered. The
following resource restricts the registration process further and operates
in two phases: Initially, only registrations are allowed and no messages
can be sent. At any point, C can end the registration phase and enable
A to send messages.

Definition 4.2.3. Let n, ρ ∈ N,M := {0, 1}∗, and let ID be a nonempty
set. The resource st2DCCn,ID,ρ behaves as DCCn,ID,ρ except that it
initially ignores all inputs at interface A. On input the special sym-
bol endRegistration at interface C, it outputs registrationEnded

at interfaces B1, . . . , Bn, and from then on ignores all inputs at inter-
face C and allows inputs at interface A. We will consider the filtered
resource st2DCCn,ID,ρ

φDCC .

Note that φDCC blocks the output registrationEnded for honest
users, i.e., it is not necessarily guaranteed that everyone learns that

46 CHAPTER 4. IDENTITY-BASED ENCRYPTION

the registration has ended. It is not excluded by our protocol since C
there informs A that messages may now be sent, and this communication
could be observed by dishonest users. If it is desirable in an application
that everyone learns that the registration has ended, one can still use
st2DCCn,ID,ρ by letting C explicitly send that information to all Bi
via an additional channel. This would happen outside of the resource
st2DCCn,ID,ρ as a separate construction.

Further note that in stDCC, A can prevent the registration of an iden-
tity by sending a message for it. On the other hand, st2DCC gives C full
control over the registration process while being less dynamic. Depending
on the application, one or the other resource might be preferable.

4.2.3 Predetermined Identities

We finally introduce two resources that additionally require all identi-
ties that are used be determined at the beginning. This allows us to
capture the guarantees provided by selectively secure IBE schemes (see
Definition 4.3.3).

Definition 4.2.4. Let n, ρ ∈ N,M := {0, 1}∗, and let ID be a nonempty
set. The resources preDCCn,ID,ρ and pre2DCCn,ID,ρ have the interfaces
A, C, and Bi for i ∈ {1, . . . , n}. Before the resources output anything or
accept any input, they wait for the input of a finite set J ⊆ ID (encoded
as a list of its elements) at interface A. On this input, they output ok

at interfaces B1, . . . , Bn. Afterwards, preDCCn,ID,ρ behaves identically
to stDCCn,ID,ρ and pre2DCCn,ID,ρ behaves identically to st2DCCn,ID,ρ

with the exception that they only accept inputs (id j ,mj) ∈ J ×M at
interface A (there is no restriction on inputs at interface C). We will
again consider the filtered resources preDCCn,ID,ρ

φDCC and pre2DCCn,ID,ρ
φDCC .6

4.3 IBE Schemes and Protocols

4.3.1 Standard Definitions for IBE

We first give the formal definition of an IBE scheme.

6Again, the filter φDCC blocks the outputs ok and registrationEnded at inter-
faces Bi.

4.3. IBE SCHEMES AND PROTOCOLS 47

Definition 4.3.1. An identity-based encryption (IBE) scheme E with
message space M and identity space ID consists of the following four
PPT algorithms:

Key generation: On input a security parameter 1κ, the algorithm Gen
outputs a master public key mpk and a master secret key msk .

Extraction: On input a master secret key msk and an identity id ∈ ID,
the algorithm Ext outputs a user secret key usk id .

Encryption: On input a master public key mpk , an identity id ∈ ID,
and a message m ∈M, the algorithm Enc outputs a ciphertext c.

Decryption: On input a user secret key usk id , an identity id ∈ ID, and
a ciphertext c, the algorithm Dec outputs a message m ∈M∪ {⊥}.

For correctness, we require that for all (mpk ,msk)← Gen(1κ), all id ∈
ID, all m ∈ M, all c ← Enc(mpk , id ,m), and all usk id ← Ext(msk , id),
we always have Dec(usk id , id , c) = m.

We now provide the standard security definition for IBE schemes
against passive attacks.

Definition 4.3.2 (IND-ID-CPA security). For an IBE scheme E = (Gen,
Ext,Enc,Dec) and an algorithm A, consider the experiment ExpIND-ID-CPA

E,A
in Figure 4.3. In this experiment, A is not allowed to output an iden-
tity id that it has queried to its Ext oracle, or to later query id to Ext.
Furthermore, A must output m0,m1 of equal length. Let

AdvIND-ID-CPA
E,A := 2 · Pr

[
ExpIND-ID-CPA
E,A = 1

]
− 1.

We say that E has indistinguishable ciphertexts under chosen-plaintext
attacks (is IND-ID-CPA secure) if AdvIND-ID-CPA

E,A is negligible for all PPT A.

We further consider a weaker security notion introduced in [CHK03]
where the adversary has to specify the identity he wants to attack at the
beginning of the experiment.

Definition 4.3.3 (IND-sID-CPA security). Consider the experiment
ExpIND-sID-CPA
E,A in Figure 4.3 for an IBE scheme E = (Gen,Ext,Enc,Dec)

48 CHAPTER 4. IDENTITY-BASED ENCRYPTION

Experiment ExpIND-ID-CPA
E,A

Input: 1κ, κ ∈ N
(mpk ,msk)← Gen(1κ)

(st, id,m0,m1)← AExt(msk,·)(mpk)
b � {0, 1}
c∗ ← Enc(mpk , id,mb)

b′ ← AExt(msk,·)(st, c∗)
return 1 if b′ = b, else return 0

Experiment ExpIND-sID-CPA
E,A

Input: 1κ, κ ∈ N
(st, id)← A(1κ)
(mpk ,msk)← Gen(1κ)

(st′,m0,m1)← AExt(msk,·)(st,mpk)
b � {0, 1}
c∗ ← Enc(mpk , id,mb)

b′ ← AExt(msk,·)(st′, c∗)
return 1 if b′ = b, else return 0

Figure 4.3: The IND-(s)ID-CPA experiment with scheme E and adver-
sary A.

and an algorithm A. In this experiment, A is not allowed to query id to
Ext and has to output m0,m1 of equal length. Let

AdvIND-sID-CPA
E,A := 2 · Pr

[
ExpIND-sID-CPA
E,A = 1

]
− 1.

We say that E has indistinguishable ciphertexts under selective identity,
chosen-plaintext attacks (is IND-sID-CPA secure) if AdvIND-sID-CPA

E,A is neg-
ligible for all PPT A.

4.3.2 Non-Adaptive Security
We next introduce two novel security notions for IBE schemes that loosely
correspond to variants of the standard definitions under “lunchtime at-
tacks” [NY90]. While CCA1 in contrast to CCA allows the adversary only
to ask decryption queries in an initial phase, our definitions restrict the
adversary to ask Ext queries only in an initial phase.

Definition 4.3.4 (IND-(s)ID1-CPA security). Consider the two ex-
periments ExpIND-ID1-CPA

E,A and ExpIND-sID1-CPA
E,A for an IBE scheme E =

(Gen,Ext,Enc,Dec) and an algorithm A in Figure 4.4. In these experi-
ments, A is only considered valid if all queries to its Ext oracle are different
from id and if |m0| = |m1|. Let

AdvIND-ID1-CPA
E,A := 2 · Pr

[
ExpIND-ID1-CPA
E,A = 1

]
− 1,

AdvIND-sID1-CPA
E,A := 2 · Pr

[
ExpIND-sID1-CPA
E,A = 1

]
− 1.

4.3. IBE SCHEMES AND PROTOCOLS 49

Experiment ExpIND-ID1-CPA
E,A

Input: 1κ, κ ∈ N
(mpk ,msk)← Gen(1κ)

st ← AExt(msk,·)(1κ)
(st′, id,m0,m1)← A(st,mpk)
b � {0, 1}
c∗ ← Enc(mpk , id,mb)
b′ ← A(st′, c∗)
return 1 if b′ = b, else return 0

Experiment ExpIND-sID1-CPA
E,A

Input: 1κ, κ ∈ N
(st, id)← A(1κ)
(mpk ,msk)← Gen(1κ)

st′ ← AExt(msk,·)(st)
(st′′,m0,m1)← A(st′,mpk)
b � {0, 1}
c∗ ← Enc(mpk , id,mb)
b′ ← A(st′′, c∗)
return 1 if b′ = b, else return 0

Figure 4.4: The IND-(s)ID1-CPA experiment with scheme E and adver-
sary A.

We say that E has indistinguishable ciphertexts under non-adaptive chosen-
plaintext attacks (is IND-ID1-CPA secure) if AdvIND-ID1-CPA

E,A is negligible
for all valid PPT A, and E has indistinguishable ciphertexts under selective
identity, non-adaptive chosen-plaintext attacks (is IND-sID1-CPA secure)
if AdvIND-sID1-CPA

E,A is negligible for all valid PPT A.

4.3.3 Using IBE Schemes in Constructions

In this section, we define the real resources we assume to be available
and describe the protocol converters that are designed to construct the
resources defined in Section 4.2. These protocol converters internally use
an IBE scheme. Whether the constructions are achieved according to
Definition 2.4.6 depends on the security properties of the IBE scheme,
which we analyze in Section 4.4.

Delivery Controlled Channels. To construct a delivery controlled
channel from a broadcast channel7, we use an IBE scheme in a straightfor-
ward way: The party at interface C generates all keys, sends the public key
authentically to A and the user secret keys securely to the corresponding
Bi. To send a message, A broadcasts an encryption thereof and the Bi

7Note that we consider the sender to be honest. Hence, assuming a broadcast
channel to be available is not a strong assumption.

50 CHAPTER 4. IDENTITY-BASED ENCRYPTION

with matching identity decrypt it. Hence, we need in addition to the
broadcast channel an authenticated channel from C to A to transmit the
public key and secure channels from C to each Bi. We abbreviate the
network consisting of these channels as

NW :=
[
BCastA,{B1,...,Bn},AutC1,C,A,SecCC,B1 , . . . ,SecCC,Bn

]
.

The real resource in our construction corresponds to the filtered re-
source NWφNW where φNW := (φNWA , φNWC , φNWB1

, . . . , φNWBn
) with φNWI :=

[1, φAutCI , φSecCI , . . . , φSecCI] for I ∈ {A,C,B1, . . . , Bn}.8
For an IBE scheme E , we define protocol converters enc, dec, and reg

as follows and let ibe := (enc, reg, dec, . . . , dec): The converter enc first
expects to receive a master public key mpk at its inside interface and
stores it internally. On input a message and identity (id ,m) ∈ ID ×M
at its outside interface, it computes c ← Enc(mpk , id ,m) and outputs
(id , c) at its inside sub-interface to BCastA,{B1,...,Bn}. The converter dec
on input an identity and a corresponding user secret key (id , usk id) at
its inside interface, stores this tuple internally and outputs id at its
outside interface. For all pairs (id j , cj) with id j = id stored internally,
dec computes mj ← Dec(usk id , id , cj) and outputs mj at its outside
interface. On input an identity and a ciphertext (id , c) at its inside
interface, it stores (id , c) internally and if it has stored a user secret
key for the identity id , computes m ← Dec(usk id , id , c) and outputs
(id ,m) at its outside interface. The converter reg initially computes
(mpk ,msk) ← Gen(1κ), stores msk internally, and outputs mpk at its
inside sub-interface to AutC1,C,A

φAutC . On input (id , i) at its outside interface,
it computes usk id ← Ext(msk , id) and outputs (id , usk id) at its inside
sub-interface to SecCC,Bi

φSecC .

Static identity management. To construct stDCC, the protocol at
interface C has to reject registration requests for identities for which

8In this context, the channel SecCC,Bi is a resource with n + 2 interfaces where
interface C corresponds to interface A of the resource in Definition 2.4.3, interface Bi

corresponds to interface B, and interfaces Bj for j ̸= i correspond to copies of
interface E. Similarly, φSecC

C corresponds to φSecC
A in Definition 2.4.4, φSecC

Bi
corresponds

to φSecC
B , and φSecC

Bj
to φSecC

E for j ̸= i. For simplicity, we do not introduce a different
notation for the different filters.

4.3. IBE SCHEMES AND PROTOCOLS 51

messages have already been sent. To be able to do so, it needs to know
for which identities this is the case. We thus assume there is an additional
authenticated channel from A to C that is used to inform C about the
usage of identities. The real resource is then NW+

φNW+ for

NW+ :=
[
BCastA,{B1,...,Bn},AutCA,C ,AutC1,C,A,

SecCC,B1 , . . . ,SecCC,Bn

]
and φNW

+

:= (φNW+

A , φNW
+

C , φNW
+

B1
, . . . , φNW

+

Bn
) where φNWI := [1, φAutCI ,

φAutCI , φSecCI , . . . , φSecCI] for I ∈ {A,C,B1, . . . , Bn}.
We define the protocol ibes := (encs, regs, decs, . . . , decs) by describing

the differences from ibe as follows: On input (id ,m) ∈ ID ×M at its
outside interface, encs additionally outputs id at its inside interface to
AutCA,C

φAutC . The converter regs on input id at its inside interface, stores
this identity internally. It subsequently ignores inputs (id , i) at its outside
interface if it has stored id .

Note that it is crucial for this construction that AutCA,C cannot be
interrupted or delayed. Otherwise an attacker could prevent C from
learning that some identity has already been used to send messages and
this identity could still be registered. In practice, one could realize such a
channel by letting C acknowledge the receipt while A sends the message
only after receiving this acknowledgment. This would, however, contradict
the goal of non-interactivity.

If such a reliable channel is not available, we can still construct st2DCC
from NW using the protocol ibe2s := (enc2s, reg2s, dec2s, . . . , dec2s) defined
as follows: It works as ibe, except that reg2s initially does not send mpk
to A. On input endRegistration at its outside interface, reg2s sends mpk
to A and ignores further inputs. The converter enc2s ignores all inputs
until it receives mpk at its inside interface and from then on handles all
inputs as enc.

Remark. Note that sending mpk is here used to signal A that it can
now start sending messages. Since we assume that the sender is always
honest, we do not need to require, e.g., that mpk cannot be computed
from user secret keys; as long as mpk has not been sent, A will not send
any messages.

52 CHAPTER 4. IDENTITY-BASED ENCRYPTION

Predetermined identities. To construct preDCCφDCC from NW+

φNW+ ,
we define the protocol ibep = (encp, regp, decp, . . . , decp) that uses a selec-
tively secure IBE scheme. The protocol is almost identical to ibes with
the difference that encp initially expects a finite set J ⊆ ID (encoded as
a list of its elements) as input at its outside interface. On this input, it
stores J internally, sends ok to C via AutCA,C

φAutC , and subsequently ignores
all inputs (id ,m) for id /∈ J . The converter regp initially waits and
ignores all inputs at its outside interface until it receives the input ok at
its inside interface. It then sends mpk to A and from then on behaves
identically to reg2s.

Similarly, we define a protocol ibe2p = (enc2p, reg2p, dec2p, . . . , dec2p)
to construct pre2DCCφDCC from NW+

φNW+ . It works as ibe except that enc2p

initially expects a finite set J ⊆ ID (encoded as a list of its elements) as
input at its outside interface. On this input, it stores J internally, sends
ok to C via AutCA,C

φAutC , and ignores all further inputs until it receives mpk

over AutCC,A
φAutC . From then on, it handles all inputs as enc, but ignores

inputs (id ,m) for id /∈ J . The converter reg2p initially waits and ignores
all inputs at its outside interface until it receives the input ok at its inside
interface. It then accepts registration requests at its outside interface as
reg. On input endRegistration at its outside interface, reg2p sends mpk
to A and ignores further inputs.
Remark. While both ibep and ibe2p need AutCA,C

φAutC , ibe2p uses this channel
only once in the beginning to let A send ok to C. The availability of such
a channel only at the beginning might be easier to guarantee in practice.

4.4 Constructions with IBE

4.4.1 Impossibility Result
We now show that there is no IBE scheme that can be used to construct
DCCφDCC from NWφNW .

Theorem 4.4.1. Let n > 0, ID a nonempty set, and let ρ ∈ N. Then
there is no IBE scheme such that we have for the corresponding protocol ibe

NWφNW
ibe

{B1, . . . , Bn}
DCCn,ID,ρ

φDCC .

4.4. CONSTRUCTIONS WITH IBE 53

Proof. This proof closely resembles Nielsen’s impossibility proof of non-
committing public-key encryption [Nie02]. Assume the protocol ibe =
(enc, reg, dec, . . . , dec) achieves the construction and let P := {B1}. Then
there exists a converter σB1

such that ibePφ
NW
P NW ≈ σPφDCC

P DCCn,ID,ρ.
Let id ∈ ID, let ν be an upper bound on the length of the output of
Ext(·, id), and consider the following distinguisher: The distinguisher D
chooses m ∈ {0, 1}ν+1 uniformly at random and inputs (id ,m) at inter-
face A. Let (id , c) be the resulting output at interface B1 (if there is no
such output, D returns 0). Then, D inputs (id , 1) at interface C. Let
(id , usk) be the resulting output at interface B1 and return 0 if there is
no such output or if |usk | > ν. Finally, D inputs first (id , c) and then
(id , usk) at the inside interface of dec and returns 1 if dec outputs id and
m at its outside interface, and 0 otherwise.

Correctness of the IBE scheme implies that D always outputs 1 if
connected to the real resource. In the ideal world, c is generated in-
dependently of m only given |m| because σB1

does not learn m until
(id , 1) is input at interface C. Moreover, there are at most 2ν possible
values for usk such that |usk | ≤ ν. Hence, there are at most 2ν values
of m such that there exists a usk that decrypts c to m with probability
more than 1

2 . Since m was chosen uniformly from {0, 1}ν+1, D outputs
1 with probability at most 1

2 + 1
2 ·

1
2 = 3

4 when connected to the ideal
resource. Thus, the distinguishing advantage is at least 1

4 , which is a
contradiction.

4.4.2 Construction Equivalent to IND-ID-CPA
While no IBE scheme constructs DCCφDCC from NWφNW , we show that
IND-ID-CPA security is sufficient to construct stDCCφDCC from NW+

φNW+ .

Lemma 4.4.2. Let ρ be an upper bound on the randomness used in one
invocation of Gen, Ext, and Enc. Then, there exist efficient converters
σB1 , . . . , σBn such that for all P ⊆ {B1, . . . , Bn} and for all efficient
distinguishers D that input at most q messages at interface A, there exists
an efficient algorithm A such that

∆D
(
ibesPφ

NW+

P NW+, σPφ
DCC
P stDCCn,ID,ρ

)
= q · AdvIND-ID-CPA

E,A .

Proof. Consider the simulator σBi
for i ∈ {1, . . . , n} in Figure 4.5, let

P ⊆ {B1, . . . , Bn}, and let D be an efficient distinguisher for the resources

54 CHAPTER 4. IDENTITY-BASED ENCRYPTION

Converter σBi

Inside interface
Input: r ∈ {0, 1}ρ

(mpk ,msk)← Gen(1κ; r)
output share at inside interface
output mpk at outside sub-interface simulating AutC1,C,A

Input: (id,m, r) ∈ ID ×M× {0, 1}ρ
c← Enc(mpk , id,m; r)

output id at outside sub-interface simulating AutCA,C

output (id, c) at outside sub-interface simulating BCastA,{B1,...,Bn}

Input: (id, |m|, r) ∈ ID ×N× {0, 1}ρ

c← Enc(mpk , id, 0|m|; r)

output id at outside sub-interface simulating AutCA,C

output (id, c) at outside sub-interface simulating BCastA,{B1,...,Bn}

Input: (id, k, r) ∈ ID × {1, . . . , n} × {0, 1}ρ
usk ← Ext(msk , id; r)
if k = i then

output (id, usk) at outside sub-interface simulating SecCC,Bi

else
output |(id, usk)| at outside sub-interface simulating SecCC,Bk

Figure 4.5: The simulator σBi for the proof of Lemma 4.4.2. It ignores
all inputs at its outside interface and handles inputs at its inside interface
as described (where other inputs at its inside interface are also ignored).

ibesPφ
NW+

P NW+ and σPφDCC
P stDCCn,ID,ρ that inputs at most q messages

at interface A. We assume without loss of generality that D does not
make any inputs that are ignored by both resources. We can further
assume that the distinguisher D does not input (id , i) at interface C for i
with Bi /∈ P, because correctness of the IBE scheme implies that such
inputs cannot improve the distinguishing advantage. Moreover, we can
assume that D does not input (id ,m) ∈ ID ×M at interface A if (id , i)
was input before at interface C for some i, because such inputs to any of
the two resources result in the output of an encryption of m for id at the
interfaces Bi ∈ P and this result can be simulated by the distinguisher
on its own.

We let A run D by emulating the resource D is supposed to be
connected to as follows: When algorithm A is invoked with a master
public key mpk , it sets j ← 0, draws j′ ∈ {1, . . . , q} uniformly at random

4.4. CONSTRUCTIONS WITH IBE 55

and outputs mpk at the sub-interfaces of Bi corresponding to AutC1,C,A

for all Bi ∈ P. When D inputs (id , i) ∈ ID × {1, . . . , n} at interface C,
A makes the oracle-query id to receive usk id . It then outputs (id , usk id)
at the sub-interface of Bi corresponding to SecCC,Bi and |(id , usk id)|
at the sub-interfaces of Bk ∈ P corresponding to SecCC,Bi for k ̸= i.
When D inputs (id ,m) ∈ ID ×M at interface A, A increments j by 1.
If j < j′, A computes c ← Enc(mpk , id ,m) and outputs (id , c) at the
sub-interfaces of Bi corresponding to BCastA,{B1,...,Bn} and id at the
sub-interfaces corresponding to AutCA,C for all Bi ∈ P. If j = j′, A
stores mpk , id , and the state of D in st , sets m0 ← m, m1 ← 0|m|, and
returns (st , id ,m0,m1).

The algorithm A is then invoked with input (st , c∗). It extracts
mpk , id , and the state of D from st and continues the execution of
D by outputting (id , c∗) at the sub-interfaces of Bi corresponding to
BCastA,{B1,...,Bn} and id at the sub-interfaces corresponding to AutCA,C

for all Bi ∈ P. When D inputs (id ,m) ∈ ID ×M at interface A, A
computes c← Enc(mpk , id , 0|m|) and outputs (id , c) at the sub-interfaces
of Bi corresponding to BCastA,{B1,...,Bn} and id at the sub-interfaces
corresponding to AutCA,C for all Bi ∈ P. Inputs at interface C are
handled as above. Finally A returns the same bit as D. Note that A is
a valid adversary according to Definition 4.3.2 since |m0| = |m1| and it
never queries the returned identity to its oracle. The latter is because
we assumed that D does not input (id ,m) at interface A if it input
(id , i) before at interface C. Moreover, inputting (id , i) at interface C
afterwards would be ignored by ibesPφ

NW+

P NW+ and σPφDCC
P stDCCn,ID,ρ

and we assumed that D does not make any inputs that are ignored by
both resources.

The relation between the distinguishing advantage of D and the ad-
vantage of A can be proven by a hybrid argument. To this end, for i ∈
{0, . . . , q}, let Hi be the resource that corresponds to ibesPφ

NW+

P NW+ for
the first i inputs at interface A and afterwards on input (id ,m) ∈ ID×M
at interface A outputs

(
id ,Enc

(
mpk , id , 0|m|

))
at the sub-interfaces of

Bi corresponding to BCastA,{B1,...,Bn} and id at the sub-interfaces corre-
sponding to AutCA,C for all Bi ∈ P , where mpk corresponds to the initial
output of the resource at these interfaces Bi. Note that

∆D
(
H0, σPφ

DCC
P stDCCn,ID,ρ

)
= ∆D

(
Hq, ibe

s
Pφ

NW+

P NW+
)
= 0.

56 CHAPTER 4. IDENTITY-BASED ENCRYPTION

We further have

Pr
[
ExpIND-ID-CPA
E,A = 0

⏐⏐ b = 0
]
=

1

q

q∑
i=1

Pr
[
DHi = 1

]
and

Pr
[
ExpIND-ID-CPA
E,A = 1

⏐⏐ b = 1
]
=

1

q

q∑
i=1

Pr
[
DHi−1 = 1

]
.

This yields

∆D
(
ibesPφ

NW+

P NW+, σPφ
DCC
P stDCCn,ID,ρ

)
= ∆D(H0,Hq)

= Pr[DH0 = 1]− Pr[DHq = 1]

=

q∑
i=1

Pr[DHi−1 = 1]−
q∑
i=1

Pr[DHi = 1]

= q · Pr
[
ExpIND-ID-CPA
E,A = 1

⏐⏐ b = 1
]
− q · Pr

[
ExpIND-ID-CPA
E,A = 0

⏐⏐ b = 0
]

= q ·
(
Pr
[
ExpIND-ID-CPA
E,A = 1

⏐⏐ b = 1
]
+ Pr

[
ExpIND-ID-CPA
E,A = 1

⏐⏐ b = 0
]
− 1
)

= q · AdvIND-ID-CPA
E,A ,

which concludes the proof.

We now prove conversely that IND-ID-CPA security is also necessary
for the construction:

Lemma 4.4.3. Let ρ ∈ N and P ⊆ {B1, . . . , Bn},P ̸= ∅. Then, for all
valid IND-ID-CPA adversaries A and for all efficient converters σBi

for
Bi ∈ P, there exists an efficient distinguisher D such that

AdvIND-ID-CPA
E,A = 2 ·∆D

(
ibesPφ

NW+

P NW+, σPφ
DCC
P stDCCn,ID,ρ

)
.

Proof. Let A be a valid IND-ID-CPA adversary and let σBi be efficient
converters for Bi ∈ P. Further let Bi ∈ P. We now define two distin-
guishers, D0 and D1. Let mpk be the initial output at interface Bi of the
resource connected to the distinguisher (if nothing is output, let mpk be

4.4. CONSTRUCTIONS WITH IBE 57

some default value9). Both distinguishers then invoke A(mpk). The oracle
query id ′ of A is answered as follows by both distinguishers: They input
(id ′, i) at interface C and let the answer to the query be usk id′ where
(id ′, usk id′) is the resulting output of the resource at interface Bi (and
let usk id′ be some default value if there is no such output). If A returns
(st , id ,m0,m1), D0 and D1 input (id ,m0) and (id ,m1) at interface A,
respectively. Now let (id , c∗) be the resulting output at the sub-interface
of Bi corresponding to BCastA,{B1,...,Bn} (and let c∗ be some default value
if there is no such output). Both distinguishers then invoke A on input
(st , c∗). Oracle queries are answered as above. Note that id will not be
queried since A is a valid IND-ID-CPA adversary and therefore inputs at
interface C will be handled as before. Finally, D0 and D1 output the bit
returned by A.

Note that for all β ∈ {0, 1}

Pr
[
Dβ
(
ibesPφ

NW+

P NW+
)
= 1
]
= Pr

[
ExpIND-ID-CPA
E,A = β

⏐⏐ b = β
]

because the outputs of the real system are precisely generated as the
corresponding values in the IND-ID-CPA experiment. Hence,

AdvIND-ID-CPA
E,A

= 2 · Pr
[
ExpIND-ID-CPA
E,A = 1

]
− 1

= Pr
[
ExpIND-ID-CPA
E,A = 1

⏐⏐ b = 0
]
+ Pr

[
ExpIND-ID-CPA
E,A = 1

⏐⏐ b = 1
]
− 1

= Pr
[
ExpIND-ID-CPA
E,A = 1

⏐⏐ b = 1
]
− Pr

[
ExpIND-ID-CPA
E,A = 0

⏐⏐ b = 0
]

= Pr
[
D1

(
ibesPφ

NW+

P NW+
)
= 1
]
− Pr

[
D0

(
ibesPφ

NW+

P NW+
)
= 1
]
.

Further note that we have

Pr
[
D0

(
σPφ

DCC
P stDCCn,ID,ρ

)
= 1
]
= Pr

[
D1

(
σPφ

DCC
P stDCCn,ID,ρ

)
= 1
]

since D0 and D1 only differ in the message they input and σBi
only learns

the length of that message, which is the same for the two messages (since
A is a valid IND-ID-CPA adversary), so its output does not depend on
the choice of the message. Now let D be the distinguisher that chooses

9Note that this is only possible in the ideal system if σBi
is flawed. Hence, one

could distinguish better in this case, but we do not need that for the proof.

58 CHAPTER 4. IDENTITY-BASED ENCRYPTION

β ∈ {0, 1} uniformly at random, runs Dβ , and outputs 1 if Dβ outputs β,
and 0 otherwise. Then, Pr

[
D
(
σPφ

DCC
P stDCCn,ID,ρ

)
= 1
]
= 1

2 , and thus

AdvIND-ID-CPA
E,A

= Pr
[
D1

(
ibesPφ

NW+

P NW+
)
= 1
]
− Pr

[
D0

(
ibesPφ

NW+

P NW+
)
= 1
]

= Pr
[
D0

(
ibesPφ

NW+

P NW+
)
= 0
]
− Pr

[
D0

(
σPφ

DCC
P stDCCn,ID,ρ

)
= 0
]

+ Pr
[
D1

(
ibesPφ

NW+

P NW+
)
= 1
]
− Pr

[
D1

(
σPφ

DCC
P stDCCn,ID,ρ

)
= 1
]

= 2 · Pr
[
D
(
ibesPφ

NW+

P NW+
)
= 1
]
− 1

= 2 ·∆D
(
ibesPφ

NW+

P NW+, σPφ
DCC
P stDCCn,ID,ρ

)
.

This concludes the proof.

Lemmata 4.4.2 and 4.4.3 together imply the following theorem:

Theorem 4.4.4. Let ρ be an upper bound on the randomness used in
one invocation of Gen, Ext, and Enc. We then have

NW+

φNW+

ibes

{B1, . . . , Bn}
stDCCn,ID,ρ

φDCC

⇐⇒ the underlying IBE scheme is IND-ID-CPA secure.

The following theorem can be proven very similarly by observing that
the reductions used to prove Theorem 4.4.4 translate queries to the Ext
oracle by the adversary to inputs at interface C by the distinguisher and
vice versa and that NWφNW and st2DCCn,ID,ρ

φDCC restrict such inputs exactly
as A is restricted in ExpIND-ID1-CPA

E,A .

Theorem 4.4.5. Let ρ be an upper bound on the randomness used in
one invocation of Gen, Ext, and Enc. We then have

NWφNW
ibe2s

{B1, . . . , Bn}
st2DCCn,ID,ρ

φDCC

⇐⇒ the underlying IBE scheme is IND-ID1-CPA secure.

4.4. CONSTRUCTIONS WITH IBE 59

4.4.3 Construction Equivalent to IND-sID-CPA
We now prove that IND-sID-CPA security is sufficient to construct
preDCCφDCC from NW+

φNW+ .

Lemma 4.4.6. Let ρ be an upper bound on the randomness used in one
invocation of Gen, Ext, and Enc. Then, there exist efficient converters
σB1 , . . . σBn such that for all P ⊆ {B1, . . . , Bn} and for all efficient
distinguishers D that input a set of identities of size at most µ and at
most q messages at interface A, there exists an efficient algorithm A such
that

∆D
(
ibepPφ

NW+

P NW+, σPφ
DCC
P preDCCn,ID,ρ

)
≤ µq · AdvIND-sID-CPA

E,A .

Proof. Let P ⊆ {B1, . . . , Bn} and let σBi
process all inputs as the simula-

tor in the proof of Lemma 4.4.2 and in addition on input ok at its inside
interface, output ok at its outside interface. We again assume that D is
an efficient distinguisher that does not make inputs that do not increase
the distinguishing advantage, i.e., D does not make any inputs that are
ignored by both resources, does not input (id , i) at interface C for i with
Bi /∈ P, and does not input (id ,m) ∈ ID ×M at interface A if (id , i)
was input before at interface C for some i. We further assume that D
initially inputs a nonempty set J ⊆ ID at interface A because otherwise
it cannot input anything at interface A and the distinguishing advantage
is 0 in this case. Moreover, we assume that there is always an identity
in J that D does not input at interface C since by our other assumptions,
D would otherwise again not input any message at interface A and have
distinguishing advantage 0.

We let A emulate an execution of D as follows: When D inputs
a set of identities J ⊆ ID at interface A, A outputs ok at the sub-
interface of Bi corresponding to AutC1,A,C for all Bi ∈ P, chooses one
element in J uniformly at random, and returns it as the challenge identity
id∗ together with the state of D and id∗ in st . When algorithm A is
invoked with input (st ,mpk), it continues the execution of D, sets j ← 0,
draws j′ ∈ {1, . . . , q} uniformly at random, and outputs mpk at the sub-
interfaces of Bi corresponding to AutC1,C,A for all Bi ∈ P . When D inputs
(id , i) ∈ (ID\{id∗})×{1, . . . , n} at interface C, A makes the oracle-query
id to receive usk id . It then outputs (id , usk id) at the sub-interface of
Bi corresponding to SecCC,Bi and |(id , usk id)| at the sub-interfaces of

60 CHAPTER 4. IDENTITY-BASED ENCRYPTION

Bk ∈ P corresponding to SecCC,Bi for k ̸= i. If D inputs (id∗, i) for
some i at interface C, A terminates and returns a uniform bit. When D
inputs (id ,m) ∈ ID ×M at interface A, A increments j by 1. If j < j′,
A computes c← Enc(mpk , id ,m) and outputs (id , c) at the sub-interfaces
of Bi corresponding to BCastA,{B1,...,Bn} and id at the sub-interfaces
corresponding to AutCA,C for all Bi ∈ P. If j = j′ and id = id∗, A
stores mpk , id∗, and the state of D in st ′, sets m0 ← m, m1 ← 0|m|,
and returns (st ′, id ,m0,m1). If j = j′ and id ≠ id∗, A terminates
and returns a uniform bit. When A is invoked with input (st ′, c∗), it
continues the execution of D by outputting (id∗, c∗) at the sub-interfaces
of Bi corresponding to BCastA,{B1,...,Bn} and id at the sub-interfaces
corresponding to AutCA,C for all Bi ∈ P. When D inputs (id ,m) ∈
ID ×M at interface A, A computes c← Enc(mpk , id , 0|m|) and outputs
(id , c) at the sub-interfaces of Bi corresponding to BCastA,{B1,...,Bn} and
id at the sub-interfaces corresponding to AutCA,C for all Bi ∈ P. Inputs
at interface C are handled as above. Finally, when D outputs the bit b′,
A returns the bit 1− b′.

We now introduce essentially the same hybrids as in the proof of
Lemma 4.4.2. More precisely, for i ∈ {0, . . . , q}, let Hi be the resource
that corresponds to ibepPφ

NW+

P NW+ for the first i inputs of the form (id ,m)

at interface A and afterwards on input (id ,m) ∈ ID ×M at interface A
outputs

(
id ,Enc

(
mpk , id , 0|m|

))
at the sub-interfaces of Bi corresponding

to BCastA,{B1,...,Bn} and id at the sub-interfaces corresponding to AutCA,C

for all Bi ∈ P , where mpk corresponds to the initial output of the resource
at these interfaces Bi. We then again have

∆D
(
H0, σPφ

DCC
P preDCCn,ID,ρ

)
= ∆D

(
Hq, ibe

p

Pφ
NW+

P NW+
)
= 0.

For i ∈ {1, . . . , q}, we define a random variable Qi in the experiment
that involves A internally running D as described above as follows: If
the i-th input at interface A (not counting the input of J) is (id ,m), let
Qi = id . If D makes less than i inputs at interface A (because it returns
a bit before or because A terminates the execution before), let Qi be a
uniform identity in J that has not been input together with a message
at interface A (by our assumptions on D, such an identity always exists).
Note that A terminating prematurely is equivalent to the event Qj′ ≠ id∗

because (id∗,m) is by assumption only input at interface A if id∗ has not
been input at interface C, and after the input (id∗,m), id∗ is not input

4.4. CONSTRUCTIONS WITH IBE 61

at interface C because this would be ignored by both resources. We thus
have Pr[Qj′ = id∗] = 1

|J | since id∗ is chosen uniformly and the view of D
is independent of id∗ as long as A does not terminate prematurely.

Note that given Qj′ = id∗, the view of D in this experiment is identical
to its view in DHj′ if b = 0 and its view in DHj′−1 if b = 1. This yields

AdvIND-sID-CPA
E,A

= Pr
[
ExpIND-sID-CPA
E,A = 1

⏐⏐ b = 1
]
+ Pr

[
ExpIND-sID-CPA
E,A = 1

⏐⏐ b = 0
]
− 1

= Pr
[
ExpIND-sID-CPA
E,A = 1

⏐⏐ b = 1
]
− Pr

[
ExpIND-sID-CPA
E,A = 0

⏐⏐ b = 0
]

= Pr[Qj′ ̸= id∗] · 1
2
+ Pr[Qj′ = id∗] · 1

q

q∑
i=1

Pr[DHi−1 = 0]

− Pr[Qj′ ̸= id∗] · 1
2
+ Pr[Qj′ = id∗] · 1

q

q∑
i=1

Pr[DHi = 0]

=
Pr[Qj′ = id∗]

q
·

(
q∑
i=1

Pr[DHi = 1]−
q∑
i=1

Pr[DHi−1 = 1]

)

=
1

q|J |
·
(
Pr[DHq = 1]− Pr[DH0 = 1]

)
≥ 1

qµ
∆D
(
ibepPφ

NW+

P NW+, σPφ
DCC
P preDCCn,ID,ρ

)
.

Rearranging the inequality concludes the proof.

Remark. The result from [BB04] that any IND-sID-CPA secure IBE
scheme is also IND-ID-CPA secure with a loss of the factor |ID| in security
can be seen as a corollary to Lemma 4.4.6: The resource preDCCn,ID,ρ can
be used in the same way as stDCCn,ID,ρ when the full set ID is initially
input at interface A. This comes at the cost of precisely a factor of |ID| in
the distinguishing advantage. However, our result is more general because
it makes explicit that even if ID is large, one can use a IND-sID-CPA
secure IBE scheme in a scenario where messages are only sent for a smaller
subset of ID but all identities in ID can be registered by users.

The following lemma implies that IND-sID-CPA security is also neces-
sary for the construction. Its proof is omitted since it is exactly analogous
to the proof of Lemma 4.4.3.

62 CHAPTER 4. IDENTITY-BASED ENCRYPTION

Lemma 4.4.7. Let ρ ∈ N and P ⊆ {B1, . . . , Bn},P ̸= ∅. Then, for all
valid IND-sID-CPA adversaries A and for all efficient converters σBi

for
Bi ∈ P, there exists an efficient distinguisher D such that

AdvIND-sID-CPA
E,A = 2 ·∆D

(
ibepPφ

NW+

P NW+, σPφ
DCC
P preDCCn,ID,ρ

)
.

Lemmata 4.4.6 and 4.4.7 together imply the following theorem:

Theorem 4.4.8. Let ρ be an upper bound on the randomness used in
one invocation of Gen, Ext, and Enc. We then have

NW+

φNW+

ibep

{B1, . . . , Bn}
preDCCn,ID,ρ

φDCC

⇐⇒ the underlying IBE scheme is IND-sID-CPA secure.

As in Section 4.4.2, we can prove the following theorem very similarly.

Theorem 4.4.9. Let ρ be an upper bound on the randomness used in
one invocation of Gen, Ext and Enc. We then have

NW+

φNW+

ibe2p

{B1, . . . , Bn}
pre2DCCn,ID,ρ

φDCC

⇐⇒ the underlying IBE scheme is IND-sID1-CPA secure.

4.5 Construction with Random Oracles

4.5.1 Random Oracles
We next show how any IND-ID-CPA secure IBE scheme E = (Gen,Ext,
Enc,Dec) can be used to construct DCC from the resource NWRO, which
corresponds to our network together with a random oracle. A random
oracle is a uniform random function {0, 1}∗ → {0, 1}k for some k to which
all parties have access. The heuristic to model a hash function as a random
oracle was proposed by Bellare and Rogaway [BR93]. Theorem 4.4.1
implies that no hash function can be used to instantiate the random oracle
in this construction. However, if a random oracle is actually available,
e.g., via a trusted party or secure hardware, the overall construction is

4.5. CONSTRUCTION WITH RANDOM ORACLES 63

sound. For our purpose, it is sufficient to consider random oracles with
binary codomain.

Definition 4.5.1. The resource RO has interfaces A, C, and B1, . . . , Bn.
On input x ∈ {0, 1}∗ at interface I ∈ {A,C,B1, . . . , Bn}, if x has not
been input before (at any interface), RO chooses y ∈ {0, 1} uniformly at
random and outputs y at interface I; if x has been input before and the
resulting output was y, RO outputs y at interface I.

Programmability. For our construction, we will assume that a random
oracle is available as part of the real resource. Our protocol then constructs
an ideal resource that does not give the honest parties access to the
random oracle. Thus, the simulators in the ideal world can answer
queries to the random oracle arbitrarily as long as they are consistent
with previous answers and are indistinguishable from uniform bits. This
gives the simulators additional power which allows us to overcome the
impossibility result from Theorem 4.4.1. Since the simulators can in some
sense “reprogram” the random oracle, we are in a scenario that is often
referred to as programmable random oracle model.

4.5.2 Construction of Delivery Controlled Channels

Our protocol ibero uses the same idea as Nielsen’s scheme [Nie02] and
essentially corresponds to the transformation from [BSW11, Section 5.3]
applied to an IBE scheme. At a high level, it works as follows: To send a
message m for identity id , choose a bit string r � {0, 1}κ uniformly at
random, input (r, 1), . . . , (r, |m|) to the random oracle to obtain a uniform
value r′ with |r′| = |m|. Finally encrypt r with the IBE scheme for
identity id and send the resulting ciphertext together with m⊕ r′. The
security proof exploits that the one-time pad is non-committing and the
random oracle is programmable. A detailed description of the protocol
and the involved resources follows.

Real resource. The real resource in our construction consists of NW
and RO. We thus define

NWRO :=
[
BCastA,{B1,...,Bn},AutC1,C,A,SecCC,B1 , . . . ,SecCC,Bn ,RO

]

64 CHAPTER 4. IDENTITY-BASED ENCRYPTION

and φNW
RO

:= (φNW
RO

A , φNW
RO

C , φNW
RO

B1
, . . . , φNW

RO

Bn
) where for I ∈ {A,C,

B1, . . . , Bn}, φNW
RO

I := [1, φAutCI , φSecCI , . . . , φSecCI ,1].

Protocol. For an IBE scheme E , we define protocol converters encro,
decro, and regro as follows and let ibero := (encro, regro, decro, . . . , decro):
For r ∈ {0, 1}∗ and ℓ ∈ N, we write r′ ← H(r, ℓ) as an abbreviation for:
Output (r, 1), . . . , (r, ℓ) at the inside sub-interface to RO, let r′1, . . . , r′ℓ be
the answers from the random oracle, and let r′ := r′1 . . . r

′
ℓ.

The converter encro first expects to receive a master public key mpk at
its inside interface and stores it internally. On input a message and identity
(id ,m) ∈ ID×M at its outside interface, it chooses r � {0, 1}κ uniformly
at random and computes cIBE ← Enc(mpk , id , r) and r′ ← H(r, |m|). The
converter encro then sets cOTP ← m⊕ r′ and outputs (id , cIBE, cOTP) at its
inside sub-interface to BCastA,{B1,...,Bn}.

The converter decro on input an identity and a corresponding user
secret key (id , usk id) at its inside interface, stores this tuple internally
and outputs id at its outside interface. For all pairs (id j , c

IBE
j , cOTP

j)

with id j = id stored internally, decro computes rj ← Dec(usk id , id , c
IBE
j)

and r′ ← H(r, |cOTP
j |), and outputs (id , cOTP

j ⊕ r′) at its outside inter-
face. On input (id , cIBE, cOTP) at its inside interface, decro computes
r ← Dec(usk id , id , c

IBE) and r′ ← H(r, |cOTP|), and outputs (id , cOTP⊕ r′)
at its outside interface if it has stored a user secret key for the identity
id , and stores (id , cIBE, cOTP) internally otherwise.

The converter regro is identical to the converter reg: It initially com-
putes (mpk ,msk) ← Gen(1κ), stores msk internally, and outputs mpk

at its inside sub-interface to AutC1,C,A
φAutC . On input (id , i) at its outside

interface, the converter regro computes usk id ← Ext(msk , id) and outputs
(id , usk id) at its inside sub-interface to SecCC,Bi

φSecC .

Ideal resource and construction. As explained in Section 4.5.1, hon-
est parties do not have access to the random oracle in the ideal world.
Therefore, we define φRO := {⊥, . . . ,⊥} to block access to RO in the
ideal world. The ideal resource in our construction then corresponds to[
DCCn,ID,ρ+κ

φDCC ,ROφRO

]
.

4.5. CONSTRUCTION WITH RANDOM ORACLES 65

Theorem 4.5.2. Let ρ be an upper bound on the randomness used in
one invocation of Gen, Ext and Enc. If E is IND-ID-CPA secure, we have

NWRO
φNWRO

ibero

{B1, . . . , Bn}

[
DCCn,ID,ρ+κ

φDCC ,ROφRO

]
.

Proof sketch. For i ∈ {1, . . . , n} the simulator σBi
maintains an ini-

tially empty list R and remembers all its inputs and outputs. It reacts
to inputs as described in Figure 4.6. Let P ⊆ {B1, . . . , Bn} and let
D be an efficient distinguisher for the resources iberoPφ

NWRO

P NWRO and
σP
[
φDCC
P DCCn,ID,ρ+κ, φROP RO

]
. Note that since all σBi initially input

share to DCCn,ID,ρ+κ, they all receive the same outputs from that re-
source. Thus, they all maintain the same list R.

Let E be the event that some simulator aborts and let F be the
event that there exists some id ∈ ID such that D inputs a random
oracle query x before receiving a key for id and some simulator has
output (id ,Enc(mpk , id , x), r′′; r) for some r and r′′ before. Note that
as long as neither E nor F occur, the resources iberoPφ

NWRO

P NWRO and
σP
[
φDCC
P DCCn,ID,ρ+κ, φROP RO

]
behave identically since all keys are gen-

erated equally by both resources and for all outputs (id , cIBE, cOTP) after
input (id ,m), cIBE is an encryption of a uniform bit string r′ for id and
the j-th bit of cOTP is the XOR of the j-th bit of m and the answer of
the random when queried on (r′, j). Event E occurs only if the resource
outputs some r′ ∈ {0, 1}κ that collides with a previously used value,
which is the case with negligible probability. Event F also has negligible
probability by the IND-ID-CPA security of the IBE scheme, which can be
shown by a reduction similar to the one in the proof of Lemma 4.4.2.

66 CHAPTER 4. IDENTITY-BASED ENCRYPTION

Converter σBi

Inside interface
Input: (r|r′) ∈ {0, 1}ρ+κ

(mpk ,msk)← Gen(1κ; r)

output share at inside sub-interface to DCCn,ID,ρ+κ

output mpk at outside sub-interface simulating AutC1,C,A

Input: (id,m, r|r′) ∈ ID ×M× {0, 1}ρ+κ

r′′ ← H(r′, |m|)
if R contains ((r′, j), y) for some j ∈ {1, . . . , |m|}, and y ̸= r′′j then

abort
else

add ((r′, j), r′′j) to R for j ∈ {1, . . . , |m|}
cIBE ← Enc(mpk , id, r′; r)

cOTP ← m⊕ r′′
output (id, cIBE, cOTP) at outside sub-interface simulating BCastA,{B1,...,Bn}

Input: (id, |m|, r|r′) ∈ ID ×N× {0, 1}ρ+κ

r′′ ← H(r′, |m|)
cIBE ← Enc(mpk , id, r′; r)

output (id, cIBE, r′′) at outside sub-interface simulating BCastA,{B1,...,Bn}

Input: ((id, k, r|r′),m1, . . . ,ml) ∈
(
ID × {1, . . . , n} × {0, 1}ρ+κ

)
×Ml

for j ∈ {1, . . . , l} do
(id, cIBE, cOTP)← output for j-th input of form (id,m, r̃|r̃′) or (id, |m|, r̃|r̃′)
r′′ ← mj ⊕ cOTP

if R contains ((r̃′, j′), y) for some j′ ∈ {1, . . . , |mj |}, and y ̸= r′′
j′ then

abort
else

add ((r̃′, j′), r′′
j′) to R for j′ ∈ {1, . . . , |m|}

usk ← Ext(msk , id; r)
if k = i then

output (id, usk) at outside sub-interface simulating SecCC,Bi

else
output |(id, usk)| at outside sub-interface simulating SecCC,Bk

Outside interface
Input: x ∈ {0, 1}∗

if R contains (x, y) for some y ∈ {0, 1} then
output y at outside sub-interface simulating RO

else
output x at inside sub-interface to RO and let y be the answer
output y at outside sub-interface simulating RO

Figure 4.6: Description of the simulator σBi
. Other inputs are ignored.

Chapter 5

Functional Encryption

5.1 Introduction

5.1.1 Motivation

Functional encryption (FE) is a very general concept formally introduced
by Boneh, Sahai, and Waters [BSW11]. Many types of encryption such
as public-key encryption, identity-based encryption [Sha85; MY91; BF01],
and attribute-based encryption [SW05] can be seen as a special case of
FE. Briefly, an FE scheme is parametrized by a value space and a set
of functions on the value space. A trusted authority holding a master
secret key corresponding to the master public key can generate secret
keys for all functions in this set. Given the master public key one can
encrypt messages, and given a secret key for a particular function f and
an encryption of a value x, one can efficiently compute f(x) but does not
learn anything more about x. Moreover, even if one pools the secret keys
for many functions f1, . . . fk, one can compute nothing about an encrypted
value x except for exactly these function values, i.e., f1(x), . . . , fk(x).

Formalizing these intuitive security requirements has caused more
trouble than one might expect, and several security definitions for func-
tional encryption exist in the literature. While some of them were shown
to be too weak since schemes that should not be considered secure could
be proven to satisfy them, others are so strong that even for very simple
sets of functions, no scheme exists that satisfies them in the plain model

68 CHAPTER 5. FUNCTIONAL ENCRYPTION

[BSW11; ONe10; AGVW13; BO13; DIJ+13]. The question of which
definition is suitable for being used in a certain application therefore
seems particularly relevant for functional encryption.

In an ideal-world view, however, it is rather straightforward to state
what one expects from FE: If a publicly readable data repository (e.g., a
public web repository) is available, then, by virtue of encrypting the data
items before putting them into the repository, one constructs a repository
where the data is now secret and where a specific entity has the capability
of assigning to entities the right to access certain functions (but not more)
of the data items stored in the repository. Obviously, granting the access
right to an entity in this ideal world view corresponds in the real world to
providing the decryption key of the corresponding function, and accessing
the data corresponds to decrypting the corresponding ciphertext.

Compared to FE, standard public-key encryption achieves the same
goal of providing access control for a repository, but access would be
all-or-nothing: If one knows the secret key, one can decrypt, otherwise
one cannot. A more versatile access control mechanism is obtained by
identity-based encryption, which allows the trusted party to grant users
the right to access data for a specific identity, where the input data
contains the data itself and the identity that should be able to access it.
More advanced access policies can be implemented using attribute-based
encryption. The high flexibility of FE is demonstrated by the following
application proposed in [BSW12; GKP+13]: Assume some user receives
encrypted emails that are stored on the provider’s server and mails with
a high probability of being spam should not be downloaded, to minimize
traffic. The trusted party, which in this case can coincide with the recipient
of the mails, generates a special secret key for the provider that only
allows to compute the score function of the spam filter. The provider now
cannot read the contents of the mails but is still able to filter out spam
and notify the recipient only about the remaining incoming messages.
The repository here corresponds to the mail server and inputting data
into the repository to sending the recipient encrypted emails.

Problem statement. We address the following questions: Does the
above-described intuition of a secure repository really hold? Does one of
the existing security definitions imply that such a view is valid, and if so,
which one? What, then, do the other definitions achieve?

5.1. INTRODUCTION 69

5.1.2 Contributions

We show that the exact characterization of FE as the construction of a
certain access-controlled repository from a public repository and certain
channels (to transmit secret keys and public keys) is indeed formally
correct. This means, in particular, that one can compose constructions,
according to the composition theorem of constructive cryptography. Con-
cretely, if one has designed an application by defining it “on top” of a
certain (assumed) repository with access control, then this application
remains secure if the repository is implemented using a public repository,
where data is encrypted using an FE scheme satisfying the appropriate
definition.

However, for this to be true, none of the existing security definitions
seem to suffice. Therefore we propose a new conventional security defini-
tion for FE, called CFE security, derived from the constructive viewpoint,
which corresponds to an adequately modified version of an established
game-based definition by Boneh, Sahai, and Waters [BSW11, Definition 4].
This suggests that CFE security is the appropriate definition if strong
guarantees are required. We show that, as the definition in [BSW11], CFE
security is impossible to achieve in the standard model but achievable in
the random oracle model. In doing so, we also exemplify how results in the
(programmable) random oracle model can be translated to a construction
in CC.

The adequacy of CFE security might seem surprising since it is similar
to [BSW11, Definition 4] and an example from [BF13] was supposed to
show that this definition is insufficient. We recall that example and explain
why the criticism is invalid. This demonstrates that traditional security
definitions for FE are not well understood, which leads to misconceptions
that do not arise in the constructive approach.

Moreover, we show that a weaker security definition by Gorbunov,
Vaikuntanathan, and Wee [GVW12, Definition 1], which is achievable
in the standard model, is sufficient for constructing a repository that
restricts the number and order of interactions, making explicit how such
schemes can (and cannot) meaningfully be used.

Finally, we show how adequate security definitions for generalizations
of FE (multi-input, randomized functions, malicious ciphertext generation,
etc.) can be obtained by straightforward extensions of the repository.
For a constructive security definition (requiring that a certain repository

70 CHAPTER 5. FUNCTIONAL ENCRYPTION

be constructed), one can extract the corresponding conventional security
definition and compare it to existing generalized definitions. We conjecture
that the latter do generally not correspond to a meaningful construction
of a repository, but carrying out the complete analysis for all definitions
is beyond the scope of this thesis.

Overall, this leads to a unified treatment of many FE variants and
makes explicit how they can be composed within a higher-level protocol.

5.1.3 Related Work and Relation to IBE

A paper by Sadikin et al. [SPPM13] provides an ideal functionality for
functional encryption in UC, but only for a special class of functional
encryption schemes, namely attribute-based encryption. Thus, their
results are not suitable to understand definitions for general functional
encryption, as we do in this chapter.

Since identity-based encryption, treated in Chapter 4, is known to be
a special case of functional encryption [BSW11], one could expect the
results in this chapter to be very similar. And indeed, the impossibility
results and the constructions in the random oracle model are closely
related. There are, however, two important differences: Firstly, the ideal
resource considered for IBE in Chapter 4 involves many potential receivers
with different identities, and the intended recipients directly receive sent
messages. For functional encryption, on the other hand, we model a
repository that allows to access certain information about the stored data.
While this could also be modeled with many parties, we only consider
one interface for inputting data, one interface for granting access rights,
and one interface for accessing data. This simplifies the presentation and
allows us to focus more on the relevant aspects of functional encryption.
Secondly, the security definitions considered in Chapter 4 are specific to
IBE, while we look at more involved simulation-based security definitions
for general functional encryption in this chapter.

5.2 Definition of Functional Encryption

A functional encryption scheme is a generalized public-key encryption
scheme defined for a set F of functions with common domain X. Given
the public key, one can encrypt data x ∈ X and given a secret key for

5.2. DEFINITION OF FUNCTIONAL ENCRYPTION 71

a function f ∈ F , one can efficiently compute f(x) from an encryption
of x. The secret keys for all f ∈ F can be generated using a so-called
master secret key which is generated together with the public key. To
capture which information ciphertexts leak about the encrypted data,
a special leakage function f0 ∈ F is considered. An intuitive security
requirement guarantees that given a ciphertext for some x and secret keys
for f1, . . . , fn, one should not be able to learn more about x than what
can be learned from f0(x), . . . , fn(x). We here only define the syntax and
correctness condition of a functional encryption scheme and refer to later
sections for formal security definitions. The definition here only covers
unary and deterministic functions. See Section 5.8 for a discussion of
more general notions of functional encryption.

Definition 5.2.1. Let X be a nonempty set and F be a set of functions
with domain X such that F contains a distinguished leakage function f0.
A functional encryption scheme for F consists of the following efficient
probabilistic algorithms:

Setup: The algorithm setup on input a security parameter 1κ generates
a public key pk and a master secret key mk .

Key generation: Given a master secret key mk and a function f ∈ F ,
the algorithm keygen generates a secret key skf for this f , where
skf0 equals the empty string.

Encryption: Given a public key pk and some value x ∈ X, the algo-
rithm enc computes a ciphertext c.

Decryption: The algorithm dec on input a secret key skf and a cipher-
text c, outputs some value x.

For correctness, we require for all x ∈ X, and for all f ∈ F that
dec
(
skf , enc(pk , x)

)
= f(x) with probability 1, for (pk ,mk)← setup(1κ)

and skf ← keygen(mk , f).

Remark. Following [BSW11], we assume everyone can always evaluate the
function f0. This can be seen as a rather artificial requirement; if f0(x),
e.g., reveals the bit length |x| of x, there has to be an efficient algorithm
that precisely computes |x| from a ciphertext. A more natural approach
would not guarantee all parties to compute f0, but rather not exclude in

72 CHAPTER 5. FUNCTIONAL ENCRYPTION

the security definition that dishonest parties can do so. To formalize that
something is not guaranteed but potentially possible, one can use filtered
resources in constructive cryptography. While all results in this chapter
extend to such a definition, we stick to the definition above to simplify
the presentation.

5.3 Repositories and Access Control

5.3.1 Repository Resources

In this section, we introduce a repository resource that allows users to
input and access data and that naturally captures how a repository works.
We first define a repository with access control and then specify a public
repository without access control as a special case thereof. Users can input
data from a data set X into the repository. After inputting data, the
resource returns a handle (e.g., a URL or a memory address) from a set H
via which the data can be accessed later. This handle could be chosen by
the resource, by the user who inputs data, or by both in an interactive
protocol. Since the particular procedure to generate handles is irrelevant
for our purposes, we will refer to a method getHandle that returns an
element of H without describing its implementation. We only assume
that the returned handles are distinct, that is, no data is overwritten.

Motivated by the syntax of functional encryption, we consider a set F
of access functions containing functions with domain X and allow users to
retrieve such functions of input data. Which functions a user can access
depends on the rights of this user, i.e., for each f ∈ F users can have the
right to obtain f(x) for previously input x ∈ X. Everyone has the right
to obtain f0(x) for a special function f0 and a trusted authority can grant
users additional rights.

We consider a resource with an interface for Alice who can input
data, an interface for Bob who can access data, and an interface for the
trusted party Charlie who can grant rights to Bob. Alice and Bob are not
necessarily single users but correspond to roles users can have. All results
in this chapter regard Bob as the only potentially dishonest party. In case
he is dishonest, one can think of him as a group of colluding dishonest
parties who try to combine their rights to get access to a function of
some data none of them alone could access. Hence, one dishonest party is

5.3. REPOSITORIES AND ACCESS CONTROL 73

Resource RepF

Initialization
R← {f0}
for h ∈ H do

M [h]← ⊥

Interface A
Input: x ∈ X
h← getHandle
M [h]← x
output h at interface A

Interface B
Input: (f, h) ∈ F ×H

if f ∈ R ∧M [h] ̸= ⊥ then
output f(M [h]) at interface B

Interface C
Input: f ∈ F
R← R ∪ {f}
output f at interface B

Figure 5.1: Definition of the resource RepF . All inputs not matching the
given format are ignored.

sufficient to cover collusion resistance. Similarly, the resource can be used
in a context with multiple honest parties inputting data.

Definition 5.3.1. Let X be a nonempty set and F a set of functions with
domain X and f0 ∈ F . The resource RepF has the interfaces A, B, and
C. It internally manages the set R of functions Bob is allowed to access,
and a map M assigning to a handle h ∈ H the value M [h] ∈ X ∪ {⊥}
where ⊥ /∈ X is a special symbol. Initially, R = {f0} and M [h] = ⊥ for
all h ∈ H. The resource works as described in Figure 5.1.1

Remark. Note that Bob needs to know the handles to access data. Hence,
when this resource is used in a larger protocol, Alice needs to send Bob the
handles over an additional channel. This is in fact very natural: If Alice
uploads a document to her web server and wants Bob to download it, she
needs to tell him the URL, e.g., via email. See Section 5.9 for an example
application of the resource that demonstrates how other protocols can use
the constructed repository and how to apply the composition theorem of
the constructive cryptography framework.

We now define a public repository without access control, which will
serve as an assumed resource in our constructions. It corresponds to a

1We define all resources to ignore invalid inputs. Alternatively, the resources could
return error messages. While this alternative might be closer to the behavior of real
systems, we decided to simply ignore invalid inputs because they are not relevant for
our results.

74 CHAPTER 5. FUNCTIONAL ENCRYPTION

repository as defined above where f0 is the identity function on X, i.e.,
everyone is allowed to access the (identity function of) stored data.

Definition 5.3.2. Let X be a nonempty set, f0 := idX : X → X,x ↦→ x,
and P := {f0}. We define the public repository for X as PRepX := RepP .
For inputs at Bob’s interface, we will write h instead of (idX , h) to simplify
notation.

5.3.2 Access Control via Functional Encryption
A versatile repository supports a large class of access functions and
restricts Bob’s initial rights as much as possible. In this section, we
describe how to use functional encryption to construct such a repository
from a public repository. More precisely, let E = (setup, keygen, enc, dec)
be a functional encryption scheme for a set F of functions with domain X
and let C be the range of enc. Our goal is to construct RepF from
PRepC. To distribute keys, we additionally need an authenticated channel
AutCC,A from Charlie to Alice and a secure channel SecCC,B from Charlie
to Bob,2 i.e., the assumed resource in our construction corresponds to[
PRepC,AutC

C,A,SecCC,B
]
.

To achieve this construction, we define the protocol π = (πA, πB , πC)
for the functional encryption scheme E as follows: At the beginning, πC
invokes (pk ,mk)← setup(1κ), stores mk and sends pk to Alice over the
authenticated channel. This public key is internally stored by πA. On
input x ∈ X at its outside interface, πA outputs c ← enc(pk , x) at its
inside interface to the repository and outputs the returned handle h at its
outside interface. On input f ∈ F at its outside interface, πC computes
skf ← keygen(mk , f) and sends (f, skf) to B over the secure channel. The
corresponding secret key is stored by πB and f is output at its outside
interface. On input (f, h) ∈ F ×H at its outside interface, πB outputs h
at its inside interface to the repository if it has stored a secret key skf
for this function f or if f = f0. If it receives a ciphertext c from the
repository, it outputs y ← dec(skf , c) at its outside interface. All other
inputs are ignored. See Figure 5.2 for an illustration of the protocol.

2For both channels, a dishonest Bob assumes the role of an eavesdropper. That is,
he can learn the public key, which is sent over the authenticated channel from Charlie
to Alice. If the resource is used in a context with many Bobs, it is important that
the channel from Charlie to each of them is secure to prevent dishonest users from
eavesdropping on the secret keys.

5.4. SECURITY OF FUNCTIONAL ENCRYPTION 75

AutCC,A SecCC,B

PRepC

πA πB

πC

(pk ,mk)← setup(1κ)

pk

pk

pk

f

skf ← keygen(mk , f)

(f, skf)

(f, skf) f

x

h

c← enc(pk , x)
c

h

(f, h)

y

h

c
y ← dec(skf , c)

Figure 5.2: Overview of the protocol (πA, πB , πC). The dashed rectangle
represents the assumed resource, corresponding to the parallel composition
of AutCC,A, SecCC,B , and PRepC, the dotted line depicts that a dishonest
Bob can learn the public key while the protocol does not use it.

The following lemma states that this protocol constructs the desired
resource if all parties are honest. It follows directly from the correctness
of the functional encryption scheme.

Lemma 5.3.3. For the protocol π = (πA, πB , πC) defined above, we have

πAπBπC
[
PRepC,AutC

C,A,SecCC,B
]
≈ RepF .

5.4 Security of Functional Encryption

5.4.1 Definition of CFE Security

The protocol described in the previous section constructs the desired
resource with a dishonest Bob only if the underlying functional encryp-
tion scheme satisfies a suitable security definition. We propose such a
definition, based on [BSW11, Definition 4], and refer to it as composable
functional encryption security3 (CFE security for short). We extend the

3This name is justified by Theorem 5.4.4, which together with the composition
theorem of the constructive cryptography framework implies that CFE-secure schemes
indeed guarantee composability.

76 CHAPTER 5. FUNCTIONAL ENCRYPTION

Experiment ExpCFE-real
E,A

Input: 1κ, κ ∈ N
(pk ,mk)← setup(1κ)
(l, τ)← (0, 0)
repeat

l← l + 1

xl ← Akeygen(mk,·)
1 (pk)[[τ]]

cl ← enc(pk , xl)
t← A2(cl)[[τ]]

until t = true
return τ

Experiment ExpCFE-ideal
E,S,A

Input: 1κ, κ ∈ N
(pk , s)← S1(1

κ)
(l, τ)← (0, 0)
repeat

l← l + 1

xl ← A
O(·,x1,...,xl−1)[[s]]

1 (pk)[[τ]]
(f1, . . . , fq)← queries by A1

cl ← S3(f0(xl), . . . , fq(xl))[[s]]
t← A2(cl)[[τ]]

until t = true
return τ

Figure 5.3: Experiments for the CFE security definition, for a scheme E , an
adversary A = (A1,A2), and a simulator S = (S1, S2, S3). The oracle O
is defined as O(f, x1, . . . , xl−1)[[s]] := S2(f, f(x1), . . . , f(xl−1))[[s]].

definition from [BSW11] to adaptive adversaries that can choose mes-
sages depending on ciphertexts for previous messages. This extension was
already mentioned in that paper but not formalized. Our definition addi-
tionally restricts oracle access of the involved algorithms. These changes
are discussed after the definition. We note that SS1 security defined in
[BO13] also corresponds to an adaptive variant of [BSW11, Definition 4]
but also differs in other aspects and is not equivalent to the definition we
propose here. In particular, SS1 security includes some auxiliary inputs
that the authors claim to eliminate a weakness described in [BF13]. As
we explain in Section 5.4.3, however, the effect pointed out in [BF13] is in
fact not a weakness, so there is no need for a fix.

We follow the notation from [BSW11], i.e., for algorithms A and B,
AB(·)(x) denotes that A gets x as input and has oracle access to B, that
is, B(q) is answered to A in response to an oracle query q. Moreover,
A(·)[[s]] means that A gets s as an additional input and can update its
value. More precisely, A(x)[[s]] corresponds to the algorithm that invokes
(y, s)← A(x, s) and returns y.

Definition 5.4.1. Let E = (setup, keygen, enc, dec) be a functional en-
cryption scheme for a set F of functions with domain X. We introduce the
experiments in Figure 5.3 for an efficient probabilistic oracle algorithm A1

5.4. SECURITY OF FUNCTIONAL ENCRYPTION 77

and efficient probabilistic algorithms A2, S1, S2, and S3. The advantage
of a distinguisher D in distinguishing the outputs of these experiments is
denoted by

AdvCFEE,S,A,D := ∆D
(
ExpCFE-real
E,A ,ExpCFE-ideal

E,S,A

)
,

where A = (A1,A2) and S = (S1, S2, S3). We say the scheme E is CFE
secure if there exist efficient S1, S2, and S3 such that the distinguishing
advantage AdvCFEE,S,A,D is negligible for all efficient A1, A2 and for all
efficient distinguishers D.

Note that the value τ in the experiments can be used to share the state
between the algorithms A1 and A2, and the value s to share the state
between S1, S2, and S3. Intuitively, S1 simulates the generation of the
public key, S2 generates simulated secret keys, and S3 simulates ciphertexts
for values x given only the images of x under the functions the adversary
has already requested secret keys for. A scheme is considered secure if
these simulated values are indistinguishable from the corresponding values
generated in an execution of the actual protocol. The intuition is that
in this case, a ciphertext does not leak anything about the encrypted
value that an adversary cannot conclude from the function values he is
supposed to learn.

As mentioned before, this definition is close to a fully adaptive version
of the one given by Boneh et al. [BSW11]. One difference is that the
algorithm A2 is not given oracle access to a key-generation oracle in
our definition. This simplifies especially the ideal experiment and is not
necessary in our case since A2 can instead store its query in τ and A1 can
then query its oracle and continue the execution of A2 in the following
iteration. Furthermore, S3 in [BSW11] has oracle access to A2 and can
therefore run A2 on several inputs and discard undesired outputs. Our
definition is stronger because we do not allow this. It was already noted
in [AGVW13] that this oracle access might be problematic. Note that,
in contrast to [BSW11, Definition 4], it is sufficient for the experiments
to return τ because A2 can encode all relevant information in it and S3

cannot tamper with it.
In contrast to many other definitions (e.g., [ONe10; BF13; GVW12;

GKP+13]), we do allow S1 and S2 to “fake” the public key and the secret
keys, respectively. In contrast to what is claimed in [BF13], it turns out

78 CHAPTER 5. FUNCTIONAL ENCRYPTION

that this is not a problem (see Section 5.4.3 for more details). This shows
that there are many degrees of freedom in defining security experiments
for functional encryption and that the consequences of a particular choice
are often unclear. On the other hand, the constructive approach we follow
in this thesis makes explicit what a protocol satisfying the definitions
achieves, by specifying the resource that is constructed.

5.4.2 Equivalence of CFE Security and Construction
The goal of this section is to prove that the protocol defined in Sec-
tion 5.3.2 constructs the corresponding repository resource if and only if
the underlying functional encryption scheme is CFE secure. This implies
that CFE security is precisely the definition needed for our purpose. The
following lemma shows that CFE security is sufficient for the construction.

Lemma 5.4.2. Let S1, S2, and S3 be efficient probabilistic algorithms.
Then there exists an efficient converter σB such that for all efficient
distinguishers D for πAπC

[
PRepC,AutC

C,A,SecCC,B
]

and σBRepF , there
is an efficient probabilistic oracle algorithm A1, an efficient probabilistic
algorithm A2, and an efficient distinguisher D′ for the CFE experiment
such that

∆D
(
πAπC

[
PRepC,AutC

C,A,SecCC,B
]
, σBRepF

)
= AdvCFEE,S,A,D′ .

Proof. We define the simulator σB in Figure 5.4. Let D be an efficient dis-
tinguisher for the resources πAπC

[
PRepC,AutC

C,A,SecCC,B
]

and σBRepF .
We can assume without loss of generality that D inputs h ∈ H at inter-
face B only if this h was output at interface A before, because other h
will be ignored by both resources. We further assume that each h ∈ H is
input at most once, since both resources return the same value for each
input of the same handle h.

We now describe the algorithms A1 and A2. When A1 is invoked with
pk and τ = 0, it starts a new simulation of the distinguisher D, outputting
pk at interface B from the authenticated channel. When D inputs f ∈ F
at interface C, A1 invokes its oracle with query f and outputs f and
the answer to D at interface B from the secure channel. When D inputs
x ∈ X at interface A, A1 invokes getHandle and outputs the returned
handle h at interface A. It further sets M [h]← x for a map M . When

5.4. SECURITY OF FUNCTIONAL ENCRYPTION 79

Converter σB

Initialization
(l, q)← (0, 0)
(pk , s)← S1(1

κ)

output pk at outside sub-interface simulating AutCC,A

Inside interface
Input: f ∈ F
q ← q + 1
fq ← f
for i = 1, . . . , l do

output (f, hi) at inside interface, let yi be the returned value
skf ← S2(f, y1, . . . , yl)[[s]]

output (f, skf) at outside sub-interface simulating SecCC,B

Outside interface
Input: h ∈ H

if ∃k ∈ {1, . . . , l} hk = h then
output ck at outside sub-interface simulating PRepC

else if output (f0, h) at inside interface not ignored then ◃ data stored for h
l← l + 1
hl ← h
for i = 0, . . . , q do

output (fi, h) at inside interface, let yi be the returned value
cl ← S3(y0, . . . , yq)[[s]]
output cl at outside sub-interface simulating PRepC

RepF
σB

inside
interface

outside
interface

sub-interface

simulating SecCC,B

sub-interface

simulating AutCC,A

sub-interface

simulating PRepC

(pk , s)← S1(1
κ)

pk

f

(f, hi)

yi
skf ← S2(f, . . . , yi, . . .)[[s]]

(f, skf)

h(fi, h)

yi
c← S3(. . . , yi, . . .)[[s]]

c

Figure 5.4: Definition and visualization of the simulator σB from the
proof of Lemma 5.4.2 attached to RepF .

80 CHAPTER 5. FUNCTIONAL ENCRYPTION

D inputs h ∈ H at interface B, A1 saves M and the state of D in τ
and returns M [h]. When D returns a bit b, A1 sets τ ← (return, b) and
returns a random x ∈ X. After A1 terminated, A2 is invoked on input
a ciphertext c and τ . If τ = (return, b), for some b ∈ {0, 1}, A2 returns
true. Otherwise, it saves c in τ and returns false. Afterwards, A1 is
invoked on input pk and τ ̸= 0. In this case, it reads c and the state of D
from τ and continues the simulation by outputting c at interface B from
the repository. A1 then proceeds as above.

The distinguisher D′ on input τ = (return, b) outputs the bit b. Note
that the distribution of the outputs of D′ given outputs of the real experi-
ment equals the distribution of the outputs of D connected to the resource
πAπC

[
PRepC,AutC

C,A,SecCC,B
]

and the output distribution of D′ given
outputs of the ideal experiment equals the distribution of the outputs
of D connected to σBRepF . Hence, the corresponding distinguishing
advantages are the same.

The next lemma shows that CFE security is not only sufficient but also
necessary for constructions of the desired repository resource. Since this
notion is even stronger than [BSW11, Definition 4], known impossibility
results translate to our model.

Lemma 5.4.3. Let σB be an efficient converter. Then there exist efficient
probabilistic algorithms S1, S2, and S3 such that for all efficient probabilis-
tic oracle algorithms A1, all efficient probabilistic algorithms A2, and all
efficient distinguishers D for the CFE experiment, there exists an efficient
distinguisher D′ for πAπC

[
PRepC,AutC

C,A,SecCC,B
]

and σBRepF such
that

AdvCFEE,S,A,D = ∆D
′(
πAπC

[
PRepC,AutC

C,A,SecCC,B
]
, σBRepF

)
.

Proof. The algorithms S1, S2, and S3 together simulate an execution of
σB. S1 starts the simulation, prepares an initially empty map M (i.e.,
M [f][h] = ⊥ for all f and h), and sets (l, q) ← (0, 0). It returns the
first output at the outside interface of σB together with an encoding
of the state of σB, l, q, and M in s. On input f ∈ F , f(x1), . . . , f(xl)
and some s, S2 extracts M , l, q, h1, . . . , hl, and the state of σB from s,
sets q ← q + 1, fq ← f , and M [fq][hi] ← f(xi) for i = 1, . . . , l. It then
inputs f at the inside interface of σB. When σB outputs (f, skf) at
its outside interface, S2 stores the state of σB together with M , q, and

5.4. SECURITY OF FUNCTIONAL ENCRYPTION 81

fq in s and returns skf . On input (f0(x), . . . , fq(x)) and s, S3 extracts
the state of σB, M , l, q, and f1, . . . , fq from s, sets l ← l + 1, invokes
hl ← getHandle (if getHandle requires interaction with interface A, S3

emulates it using an arbitrary fixed strategy), sets M [fi][hl]← fi(x) for
i = 0, . . . , q, and inputs h at the outside sub-interface of σB simulating
the repository. When σB outputs c at its outside interface, S3 saves the
state of σB, M , l, and hl in s and returns c. Outputs of the form (f, h)
at the inside interface of σB are handled equally by S1, S2, and S3 by
inputting M [f][h] at its inside interface if M [f][h] ̸= ⊥. Otherwise, that
input is ignored. Note that such an input is ignored if and only if f has
not been input at the inside interface of σB or h has not been input at
its outside interface before. This is consistent with RepF if all handles
returned at interface A are immediately input at interface B afterwards.
The distinguisher defined below always does this.

Now let A1 be an efficient probabilistic oracle algorithm, A2 an ef-
ficient probabilistic algorithm, and let D be an efficient distinguisher
for the CFE experiment. We define a distinguisher D′ for the resources
πAπC

[
PRepC,AutC

C,A,SecCC,B
]

and σBRepF as follows. It first runs
A1 on input the initial output pk at interface B and τ = 0. A query
f ∈ F from A1 to its oracle is answered by inputting f at interface C,
receiving (f, skf) at interface B, and returning skf as the answer. When
A1 returns x, D′ inputs x at interface A and then the returned handle h
at interface B to the repository (where D′ uses the same strategy as S3

for inputs at interface A for getHandle, such that handles are equally
distributed). When c is output at interface B, the distinguisher D′ invokes
A2 on input c and τ . If it returns t = false, D′ repeats this procedure
by running A1 on input pk and τ . Otherwise, D′ invokes D on input τ .
Finally, D′ outputs the output of D. Since the distribution of τ if D′ is
connected to πAπC

[
PRepC,AutC

C,A,SecCC,B
]

is the same as in the real
CFE experiment and the same as in the ideal one if D′ is connected to
σBRepF , the corresponding distinguishing advantages are equal.

Combining Lemmata 5.3.3, 5.4.2 and 5.4.3, we get the following theo-
rem:

Theorem 5.4.4. For the protocol π defined above, we have[
PRepC,AutC

C,A,SecCC,B
] π

B
RepF ⇐⇒ E is CFE secure.

82 CHAPTER 5. FUNCTIONAL ENCRYPTION

5.4.3 Alleged Insufficiency of BSW’s Definition

The results from the previous section seem to contradict an example given
in [BF13], which was meant to show that [BSW11, Definition 4] is not
adequate and which can easily be extended to our definition. We first
recall the example for a fixed set of functions from the full version of
[BF13] and then explain why it is not a problem in our context. Assume
E = (setup, keygen, enc, dec) is a functional encryption scheme for a set F
of functions with domain X with idX ∈ F and P ⊆ F where P is a family
of trapdoor one-way permutations on X. We consider a modified scheme
E ′ = (setup′, keygen′, enc, dec′) as follows. The algorithm setup′ first runs
setup and samples a permutation p∗ ∈ P according to the key-generation
algorithm of the trapdoor one-way permutation. It then includes the
description of p∗ in the public key pk ′ := (pk , p∗) and the master secret
key mk ′ := (mk , p∗) (and discards the trapdoor). The algorithm keygen′

on input (mk ′, f) does the same as keygen if f ̸= p∗, and returns (p∗, sk id)
with sk id ← keygen(mk , idX) if f = p∗. The algorithm enc is not modified
and dec′ on input ((p∗, sk id), c) returns p∗(dec(sk id, c)) and dec(skf , c) on
input (skf , c). As in [BF13], it can be shown that E ′ is CFE secure if E
is. Intuitively, the simulator, which generates the public key, can store
the trapdoor and hence compute x from p∗(x), enabling it to simulate.

According to [BF13], this scheme should not be considered secure
because one can learn x instead of only p∗(x) given a key for p∗. They
conclude that the simulator should therefore not be allowed to generate
the public key. We claim that this is actually not a problem: An adversary
cannot choose for which p ∈ P he wants to learn x instead of p(x), but
some p∗ is chosen at random by the key-generation algorithm of the trap-
door one-way permutation. By simply invoking this algorithm themselves,
all users can obtain a trapdoor for such a random permutation p∗ and
hence compute x from p∗(x) even if the original scheme is used. The only
difference is that in the modified scheme, this particular permutation is
contained in the public key and the master secret key. Using this per-
mutation in another protocol built on top of the modified scheme would
be problematic if the designer of the composed protocol assumes that
one cannot compute x if given a key for this p∗ (which is the case in the
original scheme if the description of a random p∗ is included in the public
key, but not in the modified scheme). However, if schemes are composed
according to the constructive cryptography framework, such confusion

5.5. SPECIAL CASES AND IMPOSSIBILITY RESULTS 83

cannot arise since the protocol converters use the keys only internally and
do not publish them to their outside interfaces. Hence, the constructed
resource does not provide a distinguished function corresponding to the
permutation in the public key to any party. This means that when the
constructed resource is used in another protocol, that protocol cannot
explicitly use this particular p∗. Because p∗ ∈ P is chosen randomly and
the set P needs to be large, the probability that it is still used in another
context is negligible. Therefore the modified scheme is as secure as the
original one in all applications if the protocols are composed properly.

5.5 Special Cases and Impossibility Results

5.5.1 Public-Key Encryption and its Impossibility

As described in [BSW11], many types of encryption can be seen as special
cases of functional encryption. We restate how standard public-key
encryption is captured as a special case and explain why this immediately
leads to strong impossibility results.

Consider public-key encryption with plaintext space M . We can set
X :=M and FPKE := {f0, idX} with f0 : X → N, x ↦→ |x| revealing the bit
length of x. This provides the same functionality as public-key encryption
[BSW11]: The holder of the secret key (corresponding to the key for idX)
can decrypt a ciphertext to the encrypted message while without the
secret key, one can only learn the length of the message.

Depending on how the encryption scheme is intended to be used,
different security properties are required. Typically, one assumes that
there is a legitimate receiver Bob knowing the secret key from the beginning
and an eavesdropper Eve who never learns the secret key. The repository
resource RepFPKE

, however, allows to adaptively grant Bob the right to learn
the input data. In case of a dishonest Bob, this enables the distinguisher
to adaptively retrieve the secret key after receiving ciphertexts. Hence,
we are in a situation of adaptive adversaries [CFGN96]. Therefore, the
result by Nielsen [Nie02] stating that the length of secret keys in any
adaptively secure scheme must be at least the total number of bits to
be encrypted, on which the impossibility results in [BSW11; BO13] are
based, can be applied directly here. Since there is no restriction on the
number of messages Alice can input in the repository, the distinguisher

84 CHAPTER 5. FUNCTIONAL ENCRYPTION

can input messages whose total length exceed an upper bound on the
length of secret keys before granting access rights to Bob. We therefore get
the following theorem as a direct consequence of Theorem 5.4.4 and the
result from [Nie02]. Note that the same reasoning led to our impossibility
result for identity-based encryption in Section 4.4.1. This shows another
advantage of our constructive approach, namely that defining security of
a protocol by what it achieves simplifies reusing results without reproving
them for new definitions as in [BSW11] and [BO13].

Theorem 5.5.1. There is no CFE-secure functional encryption scheme
for FPKE.

As we have seen, while public-key encryption can be considered to
be a special case of functional encryption, typical security definitions for
public-key encryption do not correspond to the given security definition for
functional encryption. This is not a weakness of our security definition but
comes from the fact that public-key encryption is usually used in a specific
setting and thus a less restrictive definition is sufficient. See [CMT13] for
a treatment of public-key encryption in the constructive cryptography
framework. Similarly, it is still meaningful to consider security definitions
for other special cases of functional encryption such as identity-based and
attribute-based encryption that take into account how these schemes are
intended to be used.

5.5.2 Circumventing Impossibility Results
As seen in the previous section, realizing CFE-secure functional encryption
schemes, even for very simple sets of functions, is impossible without
further assumptions. In general, there are two ways to circumvent such
impossibility results. One can either start with a stronger assumed resource
or construct a weaker resource. The authors in [BSW11] use a random
oracle to realize secure functional encryption schemes for a large class of
functions. This falls in the first category and can be understood in our
model as adding a random oracle to the assumed resource. In Section 5.6,
we recast the scheme from [BSW11] in our framework and show that it can
be used to construct RepF from [PRepC,AutC

C,A,SecCC,B ,RO]. Bellare
and O’Neill [BO13] generalize the result from [BSW11] and obtain secure
functional encryption schemes without random oracles by allowing the
keys to be longer than all encrypted messages together. This can also

5.6. CONSTRUCTION WITH RANDOM ORACLES 85

be interpreted as restricting the amount of data the repository can store.
Hence, this is an example of weakening the constructed resource.

Many papers consider different security definitions [ONe10; BO13;
GVW12; AGVW13; GKP+13; GGH+13] that are not subject to impos-
sibility results. However, changing a security definition can lead to an
inadequate notion of security and it might not be clear how the resulting
schemes can be used. A result from [DIJ+13] shows how to transform a
functional encryption scheme for the set of all n-input Boolean circuits
satisfying a weak security definition to a scheme that satisfies a stronger
security definition in the random oracle model. This provides a bridge be-
tween considering weaker definitions and using stronger assumed resources
(i.e., including random oracles) to achieve strong security notions.

In Section 5.7, we follow the approach of constructing weaker resources.
In particular, we introduce restricted repositories and show that schemes
satisfying a definition from [GVW12] can be used to construct such
repositories.

5.6 Construction with Random Oracles
We recast the scheme presented in [BSW11] as “the modified ‘brute-
force’ construction” in our framework. It allows us to construct RepF
for all F that contain only a polynomial (in the security parameter)
number of functions that all have domain X and codomain {0, 1}ℓ for
some ℓ ∈ N. The construction is similar to the one for identity-based
encryption we described in Section 4.5. As there, the assumed resource
in our construction contains a random oracle. In this case, however, we
assume the random oracle has codomain {0, 1}ℓ and only the interfaces A,
B, and C.

Definition 5.6.1. The resource RO has interfaces A, B, and C. On input
x ∈ {0, 1}∗ at interface I ∈ {A,B,C}, if x has not been input before (at
any interface), RO chooses y ∈ {0, 1}ℓ uniformly at random, outputs y at
interface I, and stores (x, y) internally; if x has been input before, RO
outputs the value y at interface I that has been stored together with x.

Remark. As in Section 4.5, the simulator in the proof of the construction
will answer queries to the random oracle made by the distinguisher. Since
the simulator can answer these queries arbitrarily as long as they are

86 CHAPTER 5. FUNCTIONAL ENCRYPTION

consistent with previous answers and appear to be uniform, the simulator
has additional power, which allows us to overcome the impossibility result
from Section 5.5.1. This setting is often referred to as programmable
random oracle model because the simulator can in some sense “reprogram”
the random oracle.

Now let X be some nonempty set and F = (f0, . . . , fs) with fi : X →
{0, 1}ℓ. Further let (K,E,D) be a semantically secure public-key encryp-
tion scheme. Let C be the set of s+1-tuples where the first component is an
ℓ-bit string and the other components consist of an element from the range
of E and an ℓ-bit string. We define the protocol πRO = (πRO

A , πRO
B , πRO

C)

to construct RepF from [PRepC,AutC
C,A,SecCC,B ,RO] as follows: At

the beginning, πRO
C invokes (pk i, sk i) ← K(1κ) for i ∈ {1, . . . , s}, stores

the sk i and sends (pk1, . . . , pks) to Alice over the authenticated chan-
nel. The public keys are internally stored by πRO

A . On input x ∈ X at
its outside interface, πRO

A chooses r1, . . . , rs uniformly at random from
{0, 1}κ. It then outputs ri at its inside interface to the random oracle
and receives the answer r′i for each i ∈ {1, . . . , s}. Finally, it outputs
c ← (f0(x), (E(pk1, r1), r

′
1 ⊕ f1(x)), . . . , (E(pks, rs), r

′
s ⊕ fs(x))) at its

inside interface to the repository and outputs the returned handle h
at its outside interface. On input fi ∈ F at its outside interface, πRO

C

sends (fi, sk i) to B over the secure channel. The converter πRO
B then

stores the secret key and outputs fi at its outside interface. On input
(fi, h) ∈ F×H at its outside interface, πRO

B outputs h at its inside interface
to the repository if it has stored the secret key sk i or if i = 0. If it receives
c = (c0, . . . , cs) from the repository, it outputs c0 at its outside interface
if i = 0, and if i ̸= 0, it decrypts the first component of ci with D(sk i, ·)
and outputs the result at its inside interface to RO. When RO answers
with r, πRO

B outputs the bitwise XOR of r and the second component of ci
at its outside interface. All other inputs are ignored.

Theorem 5.6.2. We have[
PRepC,AutC

C,A,SecCC,B ,RO
] πRO

B
RepF .

Proof sketch. Correctness is straightforward to verify. To prove the se-
curity condition, we consider the simulator σB that initially generates
(pk i, sk i)← K(1κ) for i ∈ {1, . . . , s} and outputs (pk1, . . . , pks) at its out-
side sub-interface simulating AutCC,A. To answer queries to the simulated

5.7. WEAKER SECURITY DEFINITIONS 87

random oracle, the simulator maintains a list O of all previous inputs and
outputs. Queries in O are answered consistently. For a fresh input, the sim-
ulator chooses a value uniformly at random from {0, 1}ℓ, outputs this value
at its outside sub-interface simulating RO, and updates O. To simulate
PRepC, as the simulator in the proof of Lemma 5.4.2, σB keeps track of all
queried handles and the generated ciphertexts, answers repeated queries
consistently, and ignores queries for invalid handles. A fresh ciphertext for
handle h is generated as (y0, (E(pk1, r1), r

′
1), . . . , (E(pks, rs), r

′
s)), where

y0 is obtained from RepF via the query (f0, h) and r1, . . . , rs ∈ {0, 1}κ,
r′1, . . . , r

′
s ∈ {0, 1}ℓ are chosen uniformly at random. Moreover, the simu-

lator obtains yi from RepF via the query (fi, h) for all fi for which access
has been granted, and adds (ri, r

′
i ⊕ yi) to O.

On input fi ∈ F at its inside interface, σB outputs (fi, sk i) at its
outside sub-interface simulating SecCC,B. Furthermore, it obtains yj,i
from RepF via the query (fi, hj) for all hj for which ciphertexts have
been simulated. Let (yj,0, (E(pk1, rj,1), r

′
j,1), . . . , (E(pks, rj,s), r

′
j,s)) be

these ciphertexts. Finally, σB adds (rj,i, r
′
j,i ⊕ yj,i) to O. Whenever an

entry (x, y) is supposed to be added to O and this list already contains
an entry for x, the simulator aborts.

Note that if the simulator does not abort, if all ri chosen by σB are
unique and different from previous oracle queries by the distinguisher,
and if the distinguisher does not query the random oracle on a value r
such that E(pk i, r) is contained in some ciphertext generated by σB for
some i, the simulation is perfect. Since (K,E,D) is semantically secure,
it can be shown that the probability of these events is negligible. Thus,
πRO
A πRO

C [PRepC,AutC
C,A,SecCC,B ,RO] and σBRepF are computationally

indistinguishable.

5.7 Weaker Security Definitions

5.7.1 Definitions
We now define restricted variants of repository resources, which may still
be sufficient for certain applications and can then be used as sketched in
Section 5.9.

Definition 5.7.1. Let L,Q ∈ N∪ {∞}, X be a nonempty set, and let F
be a set of functions with domain X and f0 ∈ F . We define the resource

88 CHAPTER 5. FUNCTIONAL ENCRYPTION

RepAD
F,L,Q to be identical to RepF as in Definition 5.3.1 but only allow up

to L inputs at interface A and Q inputs at interface C and ignore further
inputs (in case L or Q equals∞, no restriction is placed on the number of
inputs, i.e., RepAD

F,∞,∞ ≡ RepF). We further define a nonadaptive variant
RepNA

F,L,Q that ignores all inputs at interface C after the first input at
interface A.

Since the resources only accept a given number of inputs at interfaces A
and C, we have to adjust the protocols to behave the same way. We there-
fore consider a functional encryption scheme E = (setup, keygen, enc, dec)
for a set F of functions with domain X where C is the range of enc. We
then define the protocol πAD,L,Q :=

(
πLA, πB , π

AD,Q
C

)
as π in Section 5.3.2,

but πLA and πAD,Q
C additionally keep track of the number of inputs at their

outside interface and ignore all of them after the first L and Q inputs,
respectively.

The following lemma states that this protocol yields a restricted
repository with access control if all parties are honest. It follows directly
from the correctness of the functional encryption scheme.

Lemma 5.7.2. For the protocol πAD,L,Q =
(
πLA, πB , π

AD,Q
C

)
defined

above, we have

πLAπBπ
AD,Q
C

[
PRepC,AutC

C,A,SecCC,B
]
≈ RepAD

F,L,Q.

To construct the nonadaptive variant, the protocol at interface C has
to ignore all inputs after the first input at interface A. Hence, it needs to
know whether there has already been any input at interface A, i.e., whether
the repository is still empty. We thus introduce for a nonempty set X
the resource PRep∅X that is identical to PRepX as in Definition 5.3.2 but
additionally accepts the input isEmpty at interface C which is answered
with true if the repository is empty, and false otherwise. We then define
πNA,L,Q :=

(
πLA, πB , π

NA,Q
C

)
where πNA,Q

C on each input at its outside
interface outputs isEmpty at its inside interface to the repository and
ignores the input (and all subsequent inputs) if the repository answers
false, and otherwise does the same as πAD,Q

C .
As above, correctness of the functional encryption scheme implies the

following lemma.

5.7. WEAKER SECURITY DEFINITIONS 89

Lemma 5.7.3. For the protocol πNA,L,Q =
(
πLA, πB , π

NA,Q
C

)
defined above,

we have

πLAπBπ
NA,Q
C

[
PRep∅C,AutC

C,A,SecCC,B
]
≈ RepNA

F,L,Q.

Having defined these resources and protocols, we can derive the fol-
lowing security definitions.

Definition 5.7.4. Let E = (setup, keygen, enc, dec) be a functional en-
cryption scheme for a set F of functions with domain X where C is the
range of enc and let L,Q ∈ N∪ {∞}. We say E is (L,Q)-AD-CFE secure
if [

PRepC,AutC
C,A,SecCC,B

] πAD,L,Q

B
RepAD

F,L,Q,

and E is (L,Q)-NA-CFE secure if

[
PRep∅C,AutC

C,A,SecCC,B
] πNA,L,Q

B
RepNA

F,L,Q.

Note that CFE security corresponds to (∞,∞)-AD-CFE security by
Theorem 5.4.4. We now recall a simulation-based single-message security
definition from [GVW12], which we will compare to our new notions in
the next section.

Definition 5.7.5. Let E = (setup, keygen, enc, dec) be a functional en-
cryption scheme for a set F of functions with common domain X. We
introduce the two experiments in Figure 5.5 for an efficient probabilistic
oracle algorithm A1 and efficient probabilistic algorithms A2 and S. The
advantage of a distinguisher D in distinguishing the outputs of these
experiments is denoted by

AdvNA-SIM
E,S,A,D := ∆D

(
ExpNA-SIM-real
E,A ,ExpNA-SIM-ideal

E,S,A

)
.

For Q ∈ N, the scheme E is Q-NA-SIM secure if there exists an efficient
probabilistic algorithm S such that AdvNA-SIM

E,S,A,D is negligible for all efficient
probabilistic oracle algorithms A1 that make at most Q queries, all efficient
probabilistic algorithms A2, and for all efficient distinguishers D.

90 CHAPTER 5. FUNCTIONAL ENCRYPTION

Experiment ExpNA-SIM-real
E,A

Input: 1κ, κ ∈ N
(pk ,mk)← setup(1κ)

(x, τ)← Akeygen(mk,·)
1 (pk)

c← enc(pk , x)
α← A2(pk , c, τ)
return (α, x)

Experiment ExpNA-SIM-ideal
E,S,A

Input: 1κ, κ ∈ N
(pk ,mk)← setup(1κ)

(x, τ)← Akeygen(mk,·)
1 (pk)

(f1, . . . , fq)← oracle queries by A1

(sk1, . . . skq)← replies from oracle
(y0, . . . , yq)← (f0(x), . . . , fq(x))
c← S(pk , f1, . . . , fq, sk1, . . . skq,

y0, . . . , yq)
α← A2(pk , c, τ)
return (α, x)

Figure 5.5: Experiments for the Q-NA-SIM security definition. Note that
q ≤ Q for A1 that make at most Q queries.

5.7.2 Sufficiency of NA-SIM Security

In this section, we show that Q-NA-SIM security is sufficient to construct
a nonadaptive repository with potentially dishonest B. This shows that
the scheme constructed in [GVW12], which satisfies this definition, can
be used in a composable framework. In particular, this shows how to
construct a nonadaptive repository for the set of all functions that are
computed by polynomial-size circuits, when the number of granted access
rights is bounded.

Note that in contrast to Definition 5.4.1, all keys the adversary sees
in the ideal experiment are generated by the algorithms of the functional
encryption scheme and not by a simulator. While this is an artificial
restriction for constructing single-input repositories, it interestingly allows
us to prove that this definition is sufficient to construct a repository
for many inputs. A similar result was already shown in [GVW12] but
our result is stronger because we allow subsequent inputs to depend on
previous ciphertexts whereas the many-message definition in [GVW12]
restricts the adversary to input all messages at once before seeing a
ciphertext.

Lemma 5.7.6. Let L,Q ∈ N and let S be an efficient probabilistic algo-
rithm. Then there exists an efficient converter σB such that for all efficient
distinguishers D for the resources πLAπ

NA,Q
C

[
PRep∅C,AutC

C,A,SecCC,B
]

5.7. WEAKER SECURITY DEFINITIONS 91

Converter σB

Initialization
(l, q)← (0, 0)
(pk ,mk)← setup(1κ)

output pk at outside sub-interface simulating AutCC,A

Inside interface
Input: f ∈ F
q ← q + 1
fq ← f
skq ← keygen(mk , f)

output (f, skq) at outside sub-interface simulating SecCC,B

Outside interface
Input: h ∈ H

if ∃k ∈ {1, . . . , l} hk = h then
output ck at outside sub-interface simulating PRep∅C

else if output (f0, h) at inside interface not ignored then ◃ data stored for h
l← l + 1
hl ← h
for i = 0, . . . , q do

output (fi, h) at inside interface, let yi be the returned value
cl ← S(pk , f1, . . . , fq, sk1, . . . skq, y0, . . . , yq)

output cl at outside sub-interface simulating PRep∅C

Figure 5.6: Definition of the simulator σB for the proof of Lemma 5.7.6.

and σBRepNA
F,L,Q, there exists an efficient probabilistic oracle algorithm A1

that makes at most Q queries, an efficient probabilistic algorithm A2, and
an efficient distinguisher D′ for the NA-SIM experiment such that

∆D
(
πLAπ

NA,Q
C

[
PRep∅C,AutC

C,A,SecCC,B
]
, σBRep

NA
F,L,Q

)
= L·AdvNA-SIM

E,S,A,D′ .

Proof. We define the simulator σB in Figure 5.6. Now let D be an efficient
distinguisher for πLAπ

NA,Q
C

[
PRep∅C,AutC

C,A,SecCC,B
]

and σBRep
NA
F,L,Q.

We can assume without loss of generality that D does not make any
inputs that are ignored by both resources because this cannot influence
the distinguishing advantage. Hence, we can assume that after getting a
public key from interface B, D makes up to Q inputs of the form f ∈ F at
interface C. Afterwards, it makes inputs of the form x ∈ X at interface A
and inputs h ∈ H at interface B for h that were output at interface A
before. As in the proof of Lemma 5.4.2, we can also assume without loss

92 CHAPTER 5. FUNCTIONAL ENCRYPTION

of generality that each h is input at most once, because both resources
return the same value for each input of the same h.

We let A1, A2, and D′ emulate the distinguisher D. At the beginning,
the algorithm A1 sets l← 0, draws a number l̂ ∈ {1, . . . , L} uniformly at
random and outputs pk at interface B from the authenticated channel
emulated for D. When D inputs f ∈ F at interface C, A1 makes the
oracle-query f and outputs f and the answer sk at interface B from the
secure channel. When D inputs x at interface A, A1 invokes getHandle
and outputs the returned handle h at interface A. It further sets M [h]← x
for a map M . When D inputs h ∈ H at interface B, A1 increments l by
one. If l < l̂, A1 outputs enc(pk ,M [h]) at interface B from the repository.
If l ≥ l̂, A1 saves M , the list f1, . . . , fq of queried functions, the answers
sk1, . . . , skq, and the state of D in τ and returns (M [h], τ). On input
(pk , c, τ), A2 reads M , f1, . . . , fq, sk1, . . . , skq, and the state of D from τ
and continues the simulation of D by outputting c at interface B from
the repository. When D inputs x at interface A, A2 invokes getHandle,
outputs the returned handle h at interface A, and sets M [h]← x. When
D inputs h ∈ H at interface B, A2 computes y0 ← f0(M [h]), . . . , yq ←
fq(M [h]) and c′ ← S(pk , f1, . . . , fq, sk1, . . . skq, y0, . . . , yq) and outputs c′
at interface B from the repository. Finally, when D outputs a bit, A2

returns the same bit. The distinguisher D′ on input (α, x) simply outputs
the value α.

Consider for i = 0, . . . , L the system Hi that corresponds to the
resource πLAπ

NA,Q
C

[
PRep∅C,AutC

C,A,SecCC,B
]

for the first i inputs of the
form h ∈ H at interface B, and that subsequently on input h ∈ H at
interface B behaves as follows: If h has been output at interface A but
not input at interface B before, the resource outputs S(pk , f1, . . . , fq,
sk1, . . . skq, y0, . . . , yq) at interface B, where q is the number of inputs at
interface C, fj corresponds to the j-th input at interface C, sk j to the
value output in return at interface B together with fj , and yj = fj(x)
for the value x ∈ X that was input at interface A before the resource
returned h. Inputs h ∈ H at interface B for h that have not been output
before at interface A are ignored, and inputting the same h more than
once always yields the same output as after its initial input. Note that

HL ≡ πLAπ
NA,Q
C

[
PRep∅C,AutC

C,A,SecCC,B
]
,

H0 ≡ σBRepNA
F,L,Q.

5.7. WEAKER SECURITY DEFINITIONS 93

Further note that

Pr
(
D′ ExpNA-SIM-real

E,A = 1
)

=

L∑
i=1

Pr
(
l̂ = i

)
· Pr
(
D′ ExpNA-SIM-real

E,A = 1 | l̂ = i
)
=

1

L

L∑
i=1

Pr(DHi = 1)

and similarly

Pr
(
D′ ExpNA-SIM-ideal

E,S,A = 1
)
=

1

L

L∑
i=1

Pr(DHi−1 = 1).

We therefore have

∆D
(
πLAπ

NA,Q
C

[
PRep∅C,AutC

C,A,SecCC,B
]
, σBRep

NA
F,L,Q

)
= ∆D(HL,H0)

= Pr(DHL = 1)− Pr(DH0 = 1)

=

L∑
i=1

Pr(DHi = 1)−
L∑
i=1

Pr(DHi−1 = 1)

= L · Pr
(
D′ ExpNA-SIM-real

E,A = 1
)
− L · Pr

(
D′ ExpNA-SIM-ideal

E,S,A = 1
)

= L ·∆D
′
(
ExpNA-SIM-real
E,A ,ExpNA-SIM-ideal

E,S,A

)
= L · AdvNA-SIM

E,S,A,D′ .

Note that since an efficient distinguisher can only make a polynomial
number of inputs at interface A, Lemmata 5.7.3 and 5.7.6 imply the
following theorem.

Theorem 5.7.7. Let Q ∈ N, E be a Q-NA-SIM-secure functional en-
cryption scheme, and let πNA,∞,Q be the protocol defined above for E. We
then have [

PRep∅C,AutC
C,A,SecCC,B

] πNA,∞,Q

B
RepNA

F,∞,Q.

Stated equivalently, Q-NA-SIM security implies (∞, Q)-NA-CFE security.

In Figure 5.7, we provide an overview of the implications among the
security definitions considered in this chapter.

94 CHAPTER 5. FUNCTIONAL ENCRYPTION

BSW-SIM

CFE (∞,∞)-AD-CFE (∞, Q)-NA-CFE

Q-NA-SIM

Theorem 5.4.4

Theorem 5.7.7

Figure 5.7: Implications among security definitions. BSW-SIM corre-
sponds to [BSW11, Definition 4] and Q-NA-SIM corresponds to the
non-adaptive case of [GVW12, Definition 1]. The separations follow from
the impossibility of BSW-SIM and CFE security and the possibility of
Q-NA-SIM security.

5.8 More General Notions of FE

Recent papers generalize the notion of functional encryption to support
functions of several variables [GGJS13; GKL+13; GGG+14; ABF+13]
or randomized functions [GJKS15; GGJS13; ABF+13]. While a detailed
treatment of these extensions is beyond the scope of this thesis, we sketch
how to capture them and further extensions in our model. Using our
approach, one only needs to specify the involved resources; the correspond-
ing security definitions are then implied by the constructive cryptography
framework and one can extract equivalent traditional security definitions
as we have done to obtain CFE security. In contrast to that, adjusting a
traditional security definition appropriately to support additional features
is a challenging task and it is often unclear which guarantees a specific
definition provides. Whether existing definitions are sufficient to achieve
the constructions we propose in this section is an open question, but we
conjecture that this is not the case.

5.8.1 Dishonest Senders

So far, we have assumed that Alice is always honest, that is in the real
world, dishonest users do not encrypt data that is decrypted by someone
else. Dropping this assumption is a very natural extension, which is indeed
required for many applications. This scenario can be captured by simply
considering dishonest users at interface A. According to a general principle

5.8. MORE GENERAL NOTIONS OF FE 95

of the constructive cryptography framework, security then means that
interactions at interface A can also be simulated. Otherwise, all definitions
remain unchanged. While in the context of randomized functions [GJKS15;
GGJS13], security definitions have been considered that prevent the sender
from tampering with the randomness, we are not aware of any results that
provide guarantees against dishonest senders beyond preventing them
from manipulating randomness.

5.8.2 Randomized Functions

It is straightforward to extend the repositories defined in Definition 5.7.1
to support randomized functions as follows: For a set F of functions with
domain R×X, the repository on input (f, h) at interface B chooses r ∈ R
uniformly at random and outputs f(r,M [h]) at interface B if the right
to access f has been granted to B and M [h] ̸= ⊥. One can consider two
cases here: Either the randomness r is chosen freshly for each input at
interface B or the resource remembers all inputs and only samples r for
fresh inputs (and uses the same randomness if the same pair (f, h) is
input again). This can, of course, be combined with dishonest senders as
explained above.

5.8.3 Functions of Several Variables

To compute on a database where each entry is encrypted separately, one
needs to support functions f with domain Xn. Our constructed resources
can be generalized to capture that by answering inputs (f, h1, . . . , hn) ∈
F ×Hn at interface B with f(M [h1], . . . ,M [hn]) if the right to access f
has been granted. The setting considered in [GGJS13] is even more
general: The functions there have domain X1× . . .×Xn and the key used
to encrypt xi ∈ Xi can be different from the one used to encrypt xj ∈ Xj

for i ̸= j. To capture this setting, we extend our constructed resource to
have interfaces A1, . . . , An instead of interface A where elements in Xi

can be input at interface Ai. Moreover, [GGJS13; GKL+13] allow some
of the encryption keys to be secret while others are public. This can be
covered easily in our model by adjusting the assumed resource: For the
keys that are supposed to be secret, the channel from the key authority C
to the corresponding Ai has to be secure instead of only authenticated.

96 CHAPTER 5. FUNCTIONAL ENCRYPTION

This ensures that dishonest parties cannot learn these keys, in contrast to
the (public) keys sent over only authenticated channels.

Remark. Note that the impossibility result in Section 5.5.1 does not rely
on the fact that the encryption key is public. Hence, the impossibility
extends to the case where all encryption keys are secret.

5.9 Application of Constructed Repository

In this section, we demonstrate how a repository with access control can be
used in applications and how this relates to the composition theorem of the
constructive cryptography framework. As a simple application, consider a
university that wants its students to learn the results of their exams as well
as the average result of each exam. This can be accomplished by entering
the results into a repository and granting the students appropriate access
rights. To formalize this, we introduce the resource ExamDB that can
directly be used by the university to enter results such that students are
automatically notified about their results. We construct this resource from
a repository with access control RepNA

F,∞,Q as introduced in Section 5.7.4
To notify the students about the results and communicate the handles
needed to access the data in the repository, our construction additionally
requires authenticated channels to the students.

For simplicity, we describe a resource that allows one student called
Bob to access his results. As mentioned in Section 5.3.1, analyzing the
security with a single potentially dishonest party is sufficient to guarantee
security against several colluding dishonest parties, so the results here can
be applied to a real world application with many students. The described
protocols can be extended to such a setting in an obvious way by granting
each student the appropriate rights and sending the notifications to every
student.

We now describe the resource ExamDB in more detail. After the
examiner Alice inputs the ID of a lecture together with a list of students
and the number of points they were awarded, Bob receives the lecture ID,
the number of participants, his number of points, and the average points.
More concretely, let L be the set of lectures and S be the set of students

4Of course, one can instead use RepF if it is available, since RepNA
F,∞,Q is more

restricted than RepF .

5.9. APPLICATION OF CONSTRUCTED REPOSITORY 97

registered at the university. Now consider the resource ExamDB that on
input (lecture, ((s1, p1), . . . , (sn, pn))) ∈ L × (S × N)∗ at interface A,
outputs (lecture, n, p, p̄) ∈ L×N2×Q at interface B, where p = pj with
sj being Bob’s student ID and p̄ = 1

n

∑n
i=1 pi.

We will construct the resource ExamDB from a repository with access
control. To this end, let X := L × (S × N)∗. We do not require the
repository to hide the length of stored entries, i.e., we set f0 : X →
N, (lecture, ((s1, p1), . . . , (sn, pn))) ↦→ n. We further consider for every
student s ∈ S the function fs : X → N ∪ {⊥} that maps an entry to the
number of points for student s if s occurs in the list, and ⊥ otherwise.
Finally, let favg : X → Q, (lecture, ((s1, p1), . . . , (sn, pn))) ↦→ 1

n

∑n
i=1 pi.

We set F := {f0, favg} ∪ {fs | s ∈ S} and consider
[
RepNA

F,∞,Q,AutC
A,B
]

for Q ≥ 2|S| (because every s ∈ S is granted access to favg and fs) as the
assumed resource in our construction.

The protocol πEx :=
(
πEx
A , πEx

B , πEx
C

)
is defined as follows: Initially,

πEx
C outputs fBob and favg at its inside interface. The converter πEx

A

on input x =
(
lecture, ((s1, p1), . . . , (sn, pn))

)
∈ L × (S × N)∗ at its

outside interface, outputs x at its inside interface to the repository. When
the repository returns a handle h, πEx

A sends (lecture, h) to Bob over
the authenticated channel. On input (lecture, h) at its inside interface,
πEx
B inputs (f0, h), (fBob, h), and (favg, h) at its inside interface to the

repository. Let the returned values from the repository be n, p, and p̄,
respectively. The converter then outputs (lecture, n, p, p̄) at its outside
interface.

Proposition 5.9.1. We have

[RepNA
F,∞,Q,AutC

A,B]
πEx

B
ExamDB.

Proof. It is easy to see that

πEx
A πEx

B πEx
C [RepNA

F,∞,Q,AutC
A,B] ≡ ExamDB.

We define a simulator σB as follows: Initially, it outputs fBob and favg
at its outside sub-interface simulating RepNA

F,∞,Q. On input (lecture, n,
p, p̄) at its inside interface, it invokes h ← getHandle, stores (h, n, p, p̄)
internally, and outputs (lecture, h) at its outside sub-interface simulating
AutCA,B. On input (f0, h), (fBob, h), or (favg, h) at its outside interface

98 CHAPTER 5. FUNCTIONAL ENCRYPTION

for some h that has been stored, it outputs the corresponding stored n, p,
or p̄, respectively, at its outside sub-interface simulating RepNA

F,∞,Q. Other
inputs are ignored. We then have

πEx
A πEx

C [RepNA
F,∞,Q,AutC

A,B] ≡ σBExamDB

and the claim follows.

By the composition theorem of constructive cryptography (see Sec-
tion 2.4.4), one can first construct RepNA

F,∞,Q from a public repository via a
protocol π′ as demonstrated in Section 5.7 and then use πEx to construct
ExamDB. Due to this modularity, the protocol πEx does not need to con-
sider functional encryption or know how RepNA

F,∞,Q was constructed. This
makes the protocol and its security analysis very simple. The composition
theorem guarantees that the overall construction (corresponding to an
application of the protocol πEx ◦ π′) is secure. Moreover, security is still
guaranteed if AutCA,B is in parallel constructed from an insecure channel
using some secure authentication protocol. Traditional security definitions
for functional encryption do not offer such guarantees.

Note that πEx
C has to grant Bob the rights before A makes any inputs.

Using the constructive approach, this is obvious since RepNA
F,∞,Q does not

allow any inputs at interface C after an input at interface A. In a real
world application, this corresponds to sending all keys to the students
before the exam session starts (and using fresh keys every semester). If
a student forgot to register and asks for his key after some results have
already been published, the university cannot give him a key without
destroying all security guarantees. When a functional encryption scheme
is used to build ExamDB from scratch using traditional security definitions,
this fact might be less obvious.

Chapter 6

Access Control Encryption

6.1 Introduction

6.1.1 Model and Security Requirements

The concept of access control encryption (ACE) has been proposed by
Damgård, Haagh, and Orlandi [DHO16] in order to enforce information
flow using cryptographic tools rather than a standard access control mech-
anism (e.g., a reference monitor) within an information system. If the
encryption scheme provides certain operations (e.g., ciphertext saniti-
zation) and satisfies an adequate security definition, then the reference
monitor can be outsourced, as a component called the sanitizer, to an
only partially trusted service provider. The goal of ACE is that the
sanitizer learns nothing not intrinsically necessary. Security must also
be guaranteed against dishonest users, whether senders or receivers of
information, and against certain types of sanitizer misbehavior.

The information flow problem addressed by ACE is defined in a context
with a set R of roles corresponding, for example, to different security
clearances. Each user in a system can be assigned several roles. For
example the users are employees of a company collaborating on a sensitive
project, and they need to collaborate and exchange information by sending
messages. Since the information is sensitive, which information a party can
see must be restricted (hence the term access control), even if some parties
are dishonest. In the most general form, the specification of which role

100 CHAPTER 6. ACCESS CONTROL ENCRYPTION

may send to which other role corresponds to a relation (a subset of R×R)
or, equivalently, to a predicate P : R×R → {0, 1}, where s ∈ R is allowed
to communicate to r ∈ R if and only if P (s, r) = 1. The predicate P is
called the (security) policy. Typical examples of such policies arise from
the Bell-LaPadula [BL73] model where roles are (partially) ordered, and
the so-called “no-write-down” rule specifies that it is forbidden for a user
to send information to another user with a lower role. Note that for this
specific example, the relation is transitive, but ACE also allows to capture
non-transitive security policies.

ACE has been designed to work in the following setting. Users can
communicate anonymously with a sanitizer. If a user wants to send a
message, it is encrypted under a key corresponding to the sender’s role.
Then the ciphertext is sent (anonymously) to the sanitizer who applies
a certain sanitization operation and writes the sanitized ciphertext on
a publicly readable bulletin board providing anonymous read-access to
the users (receivers). Users who are supposed to receive the message
according to the policy (and only those users) can decrypt the sanitized
ciphertext.

To ensure security in the described setting, the ACE scheme must at
least provide the following guarantees:

1. The encryption must assure privacy and anonymity against dishonest
receivers as well as the sanitizer, i.e., neither the sanitizer nor
dishonest receivers without access allowed by the policy should be
able to obtain information about messages or the sender’s role.

2. A dishonest sender must be unable to communicate with a (poten-
tially dishonest) receiver, unless this is allowed according to the
policy. In other words, the system must not provide covert channels
allowing for policy-violating communication.

As usual in a context with dishonest senders, the first goal requires
security against chosen-ciphertext attacks (CCA) because dishonest users
can send a ciphertext for which they do not know the contained message
and by observing the effects the received message has on the environment,
potentially obtain information about the message. This corresponds to
the availability of a decryption oracle, as in the CCA-security definition.

Note that the second goal is only achievable if users cannot directly
write to the repository or communicate by other means bypassing the

6.1. INTRODUCTION 101

sanitizer, and if the sanitizer is not actively dishonest because a dishonest
sanitizer can directly write any information received from a dishonest
sender to the repository. The assumption that a user cannot bypass the
sanitizer and communicate to another party outside of the system can
for example be justified by assuming that users, even if dishonest, want
to avoid being caught communicating illegitimately, or if only a user’s
system (not the user) is corrupted, and the system can technically only
send message to the sanitizer.

Since the sanitizer is not fully trusted in our setting, one should con-
sider the possibility that an unsanitized ciphertext is leaked (intentionally
or unintentionally) to a dishonest party. This scenario can be called (un-
sanitized) ciphertext-revealing attack. Obviously, all information contained
in this ciphertext gets leaked to that party. While this cannot be avoided,
such an attack should not enable dishonest parties to violate the security
requirements beyond that.

We point out that previously proposed encryption techniques (before
ACE), such as attribute-based encryption [SW05; GPSW06] and functional
encryption [BSW11], enable the design of schemes where a sender can
encrypt messages such that only designated receivers (who possess the
required key) can read the message; see also Chapter 5. This captures the
access control aspects of read permissions, but it does not allow to capture
the control of write/send permissions. In other words, such schemes only
achieve the first goal listed above, not the second one.

6.1.2 Contributions

While the proposal of the ACE concept and of efficient ACE schemes
were important first steps toward outsourcing access control, the existing
security definition turns out to be insufficient for several realistic attack
scenarios. Hence, existing schemes also cannot be used to construct a
meaningful ideal resource. The main contributions in this chapter consist
of uncovering issues with existing definitions and schemes, fixing these
issues by proposing stronger security notions, and constructing a scheme
satisfying our stronger notions.

As we discuss in Section 6.7, our stronger notions are still insufficient
to provide the expected guarantees in the constructive cryptography
framework. This is not because the definitions are too weak, but due to
inherent limitations we discuss in that section.

102 CHAPTER 6. ACCESS CONTROL ENCRYPTION

Issues with existing definitions and schemes. As argued above,
chosen-ciphertext attacks should be considered since the use case for ACE
includes dishonest senders. Existing definitions, however, do not take
this into account, i.e., the adversary does not have access to a decryption
oracle in the security games.

Furthermore, existing notions do not consider ciphertext-revealing
attacks. Technically speaking, the security game that is supposed to
prevent dishonest senders from transmitting information to dishonest
receivers (called no-write game), gives the adversary only access to an
encryption oracle that sanitizes ciphertexts before returning them. This
means that the adversary has no access to unsanitized ciphertexts. This
is not only a definitional subtlety, but can completely break down any
security guarantees. We demonstrate that existing ACE schemes allow
the following attack: Assume there are three users A, M , and E in the
system, where A is honest and by the policy allowed to send information
to E, and M and E are dishonest and not allowed to communicate. If
A sends an (innocent) message to E and the corresponding unsanitized
ciphertext is leaked to M , malleability of the ciphertext can be exploited
by M to subsequently communicate an arbitrary number of arbitrary
messages chosen by M to E. Note that while this attack crucially exploits
malleability of ciphertexts, it is not excluded by CCA security for two
reasons: first, CCA security does not prevent an adversary from produc-
ing valid ciphertexts for unrelated messages, and second, the integrity
should still hold if the adversary has the decryption key (but not the
encryption key).

Finally, existing security definitions focus on preventing dishonest
parties from communicating if this is disallowed by the security policy,
but they do not enforce allowed information flow. For example, if user A
only has one role such that according to the policy, users B and C can
read what A sends, existing schemes do not prevent A from sending a
message that can be read by B but not by C, nor from sending a message
such that B and C receive different messages. This is not as problematic
as the two issues above, and one can argue that A could anyway achieve
something similar by additionally encrypting the message with another
encryption scheme. Nevertheless, for some use cases, actually precisely
enforcing the policy can be required (consider, e.g., a logging system that
needs to receive all sent messages), and one might intuitively expect that
ACE schemes achieve this.

6.1. INTRODUCTION 103

New security definitions. We propose new, stronger security defini-
tions for ACE that exclude all issues mentioned above. First, we give
the adversary access to a decryption oracle. More precisely, the oracle
first sanitizes the given ciphertext and then decrypts it, since this is what
happens in the application if a dishonest party sends a ciphertext to the
sanitizer. Second, we incorporate ciphertext-revealing attacks by giving
the adversary access to an encryption oracle that returns unsanitized ci-
phertexts for arbitrary roles. Finally, we introduce a new security game in
which an adversary can obtain encryption keys and decryption keys from
an oracle and has to output a ciphertext such that one of the following
events occur: either the set of roles that can successfully decrypt the
ciphertext (to an arbitrary message) is inconsistent with the policy for
all sender roles for which the adversary has an encryption key (in this
case, we say the adversary is not role-respecting); or the ciphertext can
be successfully decrypted with two keys such that two different messages
are obtained (in this case, we say the uniform-decryption property is
violated).

Construction of an ACE scheme for our stronger notions. Our
construction proceeds in three steps and follows the general structure
of the generic construction by Fuchsbauer et al. [FGKO17]. Since we
require much stronger security notions in all three steps, our constructions
and proofs are consequently more involved than existing ones. First, we
construct a scheme for a primitive we call enhanced sanitizable public-key
encryption (sPKE). Second, we use an sPKE scheme to construct an ACE
scheme satisfying our strong security notion for the equality policy, i.e.,
for the policy that allows s to send to r if and only if r = s. Third,
we show how to lift an ACE scheme for the equality policy to an ACE
scheme for the disjunction of equalities policy. This policy encodes roles
as vectors x = (x1, . . . , xℓ) and allows role x to send to role y if and only
if x1 = y1 ∨ . . . ∨ xℓ = yℓ. As shown by Fuchsbauer et al. [FGKO17],
useful policies including the inequality predicate corresponding to the
Bell-LaPadula model can efficiently be implemented using this policy by
encoding the roles appropriately.

Enhanced sanitizable PKE. An sPKE scheme resembles publicy-key
encryption with an additional setup algorithm that outputs sanitizer

104 CHAPTER 6. ACCESS CONTROL ENCRYPTION

parameters and a master secret key. The master secret key is needed to
generate a public/private key pair and the sanitizer parameters can be
used to sanitize a ciphertext. A sanitized ciphertext cannot be linked to
the original ciphertext without the decryption key. We require the scheme
to be CCA secure (with respect to a sanitize-then-decrypt oracle) and
anonymous. Sanitization resembles rerandomization [Gro04; PR07], also
called universal re-encryption [GJJS04], but we allow sanitized ciphertexts
to be syntactically different from unsanitized ciphertexts. This allows us
to achieve full CCA security, which is needed for our ACE construction
and unachievable for rerandomizable encryption.

Our scheme is based on ElGamal encryption [Elg85], which can easily
be rerandomized and is anonymous. We obtain CCA security using the
technique of Naor and Yung [NY90], i.e., encrypting the message under
two independent keys and proving in zero-knowledge that the ciphertexts
are encryptions of the same message, which was shown by Sahai to achieve
full CCA security if the zero-knowledge proof is simulation-sound [Sah99].
A technical issue is that if the verification of the NIZK proof was done by
the decrypt algorithm, the sanitization would also need to sanitize the
proof. Instead, we let the sanitizer perform the verification. Since we want
to preserve anonymity, this needs to be done without knowing under which
public keys the message was encrypted. Therefore, the public keys are
part of the witness in the NIZK proof. Now the adversary could encrypt
the same message under two different public keys that were not produced
together by the key-generation, which would break the reduction. To
prevent this, the pair of public keys output by the key-generation is signed
using a signature key that is contained in the master secret key and the
corresponding verification key is contained in the sanitizer parameters.

ACE for equality. The basic idea of our ACE scheme for the equality
policy is to use for each role, encryption and decryption keys of an
sPKE scheme as the encryption and decryption keys of the ACE scheme,
respectively. Since we need to prevent dishonest senders without an
encryption key for some role from producing valid ciphertexts for that role
even after seeing encryptions of other messages for this role and obtaining
encryption keys for other roles, we add a signature key to the encryption
key, sign this pair using a separate signing key, where the corresponding
verification key is part of the sanitizer parameters, and let senders sign

6.2. EXISTING DEFINITIONS FOR ACE 105

their ciphertexts. To preserve anonymity, this signature cannot be part of
the ciphertext. Instead, senders prove in zero-knowledge that they know
such a signature and that the encryption was performed properly.

ACE for disjunction of equalities. The first step of our lifting is
identical to the lifting described by Fuchsbauer et al. [FGKO17]: for each
component of the role-vector, the encryption and decryption keys contain
corresponding keys of an ACE scheme for the equality policy. To encrypt
a message, this message is encrypted under each of the key components.
In a second step, we enforce role-respecting security with the same trick
we used in our ACE scheme for equality; that is, we sign encryption-key
vectors together with a signing key for that role, and senders prove in
zero-knowledge that they have used a valid key combination to encrypt
and that they know a signature of the ciphertext vector.

6.1.3 Related Work
The concept of access control encryption has been introduced by Damgård
et al. [DHO16]. They provided the original security definitions and first
schemes. Subsequent work by Fuchsbauer et al. [FGKO17], by Tan et
al. [TZMT17], and by Kim and Wu [KW17] focused on new schemes
that are more efficient, based on different assumptions, or support more
fine-grained access control policies. In contrast to our work, they did not
attempt to strengthen the security guarantees provided by ACE.

6.2 Existing Definitions for ACE

6.2.1 Access Control Encryption
We recall the definition of access control encryption by Damgård et
al. [DHO16]. Following Fuchsbauer et al. [FGKO17], we do not have
sanitizer keys and require Gen to be deterministic. The set of roles is
assumed to be R = [n].

Definition 6.2.1. An access control encryption (ACE) scheme E consists
of the following five PPT algorithms:

Setup: The algorithm Setup on input a security parameter 1κ and a
policy P : [n]× [n]→ {0, 1}, outputs a master secret key msk and

106 CHAPTER 6. ACCESS CONTROL ENCRYPTION

sanitizer parameters sp. We implicitly assume that all keys include
the finite message space M and the ciphertext spaces C, C′.

Key generation: The algorithm Gen is deterministic and on input a
master secret key msk , a role i ∈ [n], and the type sen, outputs
an encryption key ek i; on input msk , j ∈ [n], and the type rec,
outputs a decryption key dk j .

Encryption: The algorithm Enc on input an encryption key ek i and a
message m ∈M, outputs a ciphertext c ∈ C.

Sanitization: The algorithm San on input sanitizer parameters sp and
a ciphertext c ∈ C, outputs a sanitized ciphertext c′ ∈ C′ ∪ {⊥}.

Decryption: The algorithm Dec on input a decryption key dk j and a
sanitized ciphertext c′ ∈ C′, outputs a message m ∈ M∪ {⊥}; on
input dk j and ⊥, it outputs ⊥.

For a probabilistic algorithm A, consider the experiment ExpACE-CORR
E,A

that given a security parameter 1κ and a policy P , executes (sp,msk)←
Setup(1κ, P), (m, i, j) ← AGen(msk ,·,·)(sp), ek i ← Gen(msk , i, sen), and
dk j ← Gen(msk , j, rec). We define the correctness advantage of A (for
security parameter κ and policy P) as

AdvACE-CORR
E,A := Pr

[
P (i, j) = 1 ∧ Dec

(
dk j ,San(sp,Enc(ek i,m))

)
̸= m

]
,

where the probability is over the randomness in ExpACE-CORR
E,A and the

random coins of Enc, San, and Dec. The scheme E is called correct
if AdvACE-CORR

E,A is negligible for all efficient A, and perfectly correct if
AdvACE-CORR

E,A = 0 for all A.

Remark. Correctness of an encryption scheme is typically not defined
via a game with an adversary, but by requiring that decryption of an
encryption of m yields m with probability 1. This perfect correctness
requirement is difficult to achieve for ACE schemes and not necessary
for applications because it is sufficient if a decryption error only occurs
with negligible probability in any execution of the scheme. Damgård et
al. [DHO16] define correctness by requiring that for all m, i, and j with
P (i, j) = 1, the probability that a decryption fails is negligible, where the
probability is over setup, key generation, encrypt, sanitize, and decrypt.

6.2. EXISTING DEFINITIONS FOR ACE 107

While this definition is simpler than ours, it does not guarantee that
decryption errors only occur with negligible probability in any execution
of the scheme. For example, a scheme could on setup choose a random
message m and embed it into all keys such that decryption always fails
for encryptions of this particular message. This does not violate the
definition by Damgård et al. since for any fixed message, the probability
that this message is sampled during setup is negligible (if the message
space is large). Nevertheless, an adversary can always provoke a decryption
error by sending that particular message m, which is not desirable. The
above example might at first sight seem somewhat artificial, and typically,
schemes do not have such a structure. However, capturing correctness
via an experiment is important when thinking of composition, since we
expect that the correctness guarantee still holds when the ACE scheme is
run as part of a larger system. In order to meet this expectation, and to
exclude the above issue, we formalize correctness via an experiment.

Additionally, Fuchsbauer et al. have defined detectability, which guar-
antees that decrypting with a wrong key yields ⊥ with high probability
[FGKO17]. This allows receivers to detect whether a message was sent to
them. As for correctness, we define it via an experiment. The notion is
related to robustness for public-key encryption [ABN10]. We additionally
define strong detectability, in which the randomness for the encryption is
adversarially chosen.

Definition 6.2.2. Let E = (Setup,Gen,Enc,San,Dec) be an ACE scheme
and let A be a probabilistic algorithm. Consider ExpACE-DTCT

E,A that given
a security parameter 1κ and a policy P , executes (sp) ← Setup(1κ, P),
(m, i, j) ← AGen(msk ,·,·)(sp,msk), ek i ← Gen(msk , i, sen), and dk j ←
Gen(msk , j, rec). We define the detectability advantage of A as

AdvACE-DTCT
E,A := Pr

[
P (i, j) = 0 ∧ Dec

(
dk j ,San(sp,Enc(ek i,m))

)
̸= ⊥

]
,

where the probability is over the randomness in ExpACE-DTCT
E,A and the

random coins of Enc, San, and Dec. The scheme E is called detectable if
AdvACE-DTCT

E,A is negligible for all efficient A. The experiment ExpACE-sDTCT
E,A

is identical to ExpACE-DTCT
E,A except that A returns (m, r, i, j). The strong

detectability advantage of A is defined as

AdvACE-sDTCT
E,A := Pr

[
P (i, j) = 0 ∧ Dec

(
dk j ,San(sp,Enc(ek i,m; r))

)
̸= ⊥

]
,

108 CHAPTER 6. ACCESS CONTROL ENCRYPTION

where the probability is over the randomness in ExpACE-sDTCT
E,A and the

random coins of San and Dec. The scheme E is called strongly detectable
if AdvACE-sDTCT

E,A is negligible for all efficient A.

6.2.2 Existing Security Definitions
Existing notions for ACE specify two core properties: the so-called no-
read rule and the no-write rule. The no-read rule formalizes privacy and
anonymity: roughly, an honestly generated ciphertext should not leak
anything about the message, except possibly its length, or about the role
of the sender. The security game allows an adversary to interact with
a key-generation oracle (to obtain encryption and decryption keys for
selected roles), and an encryption oracle to obtain encryptions of chosen
messages for roles for which the adversary does not possess the encryption
key. This attack model reflects that an adversary cannot obtain useful
information by observing the ciphertexts that are sent to the sanitizer.
To exclude trivial attacks, it is not considered a privacy breach if the
adversary knows a decryption key that allows to decrypt the challenge
ciphertext according to the policy. Similarly, it is not considered an
anonymity breach if the encrypted messages are different. We next state
the definition of the no-read rule.1

Definition 6.2.3. Let E = (Setup,Gen,Enc,San,Dec) be an ACE scheme
and let A = (A1,A2) be a pair of probabilistic algorithms. Consider the
experiment ExpACE-no-read

E,A in Figure 6.1 and let J be the set of all j such
that A1 or A2 issued the query (j, rec) to OG. The payload-privacy
advantage and the sender-anonymity advantage of A are defined as

AdvACE-no-read,priv
E,A := 2 · Pr

[
b′ = b ∧ |m0| = |m1|
∧ ∀j ∈ J P (i0, j) = P (i1, j) = 0

]
− 1,

AdvACE-no-read,anon
E,A := 2 · Pr

[
b′ = b ∧ m0 = m1

∧ ∀j ∈ J P (i0, j) = P (i1, j)
]
− 1,

respectively, where the probabilities are over the randomness of all al-
gorithms in ExpACE-no-read

E,A . The scheme E satisfies the payload-privacy

1For anonymity, we adopt here the definition of [DHO16], which is stronger than
the one used by Fuchsbauer et al. [FGKO17] since there, anonymity is not guaranteed
against parties who can decrypt.

6.2. EXISTING DEFINITIONS FOR ACE 109

Experiment ExpACE-no-read
E,A

Input: (1κ, P), κ ∈ N,
P : [n]× [n]→ {0, 1}

(sp,msk)← Setup(1κ, P)
(m0,m1, i0, i1, st)

← AOG(·,·),OE(·,·)
1 (sp)

b � {0, 1}
ekib

← Gen(msk , ib, sen)
c← Enc(ekib

,mb)

b′ ← AOG(·,·),OE(·,·)
2 (st, c)

Experiment ExpACE-no-write
E,A

Input: (1κ, P), κ ∈ N,
P : [n]× [n]→ {0, 1}

(sp,msk)← Setup(1κ, P)

(c0, i
′, st)← AOG(·,·),OES(·,·)

1 (sp)
b � {0, 1}
m′ �M
c1 ← Enc(Gen(msk , i′, sen),m′)

b′ ← AOG(·,·),OES(·,·)
2 (st, San(sp, cb))

Figure 6.1: The no-read and no-write experiments for an ACE scheme E
and an adversary A = (A1,A2). The oracles are defined as OG(·, ·) :=
Gen(msk , ·, ·), OE(·, ·) := Enc(Gen(msk , ·, sen), ·), and OES(·, ·) :=
San(sp,Enc(Gen(msk , ·, sen), ·)).

no-read rule and the sender-anonymity no-read rule if AdvACE-no-read,priv
E,A

and AdvACE-no-read,anon
E,A are negligible for all efficient A, respectively. If it

satisfies both, it is said to satisfy the no-read rule.

The no-write rule of ACE is the core property to capture access control.
In a nutshell, if the adversary only possesses encryption keys for roles i
and decryption keys for roles j with P (i, j) = 0, then he should not
be able to create a ciphertext from which, after being sanitized, he can
retrieve any information. Technically, in the corresponding security game,
the adversary is given a key-generation oracle as above, and in addition
an oracle to obtain sanitized ciphertexts for selected messages and roles.
This attack model corresponds to a setting where an adversary only
sees the outputs of a sanitizer, but not its inputs, and in particular no
unsanitized ciphertexts generated for roles for which he does not possess
the encryption key. The adversary wins if he manages to distinguish the
sanitized version of a ciphertext of his choice from a sanitized version
of a freshly generated encryption of a random message, and if he does
not obtain the encryption key for any role i and the decryption key of
any role j for which P (i, j) = 1, as this would trivially allow him to
distinguish.

110 CHAPTER 6. ACCESS CONTROL ENCRYPTION

Definition 6.2.4. Let E = (Setup,Gen,Enc,San,Dec) be an ACE scheme
and let A = (A1,A2) be a pair of probabilistic algorithms. Consider the
experiment ExpACE-no-write

E,A in Figure 6.1, let I1 be the set of all i such that
A1 issued the query (i, sen) to OG, and let J be the set of all j such
that A1 or A2 issued the query (j, rec) to OG. We define the no-write
advantage of A as

AdvACE-no-write
E,A := 2 · Pr

[
b′ = b ∧ i′ ∈ I1 ∧ ∀i ∈ I1 ∀j ∈ J P (i, j) = 0

∧ San(sp, c0) ̸= ⊥
]
− 1,

where the probability is over the randomness of all algorithms in the
experiment ExpACE-no-write

E,A . The scheme E satisfies the no-write rule if
AdvACE-no-write

E,A is negligible for all efficient A.

Remark. Our definition follows the one by Fuchsbauer et al. [FGKO17]
by requiring San(sp, c0) ̸= ⊥ in the winning condition for the no-write
rule, which was not required in the original definition by Damgård et
al. [DHO16]. Schemes can be made secure with respect to the original
definition by letting the algorithm San create a fresh ciphertext for a
random message when given an invalid ciphertext.

The condition i′ ∈ I1 together with ∀i ∈ I1 ∀j ∈ J P (i, j) = 0 ensures
that A does not have a key to decrypt c1, which would trivially allow
to distinguish. Requiring that A obtains a key for i′ however excludes
adversaries that obtain no key at all. The original definitions [DHO16]
therefore include a special role 0 with P (0, j) = 0 for all j. One can then
assume without loss of generality that anyone obtains a key for this role.
Since assuming the existence of such a role appears to be a technicality
that is only needed for the no-write rule, we do not make this assumption
and present new security definitions in Section 6.4.2 that do not rely on
such a role.

6.3 Ciphertext-Revealing Attacks

6.3.1 Generic Description of Attack
We describe a fundamental practical issue of schemes which meet the above
no-read and no-write definitions and show why the guarantees expected
from an ACE scheme need to be strengthened. We show that schemes

6.3. CIPHERTEXT-REVEALING ATTACKS 111

fulfilling the definition can suffer from what we call a malleability attack,
which effectively bypasses the given policy and allows communication that
is forbidden by the policy. The attack does not abuse any peculiarities of
existing models and in fact only requires that the semi-honest sanitizer
shares its inputs and outputs with colluding parties, which is arguably
possible when the sanitizer is outsourced. In particular, security against
such a sanitizer is desirable from a practical point of view.

We first give a high-level explanation of the attack, formalize it as a
second step, and finally show that several existing schemes are vulnerable.
Assume there are three parties, Alice, Bob, and Charlie, each having
a different role assigned. We denote by A, B, and C the associated
roles. In our example, Alice and Charlie are always honest. Alice is
allowed to communicate with Bob and Charlie. Bob is dishonest and
forbidden to send messages to Charlie (and to Alice). The attack now
proceeds as follows: When Alice sends her first message, Bob requests the
corresponding ciphertext and the sanitized ciphertext from the semi-honest
sanitizer. He then decrypts the sanitized ciphertext and thus receives the
message Alice has sent. With the knowledge of this message, as we show
below, he is able to create a valid ciphertext for a chosen message m′,
which will be correctly sanitized and later decrypted by Charlie, hence
allowing unrestricted communication from Bob to Charlie. Details follow.

Consider the policy defined by

P (i, j) :=

{
1, i = A,

0, otherwise.

For the sake of presentation, we assume that the ACE scheme E un-
der consideration enjoys perfect correctness. Also, we assume that the
setup phase has completed and the three parties thus possess the encryp-
tion and decryption keys, ek i and dk i, respectively. Now, imagine that
the ACE scheme admits an efficient function maulE with the following
property (later we show how to implement such a function for some
existing schemes): For all messages m and m′, any role i, and sanitizer
parameters sp in the range of Setup, and for any fixed randomness r,

maulE
(
Enc(ek i,m; r), sp,m,m′)

)
= Enc(ek i,m

′; r). (6.1)

If such a malleability function exists, the communication policy can be
bypassed as follows:

112 CHAPTER 6. ACCESS CONTROL ENCRYPTION

1. Alice encrypts a message c ← Enc(ekA,m) and the sanitizer com-
putes c′ ← San(sp, c) and gives c and c′ to Bob.

2. Bob computes m ← Dec(dkB, c
′) and creates a new ciphertext

ĉ← maulE(c, sp,m,m
′) and sends it to the sanitizer.

3. The ciphertext is sanitized ĉ′ ← San(sp, ĉ) and subsequently sent to
Charlie. By the (perfect) correctness of the assumed ACE scheme
and by our assumption on maulE , ĉ′ is a valid ciphertext (under
the encryption key of Alice) and Charlie is able to decrypt m′ ←
Dec(dkC, ĉ

′), effectively receiving Bob’s message m′.

In the following sections, we show that several existing ACE schemes E
admit an efficient function maulE . More specifically, we consider the
“linear” scheme by Damgård et al. [DHO16] based on ElGamal and the
ElGamal-based scheme by Fuchsbauer et al. [FGKO17].

6.3.2 DHO Scheme Based on ElGamal

We briefly recall the ElGamal based ACE scheme for a single identity. The
sanitizer parameters of the scheme contain the description of a finite cyclic
group G = ⟨g⟩ and its group order q, and additionally an element h = gx

for a uniform random x ∈ Zq. The encryption key for A is a random value
ek ∈ Zq, and the decryption key is −x. The algorithm Enc on input an
encryption key ek i and a message m ∈M, samples r1, r2 ∈ Zq uniformly
at random and outputs the ciphertext

c = (c0, c1, c2, c3) := (gr1 , hr1geki , gr2 ,m · hr2).

We can define the function maulDHO as

maulDHO

(
(c0, c1, c2, c3), sp,m,m

′) := (c0, c1, c2,m′ ·m−1 · c3).
Since the group order q is part of sp, this function is efficiently computable.
For c3 = m · hr2 , we thus get a new fourth component c′3 = m′ · hr2 and
equation (6.1) is satisfied.

The malleability for more than one identity (and in particular in our
scenario described above) follows since the scheme for several identities is
composed of independent instances of the basic single-identity scheme.

6.3. CIPHERTEXT-REVEALING ATTACKS 113

6.3.3 FGKO Scheme Based on ElGamal
Description of the scheme. In that scheme, the sanitizer parameters
consist of the description of a finite cyclic group G = ⟨g⟩ including the
group order q and a generator g, a verification key vkSig of a signature
scheme Sig, and a common-reference string crsNIZK of a NIZK proof system
NIZK for the language L := {x | ∃w (x,w) ∈ R}, where R is defined as
follows: for x =

(
vkSig, c0, c1, c2, c3

)
and a witness w =

(
gx, σSig,m, r, s

)
,

R(x,w) = 1 if and only if

Sig.Ver
(
vkSig, gx, σSig

)
= 1 ∧ (c0, c1, c2, c3) =

(
gr, gx·r, gs,m · gx·s

)
.

The encryption and decryption keys are given by ek := (gx, σSig),
dk := x for a uniformly chosen x � Zq, where σSig is a signature on gx.
To encrypt a message m, first choose r � Z∗q and s � Zq uniformly at
random and compute (c0, c1, c2, c3) := (gr, gx·r, gs,m · gx·s). Then run
πNIZK ← NIZK.Prove

(
crsNIZK, (vkSig, c0, c1, c2, c3), (g

x, σSig,m, r, s)
)

and
output the ciphertext c := (c0, c1, c2, c3, π).

Potential malleability. We define the function maulFGKO as

maulFGKO
(
(c0, c1, c2, c3, π), sp,m,m

′) := (c0, c1, c2,m′ ·m−1 · c3, π).
This function satisfies equation (6.1) if, for example, the non-interactive
zero-knowledge proof is independent of the last component c3. We show
that such a NIZK proof system exists without violating the properties
assumed by Fuchsbauer et al. [FGKO17]. To this end, let NIZK′ be
a NIZK proof system for the language L′ := {x | ∃w (x,w) ∈ R′},
where the relation R′ is defined as follows: for x =

(
vkSig, c0, c1, c2

)
and

w =
(
gx, σSig, r, s

)
, (x,w) ∈ R′ if and only if

Sig.Ver
(
vkSig, gx, σSig

)
= 1 ∧ (c0, c1, c2) =

(
gr, gx·r, gs

)
.

Given NIZK′, we construct a NIZK proof system NIZK for the original
language L as follows:

NIZK.Gen(1κ) := NIZK′.Gen(1κ),

NIZK.Prove
(
crsNIZK, (vkSig, c0, c1, c2, c3), (g

x, σSig,m, r, s)
)
:=

NIZK′.Prove
(
crsNIZK, (vkSig, c0, c1, c2), (g

x, σSig, r, s)
)
,

114 CHAPTER 6. ACCESS CONTROL ENCRYPTION

and

NIZK.Ver
(
crsNIZK, (vkSig, c0, c1, c2, c3), π

NIZK
)
:=

NIZK′.Ver
(
crsNIZK, (vkSig, c0, c1, c2), π

NIZK
)
.

Correctness and zero-knowledge of NIZK follow straightforwardly
from the underlying scheme NIZK′. For knowledge-extraction, assume
that NIZK′ is capable of extracting a valid witness (gx, σSig, r, s) given
a valid proof for the statement (vkSig, c0, c1, c2). Given a statement(
vkSig, c0, c1, c2, c3

)
in the original language L, we can obtain a valid

message encoded in c3 by computing m := c3 · (gx·s)−1, and thus also a
witness

(
gx, σSig,m, r, s

)
for the given statement. Finally, for soundness,

note that if (vkSig, c0, c1, c2) ∈ L′, this implies that any group element
c3 ∈ G is a valid last component, i.e., (vkSig, c0, c1, c2, c3) ∈ L for any
c3 ∈ G, since there exists the message m := c3 · (gx·s)−1, and thus a valid
witness w = (gx, σSig,m, r, s).

For the constructed scheme NIZK and the function maulFGKO, equa-
tion (6.1) clearly holds. Hence, the FGKO scheme can be instantiated
such that the malleability attack works. It could potentially be excluded
by requiring stronger properties from the NIZK scheme.

6.4 A Stronger Notion of ACE
In this section, we introduce our new security definitions, which exclude
the issues we have discovered.

6.4.1 ACE with Modification Detection
To be resilient against the ciphertext-revealing attacks described in Sec-
tion 6.3, the sanitizer should ideally only sanitize fresh encryptions and
block ciphertexts that are either replays or obtained by modifying pre-
vious ciphertexts. Therefore, we introduce an additional algorithm for
detecting modified ciphertexts. If the sanitizer receives a ciphertext that is
detected to be a modification of a previously received one, this ciphertext
is blocked. Since such ciphertexts will not be stored in the repository
and consequently not be decrypted, we define chosen-ciphertext security
with respect to a decryption oracle that does not return a decryption if

6.4. A STRONGER NOTION OF ACE 115

the received ciphertext is detected to be a modification of the challenge
ciphertext. Our definitions can therefore be seen as a variant of publicly-
detectable replayable-CCA security, which was introduced by Canetti et
al. [CKN03] for public key encryption. Before defining the security, we
define the syntax of ACE schemes with this additional algorithm.

Definition 6.4.1. An access control encryption with modification detec-
tion scheme is an ACE scheme E together with a PPT algorithm DMod
that on input sanitizer parameters sp and two ciphertexts c, c̃ ∈ C, outputs
a bit b (where b = 1 means that c̃ was obtained via modifying c).

Except for Section 6.4.3, where we show that our new definitions
imply the existing ones, we will from now on only consider ACE schemes
with modification detection and thus often refer to them simply as ACE
schemes.

The algorithm DMod should output 1 if c̃ is an adversarial modification
of c, and 0 otherwise. We have the following intuitive requirements on
DMod:

1. All ciphertexts c̃ an adversary can produce given the ciphertexts
c1, . . . , cl and no encryption key, are either invalid (i.e., sanitize
to ⊥) or we have DMod(sp, ci, c̃) = 1 for some i ∈ {1, . . . , n}.

2. Given encryption and decryption keys, an adversary is unable to
produce a ciphertext c such that a ciphertext produced by Enc for
a message of the adversary’s choice is detected to be a modification
of c. In particular, independent encryptions of messages collide only
with negligible probability.

The first requirement is captured by role-respecting security as defined
in Definition 6.4.5, the second one by non-detection of fresh encryptions
defined in Definition 6.4.4.

Remark. Canetti et al. (translated to our setting) also require that if
DMod(sp, c, c̃) = 1, then c and c̃ decrypt to the same message [CKN03].
For our purpose, this is not needed. This means that we do not want to
detect replays in the sense that the same message is replayed, but more
generally, whether the given ciphertext was obtain via some modification
of another ciphertext.

116 CHAPTER 6. ACCESS CONTROL ENCRYPTION

6.4.2 New Security Definitions

We formalize chosen-ciphertext attacks by giving the adversary access to
an oracle OSD that first sanitizes a given ciphertext and then decrypts
the result. One could also consider chosen-sanitized-ciphertext attacks by
providing the adversary access to an oracle OD that only decrypts. This
is potentially stronger since the adversary can emulate the oracle OSD by
first sanitizing the ciphertexts and then giving the result to OD, but given
OSD, it is not necessarily possible to emulate OD. Since in the application,
users can only send ciphertexts to the sanitizer but not directly write
ciphertexts to the repository such that they are decrypted without being
sanitized, the weaker notion is sufficient.

In principle, the adversary has in all definitions access to OSD, as well
as to an encryption oracle and a key-generation oracle. To simplify the
definitions, we omit the encryption or decryption oracles if the winning
condition places no restriction on the encryption or decryption keys
obtained from the key-generation oracle, respectively.

Privacy and anonymity. We now define (payload) privacy and sender-
anonymity. The former guarantees that encryptions of different messages
under the same encryption key cannot be distinguished as long as the
adversary has no decryption key that allows to decrypt. We also require
this for messages of different length, i.e., schemes satisfying our definition
do not leak the length of the encrypted message, which means that the
message space has to be bounded. Anonymity guarantees that encryptions
of the same message under different keys cannot be distinguished. We
distinguish a weak and a strong variant of anonymity, where the weak one
provides no guarantees if the adversary can decrypt the ciphertext, and
the strong one guarantees that even if the adversary has decryption keys,
nothing is leaked about the sender role beyond which of the adversary’s
decryption keys can be used to decrypt.

Definition 6.4.2. Let E = (Setup,Gen,Enc,San,Dec,DMod), be an ACE
with modification detection scheme and let A = (A1,A2) be a pair of
probabilistic algorithms. Consider the experiment ExpACE-PRV-ANON-CCA

E,A
in Figure 6.2 and let J be the set of all j such that A1 or A2 issued the
query (j, rec) to the oracle OG. We define the privacy under chosen-
ciphertext attacks advantage and the sender-anonymity under chosen-

6.4. A STRONGER NOTION OF ACE 117

Exper. ExpACE-PRV-ANON-CCA
E,A

Input: (1κ, P), κ ∈ N,
P : [n]× [n]→ {0, 1}

(sp,msk)← Setup(1κ, P)
(m0,m1, i0, i1, st)

← AOG(·,·),OSD(·,·)
1 (sp)

b � {0, 1}
ekib

← Gen(msk , ib, sen)

c∗ ← Enc(ekib
,mb)

b′ ← AOG(·,·),OSD∗ (·,·)
2 (st, c∗)

Experiment ExpACE-SAN-CCA
E,A

Input: (1κ, P), κ ∈ N,
P : [n]× [n]→ {0, 1}

(sp,msk)← Setup(1κ, P)

(c0, c1, st)← A
OG(·,·),OSD(·,·)
1 (sp)

c′0 ← San(sp, c0); c′1 ← San(sp, c1)
b � {0, 1}
b′ ← AOG(·,·),OSD(·,·)

2 (st, c′b)
for j ∈ [n] do

m0,j ← Dec
(
Gen(msk , j, rec), c′0

)
m1,j ← Dec

(
Gen(msk , j, rec), c′1

)

Exper. ExpACE-NDTCT-FENC
E,A

Input: (1κ, P), κ ∈ N,
P : [n]× [n]→ {0, 1}

(sp,msk)← Setup(1κ, P)

(m, i, c)← AOG(·,·)(sp)
eki ← Gen(msk , i, sen)
c∗ ← Enc(eki,m)
b← DMod(sp, c, c∗)

Experiment ExpACE-URR
E,A

Input: (1κ, P), κ ∈ N,
P : [n]× [n]→ {0, 1}

(sp,msk)← Setup(1κ, P)

c← AOG(·,·),OE(·,·)(sp)
dct← false
for c̃ ∈ {answers from OE} do

dct← dct ∨ DMod(sp, c̃, c) = 1
c′ ← San(sp, c)
for j ∈ [n] do

mj ← Dec
(
Gen(msk , j, rec), c′

)

Definitions of oracles

OG(i, t) := Gen(msk , i, t)

OE(i,m) := Enc
(
Gen(msk , i, sen),m

)
OSD(j, c) := Dec

(
Gen(msk , j, rec), San(sp, c)

)
OSD∗ (j, c) :=

{
Dec

(
Gen(msk , j, rec), San(sp, c)

)
, DMod(sp, c∗, c) = 0

test, else

Figure 6.2: Security experiments for an ACE with modification detection
scheme E and an adversary A, where A = (A1,A2) in the first two
experiments.

118 CHAPTER 6. ACCESS CONTROL ENCRYPTION

ciphertext attacks advantages of A as

AdvACE-PRV-CCA
E,A := 2 · Pr

[
b′ = b ∧ i0 = i1 ∧ ∀j ∈ J P (i0, j) = 0

]
− 1,

AdvACE-wANON-CCA
E,A := 2 · Pr

[
b′ = b ∧ m0 = m1

∧ ∀j ∈ J P (i0, j) = P (i1, j) = 0
]
− 1,

AdvACE-sANON-CCA
E,A := 2 · Pr

[
b′ = b ∧ m0 = m1

∧ ∀j ∈ J P (i0, j) = P (i1, j)
]
− 1,

respectively, where all probabilities are over the randomness in the exper-
iment ExpACE-PRV-ANON-CCA

E,A . We call the scheme E private under chosen-
ciphertext attacks (PRV-CCA secure), weakly sender-anonymous under
chosen-ciphertext attacks (wANON-CCA secure), and strongly sender-
anonymous under chosen-ciphertext attacks (sANON-CCA secure) if
AdvACE-PRV-CCA

E,A , AdvACE-wANON-CCA
E,A , and AdvACE-sANON-CCA

E,A are negligible
for all efficient A, respectively.

Remark. Weak anonymity corresponds to the anonymity notion considered
by Fuchsbauer et al. [FGKO17] and strong anonymity to the one considered
by Damgård et al. [DHO16]. We state both definitions because weak
anonymity is easier to achieve but strong anonymity might be required
by some applications. If anonymity is only required against the sanitizer
or if all messages are anyway signed by the sender, weak anonymity is
sufficient. Strong anonymity is required in settings where senders also
want to retain as much anonymity as possible against legitimate receivers.

Sanitization security. We next define sanitization security, which
excludes that dishonest parties can communicate via the ciphertexts. We
formalize this by requiring that the output of the sanitizer for two different
ciphertexts cannot be distinguished, as long as both sanitized ciphertexts
are not ⊥ and the adversary has no decryption key that decrypts one
of the ciphertexts. This provides no security guarantees if the adversary
can decrypt the ciphertexts, which does not seem to be an issue since in
this case, the parties can anyway directly communicate via the messages.
However, we additionally consider a stronger variant, where the adversary
is allowed to possess a decryption key that decrypts the ciphertexts, as
long as they both decrypt to the same message. This stronger variant
excludes subliminal channels, i.e., even if the involved parties are allowed

6.4. A STRONGER NOTION OF ACE 119

to communicated by the policy, they cannot exchange information via
ciphertexts beyond the encrypted message.

Since the adversary provides the two ciphertexts that are sanitized, we
do not know to which roles they correspond; they could even be particularly
crafted without belonging to an existing role. Hence, we cannot state the
requirement (in the weak variant) that the adversary should not be able
to decrypt by only considering the policy and the obtained decryption
keys, as in the no-write rule in Definition 6.2.4. Instead, we require that
the decryption algorithm returns ⊥ for all decryption keys the adversary
possesses. For this to provide the intended security, the decrypt algorithm
should return ⊥ whenever the receiver role corresponding to the used key
is not supposed to read the message. This is guaranteed by role-respecting
security, which is defined later.

Definition 6.4.3. Let E = (Setup,Gen,Enc,San,Dec,DMod) be an ACE
with modification detection scheme and let A = (A1,A2) be a pair
of probabilistic algorithms. Consider the experiment ExpACE-SAN-CCA

E,A in
Figure 6.2 and let J be the set of all j such that A1 or A2 issued
the query (j, rec) to the oracle OG. We define the sanitization under
chosen-ciphertext attacks advantage and the strong sanitization under
chosen-ciphertext attacks advantage of A as

AdvACE-SAN-CCA
E,A := 2 · Pr

[
b′ = b ∧ c′0 ̸= ⊥ ≠ c′1

∧ ∀j ∈ J m0,j = m1,j = ⊥
]
− 1,

and

AdvACE-sSAN-CCA
E,A := 2 · Pr

[
b′ = b ∧ c′0 ̸= ⊥ ≠ c′1

∧ ∀j ∈ J m0,j = m1,j

]
− 1,

respectively, where both probabilities are over the randomness in the
experiment ExpACE-SAN-CCA

E,A . The scheme E is called sanitization under
chosen-ciphertext attacks secure (SAN-CCA secure) and strongly sani-
tization under chosen-ciphertext attacks secure (sSAN-CCA secure) if
AdvACE-SAN-CCA

E,A and AdvACE-sSAN-CCA
E,A are negligible for all efficient A, re-

spectively.

Non-detection of fresh encryptions. In the intended way of using a
scheme satisfying our notions, the sanitizer only adds sanitized ciphertexts

120 CHAPTER 6. ACCESS CONTROL ENCRYPTION

to the repository if the given ciphertext is not detected to be a modification
of a previously received ciphertext. This means that if an adversary can
find a ciphertext c such that another ciphertext c∗ that is later honestly
generated is detected as a modification of c, the delivery of the message
at that later point can be prevented by sending the ciphertext c to the
sanitizer earlier. We exclude this by the following definition, which can
be seen as an extended correctness requirement.

Definition 6.4.4. Let E = (Setup,Gen,Enc,San,Dec,DMod) be an ACE
with modification detection scheme and let A be a probabilistic algorithm.
Consider the experiment ExpACE-NDTCT-FENC

E,A in Figure 6.2. We define the
non-detection of fresh encryptions advantage of A as

AdvACE-NDTCT-FENC
E,A := Pr

[
b = 1

]
,

where the probability is over the randomness in ExpACE-NDTCT-FENC
E,A . The

scheme E is said to have non-detecting fresh encryptions (NDTCT-FENC)
if AdvACE-NDTCT-FENC

E,A is negligible for all efficient A.

Role-respecting and uniform-decryption security. We finally de-
fine role-respecting and uniform-decryption security. The former means
that an adversary cannot produce a ciphertext for which the pattern
of roles that can decrypt does not correspond to a role for which the
adversary has an encryption key. For example, if the adversary has only
an encryption key for the role i such that roles j0 and j1 are the only
roles j with P (i, j) = 1, all ciphertexts produced by the adversary are
either invalid (i.e., sanitized to ⊥ or detected as a modification) or decrypt
to a message different from ⊥ precisely under the decryption keys for j0
and j1. On the one hand, this means that receivers who are not allowed
to receive the message get ⊥ and hence know that the message is not for
them.2 On the other hand, it also guarantees that the adversary cannot
prevent receivers with role j1 from receiving a message that is sent to
receivers with role j0. Furthermore, uniform decryption guarantees for

2Detectability (Definition 6.2.2) provides this guarantee for honest encryptions, role-
respecting security extends this to maliciously generated ciphertexts. Note, however,
that detectability is not implied by role-respecting security: If an adversary has
encryption keys for two roles i and i′, role-respecting security does not exclude that
encrypting some message (depending on i′) with the key for role i can be decrypted
with keys for roles that are allowed to receive from i′.

6.4. A STRONGER NOTION OF ACE 121

all ciphertexts c output by an adversary that if c decrypts to a message
different from ⊥ for different decryption keys, it always decrypts to the
same message. In the example above, this means that j0 and j1 not only
both receive some message, but they both receive the same one.

Definition 6.4.5. Let E = (Setup,Gen,Enc,San,Dec,DMod) be an ACE
with modification detection scheme and let A be a probabilistic algorithm.
Consider the experiment ExpACE-URR

E,A in Figure 6.2 and let I and J be the
sets of all i and j such that A issued the query (i, sen) and (j, rec) to
the oracle OG, respectively. We define the role-respecting advantage and
the uniform-decryption advantage of A as

AdvACE-RR
E,A := Pr

[
c′ ̸= ⊥ ∧ dct = false

∧ ¬
(
∃i ∈ I ∀j ∈ J (mj ̸= ⊥ ↔ P (i, j) = 1)

)]
,

AdvACE-UDEC
E,A := Pr

[
∃j, j′ ∈ J mj ̸= ⊥ ≠ mj′ ∧ mj ̸= mj′

]
,

respectively, where both probabilities are over the randomness in the
epxeriment ExpACE-URR

E,A . The scheme E is role-respecting (RR secure)
and uniform-decryption (UDEC) secure if AdvACE-RR

E,A and AdvACE-UDEC
E,A are

negligible for all efficient A, respectively.

Remark. Note that in Definition 6.4.5, we only check the decryptions for
receiver roles for which A has requested the corresponding decryption
key. This means that an adversary in addition to producing a ciphertext
that causes an inconsistency, also has to find a receiver role for which
this inconsistency manifests. If the total number of roles n is small (say
polynomial in the security parameter), A can simply query OG on all
receiver keys, but for large n this condition is nontrivial. For example,
we consider a scheme secure if an adversary can efficiently produce a
ciphertext such that there is a receiver role that can decrypt it even
though the policy does not allow it, as long as this receiver role is hard
to find. The rationale is that in this case, the inconsistency cannot be
exploited and will only be observed with negligible probability in an
execution of the protocol.

6.4.3 Relation to the Original Security Notions
In this section, we discuss how our notions relate to the original security
definitions (see Section 6.2.2). First note that we assume the scheme has

122 CHAPTER 6. ACCESS CONTROL ENCRYPTION

an additional algorithm DMod. As explained in Section 6.4.1, the intended
usage of such a scheme is that the sanitizer discards ciphertexts that are
detected to be a modification of a previous ciphertext. This means that
if dishonest parties want to communicate even though disallowed by the
policy (i.e., they want to break the no-write rule), the sender must produce
a ciphertext that is not detected as a modification of a previous ciphertext.
With this in mind, it is natural to adjust the no-write rule such that
an adversary only wins if the ciphertext he outputs is not detected to
be a modification of a ciphertext generated by the oracle OES (before
sanitizing it).

Definition 6.4.6. Let Let E = (Setup,Gen,Enc,San,Dec,DMod) be an
ACE with modification detection scheme and let A = (A1,A2) be a pair
of probabilistic algorithms. The experiment ExpACE-MD-no-write

E,A is identical
to ExpACE-no-write

E,A in Figure 6.1 except that after A1 returns (c0, i
′, st), it

is checked whether the oracle OES has generated some c̃ and returned
its sanitization such that DMod(sp, c̃, c0) = 1. If this is the case, set
dct ← true, else dct ← false. Let I1 be the set of all i such that A1

issued the query (i, sen) to OG, and let J be the set of all j such that
A1 or A2 issued the query (j, rec) to OG. We define the no-write with
modification detection advantage of A as

AdvACE-MD-no-write
E,A := 2 · Pr

[
b′ = b ∧ dct = false ∧ i′ ∈ I1

∧ ∀i ∈ I1 ∀j ∈ J P (i, j) = 0 ∧ San(sp, c0) ̸= ⊥
]
− 1,

where the probability is over the randomness in ExpACE-MD-no-write
E,A . We

say the scheme E satisfies the no-write with modification detection rule if
AdvACE-MD-no-write

E,A is negligible for all efficient A.

We show that our new security definitions from Section 6.4.2 imply
the no-read rule and the no-write with modification detection rule. We
have to assume that the policy P allows for all i that one can efficiently
find some j with P (i, j) = 1. This seems to be the case for all practically
relevant policies, though. The results are summarized in the following
theorem.

Theorem 6.4.7. Let E = (Setup,Gen,Enc,San,Dec,DMod) be an ACE
with modification detection scheme and let E ′ = (Setup,Gen,Enc,San,Dec)

6.4. A STRONGER NOTION OF ACE 123

be the corresponding ACE scheme. If E is correct and PRV-CCA, sANON-
CCA, SAN-CCA, and RR secure, then it satisfies the the no-write with
modification detection rule for policies P such that for all i, one can
efficiently find some j with P (i, j) = 1, and E ′ satisfies the no-read rule.
More precisely, for all adversaries A, A′, and A′′, there exist adversaries
APRV and AwANON (both roughly as efficient as emulating an execution
of ExpACE-no-readE′,A), an adversary A′sANON (roughly as efficient as emulating
an execution of ExpACE-no-readE′,A′), and adversaries A′′SAN, A′′RR, and A′′CORR

(all roughly as efficient as emulating an execution of ExpACE-MD-no-write
E,A′′)

such that

AdvACE-no-read,privE′,A ≤ AdvACE-PRV-CCA
E,APRV

+ AdvACE-wANON-CCA
E,AwANON

,

AdvACE-no-read,anonE′,A′ = AdvACE-sANON-CCA
E,A′

sANON
,

AdvACE-MD-no-write
E,A′′ ≤ AdvACE-SAN-CCA

E,A′′
SAN

+ 4 · AdvACE-RRE,A′′
RR

+ 2 · AdvACE-CORR
E,A′′

CORR
.

We first sketch the proof idea, a detailed proof can be found below.
To prove the claim about the payload-privacy no-read rule, consider
the hybrid experiment H that is identical to ExpACE-no-read

E′,A except that
after A1 returns (m0,m1, i0, i1, st), i1 is replaced by i0. If A wins the
no-read privacy game, P (i0, j) = P (i1, j) = 0 for all j for which A
obtained a decryption key. Hence, in this case ExpACE-no-read

E′,A and H are
indistinguishable by weak sender-anonymity. If A wins in H, one can
construct an adversary against PRV-CCA security by runningA, returning
(m0,m1, i0, i0, st) when A1 returns (m0,m1, i0, i1, st), and returning the
same guess as A2. Note that A has access to an encryption oracle OE
in ExpACE-no-read

E′,A , which is not available in ExpACE-PRV-ANON-CCA
E,A . However,

since the winning conditions do not restrict the encryption keys obtained
from OG, the oracle OE can be emulated by obtaining the encryption key
and then encrypting the message.

Relating the sender-anonymity no-read rule to sANON-CCA security
is a straightforward reduction.

To prove the claim about the no-write rule, assume A′′ wins the
corresponding game. If A′′ does not obtain a decryption key that decrypts
c0 or c1 to a message different from ⊥, this adversary can be used to
break SAN-CCA security as follows: when A′′1 returns (c0, i

′, st), output
c0 and the encryption of a uniformly chosen message for sender role i′
as c1; finally output the same guess b′ as A′′2 . Correctness ensures that

124 CHAPTER 6. ACCESS CONTROL ENCRYPTION

c1 does not sanitize to ⊥,3 so the winning condition of the SAN-CCA
game is satisfied. If A′′ does obtain a decryption key that decrypts c0 or
c1 to a message different from ⊥, one can construct an adversary against
role-respecting security.

We now formally prove the three claims in Theorem 6.4.7 as separate
lemmata, starting with the payload-privacy no-read rule.

Lemma 6.4.8. Let E = (Setup,Gen,Enc,San,Dec,DMod) be an ACE
with modification detection scheme and let E ′ = (Setup,Gen,Enc,San,Dec)
be the corresponding ACE scheme. Further let A = (A1,A2) be a pair of
probabilistic algorithms. Then, there exist adversaries APRV and AwANON

(both roughly as efficient as emulating an execution of ExpACE-no-readE,A) such
that

AdvACE-no-read,privE′,A ≤ AdvACE-PRV-CCA
E,APRV

+ AdvACE-wANON-CCA
E,AwANON

.

Proof. We assume without loss of generality that A ensures |m0| = |m1|
and P (i0, j) = P (i1, j) = 0 for all j ∈ J , where J is the set of all j such that
A1 or A2 issued the query (j, rec) to the oracle OG. Let H be identical
to AdvACE-no-read,priv

E′,A except that after A1 returns (m0,m1, i0, i1, st), i1
is replaced by i0. We first show that the probability that b is guessed
correctly in H and AdvACE-no-read,priv

E′,A differ only negligibly if the scheme
satisfies weak anonymity. Note that if b = 0, the two experiments are
identical, which implies

PrExp
ACE-no-read
E′,A

[
b′ = b | b = 0

]
= PrH

[
b′ = b | b = 0

]
. (6.2)

Claim 1. There exists an adversary AwANON such that

PrExp
ACE-no-read
E′,A

[
b′ = b | b = 1

]
− PrH

[
b′ = b | b = 1

]
= AdvACE-wANON-CCA

E,AwANON
.

Proof of claim. We construct AwANON as follows. On input sp, it emulates
an execution of ExpACE-no-read

E′,A , where the oracles for A are emulated as
follows.

OG(·, ·): Relay queries to the oracle OG of ExpACE-PRV-ANON-CCA
E,AwANON

.

3This is the only place where we need that one can efficiently find j with P (i′, j) = 1
since the adversary in the correctness game has to provide such a role j.

6.4. A STRONGER NOTION OF ACE 125

OE(·, ·): On query (j,m), query (j, sen) to the oracle OG to receive the
encryption key ek j . Then compute c← Enc(ek j ,m) and return c.

When A outputs (m0,m1, i0, i1, st), AwANON gives (m1,m1, i0, i1) to the
challenger to obtain a ciphertext c∗, which is given to A2. When A2

returns b′, AwANON returns the same bit b′. Note that if b = 0, AwANON

perfectly emulates H with b = 1, and if b = 1, AwANON perfectly emulates
ExpACE-no-read
E′,A with b = 1. Hence,

PrExp
ACE-no-read
E′,A

[
b′ = b | b = 1

]
− PrH

[
b′ = b | b = 1

]
= PrExp

ACE-PRV-ANON-CCA
E,AwANON

[
b′ = 1 | b = 1

]
− PrExp

ACE-PRV-ANON-CCA
E,AwANON

[
b′ = 1 | b = 0

]
= 2 ·

(
1

2
PrExp

ACE-PRV-ANON-CCA
E,AwANON

[
b′ = b | b = 1

]
− 1

2

(
1− PrExp

ACE-PRV-ANON-CCA
E,AwANON

[
b′ = b | b = 0

]))
= 2 · PrExp

ACE-PRV-ANON-CCA
E,AwANON

[
b′ = b

]
− 1.

Note that AwANON returns the same message m1 twice and we have
P (i0, j) = P (i1, j) = 0 for all j ∈ J by the assumption on A. This implies
AdvACE-wANON-CCA

E,AwANON
= 2 · PrExp

ACE-PRV-ANON-CCA
E,AwANON

[
b′ = b

]
− 1 and concludes the

proof of the claim. ♦

Combining Claim 1 and equation (6.2), we obtain

PrExp
ACE-no-read
E′,A

[
b′ = b

]
=

1

2
· PrExp

ACE-no-read
E′,A

[
b′ = b | b = 0

]
+
1

2
· PrExp

ACE-no-read
E′,A

[
b′ = b | b = 1

]
=

1

2
PrH

[
b′ = b | b = 0

]
+

1

2

(
AdvACE-wANON-CCA

E,AwANON
+ PrH

[
b′ = b | b = 1

])
= PrH

[
b′ = b

]
+

1

2
· AdvACE-wANON-CCA

E,AwANON
.

Hence,

AdvACE-no-read,priv
E′,A = 2 · PrH

[
b′ = b

]
− 1 + AdvACE-wANON-CCA

E,AwANON
. (6.3)

We now construct the adversary APRV. When invoked on input sp,
it starts an emulation of H by passing sp to A. The oracles for A are

126 CHAPTER 6. ACCESS CONTROL ENCRYPTION

emulated as in the proof of Claim 1. When A1 returns (m0,m1, i0, i1, st),
AwANON gives (m0,m1, i0, i0) to the challenger to obtain a ciphertext c∗,
which is then given to A2. When A2 returns b′, APRV returns the same
bit b′. Note that the view of A in this emulation is identical to its view
in H. Since APRV returns the same role i0 twice and P (i0, j) = 0 for all
j ∈ J by the assumption on A, we have

AdvACE-PRV-CCA
E,APRV

= 2 · PrExp
ACE-PRV-ANON-CCA
E,APRV

[
b′ = b

]
− 1 = 2 · PrH

[
b′ = b

]
− 1.

Using equation (6.3), we conclude

AdvACE-no-read,priv
E′,A = AdvACE-PRV-CCA

E,APRV
+ AdvACE-wANON-CCA

E,AwANON
.

We next show that the sender-anonymity no-read rule is implied by
strong sender anonymity.

Lemma 6.4.9. Let E = (Setup,Gen,Enc,San,Dec,DMod) be an ACE
with modification detection scheme and let E ′ = (Setup,Gen,Enc,San,Dec)
be the corresponding ACE scheme. Further let A = (A1,A2) be a pair of
probabilistic algorithms. Then, there exists an adversary AsANON (roughly
as efficient as emulating an execution of ExpACE-no-readE′,A′) such that

AdvACE-no-read,anonE′,A = AdvACE-sANON-CCA
E,AsANON

.

Proof. We construct AsANON as follows. On input sp, it emulates an exe-
cution of ExpACE-no-read

E′,A , where the oracles OG and OE for A are emulated
as in the proof of Lemma 6.4.8. When A1 returns (m0,m1, i0, i1, st),
AsANON gives (m0,m1, i0, i1) to the challenger to obtain the ciphertext c∗.
Then, A2 is invoked on input (st , c∗) and the oracles are emulated as
before. When A2 terminates with output b′, AsANON returns the same
bit b′. We observe that the view AsANON emulates toward A is identical
to the view of A in the experiment ExpACE-no-read

E′,A . Thus,

AdvACE-no-read,anon
E′,A = 2 · PrExp

ACE-no-read
E′,A

[
b′ = b ∧ m0 = m1

∧ ∀j ∈ J P (i0, j) = P (i1, j)
]
− 1

= 2 · PrExp
ACE-PRV-ANON-CCA
E,AsANON

[
b′ = b ∧ m0 = m1

∧ ∀j ∈ J P (i0, j) = P (i1, j)
]
− 1

= AdvACE-sANON-CCA
E,AsANON

.

6.4. A STRONGER NOTION OF ACE 127

To conclude the proof of Theorem 6.4.7, we prove the claim about the
no-write with modification detection rule.

Lemma 6.4.10. Let E = (Setup,Gen,Enc,San,Dec,DMod) be an ACE
with modification detection scheme and let A = (A1,A2) be a pair of prob-
abilistic algorithms. Then, there exist adversaries ASAN, ARR, and ACORR

(all roughly as efficient as emulating an execution of ExpACE-MD-no-write
E,A)

such that for policies P where for all i, one can efficiently find some j
with P (i, j) = 1,

AdvACE-MD-no-write
E,A ≤ AdvACE-SAN-CCA

E,ASAN
+ 4 · AdvACE-RRE,ARR

+ 2 · AdvACE-CORR
E,ACORR

.

Proof. We first construct the adversary ASAN. When invoked on input
sp, it gives sp to A1 and emulates ExpACE-MD-no-write

E,A . The oracles for A
are emulated as follows.

OG(·, ·): Relay queries to the oracle OG of ExpACE-SAN-CCA
E,ASAN

.

OES(·, ·): On query (j,m), ASAN queries (j, sen) to its oracle OG to
receive the encryption key ek j ,4 computes c′ ← San(sp,Enc(ek j ,m)),
and outputs c′ to A.

When A1 outputs (c0, i
′, st), ASAN chooses a uniformly random message

m � M, queries (i′, sen) to its oracle OG to receive the encryption
key ek i′ , and computes c1 ← Enc(ek i′ ,m). Then, ASAN gives (c0, c1) to
the challenger to obtain a sanitized ciphertext c′b. It then invokes A2

on input (st , c′b) and emulates the oracles as above. When A2 outputs
its guess b′, ASAN outputs the same bit b′ as its own guess. Note that
the view ASAN emulates toward A is identical to the view of A in the
experiment ExpACE-MD-no-write

E,A . Let WnoW and Wsan be the events that A
wins in the no-write with modification detection experiment and ASAN

wins the sanitization experiment, respectively, i.e.,

WnoW :=
[
b′ = b ∧ dct = false ∧ i′ ∈ I1

∧ ∀i ∈ I1 ∀j ∈ J P (i, j) = 0 ∧ San(sp, c0) ̸= ⊥
]
,

Wsan :=
[
b′ = b ∧ c′0 ̸= ⊥ ≠ c′1 ∧ ∀j ∈ J m0,j = m1,j = ⊥

]
.

4Looking ahead, we note that obtaining additional encryption keys is not problematic
in the sanitization game, since the winning condition does not restrict the obtained
encryption keys.

128 CHAPTER 6. ACCESS CONTROL ENCRYPTION

Further consider the events

C := [San(sp, c1) ̸= ⊥],
R := [∀j ∈ J Dec

(
Gen(msk , j, rec),San(sp, c0)

)
= Dec

(
Gen(msk , j, rec),San(sp, c1)

)
= ⊥].

We then have

PrExp
ACE-SAN-CCA
E,ASAN [Wsan] ≥ PrExp

ACE-MD-no-write
E,A [WnoW ∩ C ∩R]. (6.4)

We next show that the events ¬C and ¬R only occur with negligible
probability if the ACE scheme is correct and role-respecting, respectively.

Claim 1. There exists an adversary ACORR (roughly as efficient as emu-
lating an execution of ExpACE-MD-no-write

E,A) such that

PrExp
ACE-MD-no-write
E,A [¬C] ≤ AdvACE-CORR

E,ACORR
.

Proof of claim. On input sp, the adversary ACORR begins an emula-
tion of ExpACE-MD-no-write

E,A as ASAN above. When A1 outputs (c0, i
′, st),

ACORR chooses a uniformly random message m �M and finds j with
P (i′, j) = 1. It finally returns (m, i′, j). By definition of Dec, we have
Dec(Gen(msk , j, rec),⊥) = ⊥. Hence, if ¬C occurs, then encrypting m for
role i′ and sanitizing and decrypting the result yields ⊥ ≠ m. Therefore,
ACORR wins the correctness game in this case, which implies the claim. ♦

Claim 2. There exists an adversary ARR (roughly as efficient as emulating
an execution of ExpACE-MD-no-write

E,A) such that

PrExp
ACE-MD-no-write
E,A [WnoW ∩ C ∩ ¬R] ≤ 2 · AdvACE-RRE,ARR

.

Proof of claim. When invoked on input sp, ARR internally emulates an
execution of A on input sp and emulates the oracles as follows.

OG(·, ·): Relay queries to the oracle OG of ExpACE-URR
E,ARR

.

OES(·, ·): On query (j,m), query (j,m) to OE to receive the ciphertext c.
Then, compute c′ ← San(sp, c) and return c′.

6.4. A STRONGER NOTION OF ACE 129

When A1 outputs (c0, i
′, st), ARR chooses a uniformly random message

m�M, queries (i′, sen) to its oracle OG to receive the encryption key
ek i′ , and computes c1 ← Enc(ek i′ ,m). Then, ARR chooses c � {c0, c1}
uniformly at random and outputs c to the challenger. Let WnoW be the
event that ARR wins the role-respecting game, i.e.,

WRR :=
[
c′ ̸= ⊥ ∧ dct = false

∧ ¬
(
∃i ∈ I ∀j ∈ J (mj ̸= ⊥ ↔ P (i, j) = 1)

)]
.

Note that WnoW and C imply that c′ ̸= ⊥, dct = false, and ∀i ∈ I ∀j ∈
J P (i, j) = 0. Hence, if we additionally have ¬R, at least one of the two
possible choices for c yield mj ̸= ⊥ for some j ∈ J , and thus

PrExp
ACE-MD-no-write
E,A [WnoW∩C∩¬R] ≤ 2·PrExp

ACE-URR
E,ARR [WRR] = 2·AdvACE-RR

E,ARR
. ♦

Combining equation (6.4) and Claims 1 and 2, we obtain

PrExp
ACE-MD-no-write
E,A [WnoW]

≤ PrExp
ACE-MD-no-write
E,A [WnoW ∩ C ∩R]

+ PrExp
ACE-MD-no-write
E,A [WnoW ∩ C ∩ ¬R] + PrExp

ACE-MD-no-write
E,A [¬C]

≤ PrExp
ACE-SAN-CCA
E,ASAN [Wsan] + 2 · AdvACE-RR

E,ARR
+ AdvACE-CORR

E,ACORR
.

We can thus conclude

AdvACE-MD-no-write
E,A

= 2 · PrExp
ACE-MD-no-write
E,A [WnoW]− 1

≤ 2 · PrExp
ACE-SAN-CCA
E,ASAN [Wsan]− 1  

=AdvACE-SAN-CCA
E,ASAN

+ 4 · AdvACE-RR
E,ARR

+ 2 · AdvACE-CORR
E,ACORR

.

Relation to original no-write rule. Perhaps surprisingly, one can
also show that our new notions imply the original no-write rule if DMod
is symmetric in the sense that

Pr[DMod(sp, c0, c1) = 1] = Pr[DMod(sp, c1, c0) = 1],

which is the case for all schemes considered in this thesis. The proof
idea is to construct adversaries against correctness, and sanitization and

130 CHAPTER 6. ACCESS CONTROL ENCRYPTION

role-respecting security as above. Now, the role-respecting game is not
won if the adversary A returns a ciphertext c0 that is detected to be a
modification of a ciphertext generated by OES . We show that in this
case, we can break sSAN-CCA security. Note that OES only gives A
the sanitized ciphertexts. The proof idea is as follows. A1 makes several
queries to OES . For a uniformly chosen one, encrypt the message twice,
give the resulting ciphertexts c̃0, c̃1 to the sSAN-CCA challenger, and give
the obtained sanitized ciphertext c̃′b to A1. For all other queries, encrypt
and sanitize the message normally. When A1 returns a ciphertext c0,
check whether c0 is detected to be a modification of c̃0 or c̃1. Since the
ciphertext c̃1−b is information-theoretically hidden from A, it can be
considered to be a fresh encryption. By our assumption, the probability
that c0 is detected to be a modification of c̃1−b is equal to the probability
that c̃1−b is detected to be a modification of c0, which contradicts non-
detection of fresh encryptions. Hence, by checking which of the two
ciphertexts is detected, one can guess b and thus break sSAN-CCA security.
Note that A is allowed by the winning condition to obtain a decryption
key that decrypts c̃′b, which is why we need strong sanitization security.

Theorem 6.4.11. Let E = (Setup,Gen,Enc,San,Dec,DMod) be an ACE
with modification detection scheme such that Pr[DMod(sp, c0, c1) = 1] =
Pr[DMod(sp, c1, c0) = 1] for all sp returned by Setup and all cipher-
texts c0, c1 ∈ C. Further let E ′ = (Setup,Gen,Enc,San,Dec) be the corre-
sponding ACE scheme. If E is correct, detectable, has NDTCT-FENC,
and is sSAN-CCA and RR secure, then E ′ satisfies the no-write rule
for policies P such that for all i, one can efficiently find some j with
P (i, j) = 1. More precisely, for all adversaries A that make at most qES
queries to the oracle OES and at most qdk queries of the form (·, rec)
to OG, there exist adversaries ASAN, ARR, AsSAN, ANDTCT, ACORR, and
Adtct (all roughly as efficient as emulating an execution of ExpACE-no-writeE,A)
such that

AdvACE-no-writeE′,A ≤ AdvACE-SAN-CCA
E,ASAN

+4 ·AdvACE-RRE,ARR
+2qES ·AdvACE-sSAN-CCA

E,AsSAN

+ 4qES · AdvACE-NDTCT-FENC
E,ANDTCT

+ (8qESqdk + 2) · AdvACE-CORR
E,ACORR

+ 8qESqdk · AdvACE-DTCT
E,Adtct

.

Proof. Let A = (A1,A2) be an adversary and consider ExpACE-MD-no-write
E,A .

Let WnoW and WMD-noW be the events that A wins the no-write and

6.4. A STRONGER NOTION OF ACE 131

no-write with modification detection game, respectively. Note that we
have WMD-noW =WnoW ∩ [dct = false]. Hence,

AdvACE-no-write
E′,A = 2 · PrExp

ACE-MD-no-write
E,A [WnoW]− 1

= 2 ·
(
PrExp

ACE-MD-no-write
E,A [WMD-noW]

+ PrExp
ACE-MD-no-write
E,A

[
WnoW ∩ [dct = true]

])
− 1

≤ AdvACE-MD-no-write
E,A + 2 · PrExp

ACE-MD-no-write
E,A [dct = true].

Lemma 6.4.10 implies that there exist adversaries ASAN, ARR, and A′CORR

(all roughly as efficient as emulating an execution of ExpACE-MD-no-write
E,A)

such that

AdvACE-no-write
E′,A ≤ AdvACE-SAN-CCA

E,ASAN
+ 4 · AdvACE-RR

E,ARR
+ 2 · AdvACE-CORR

E,A′
CORR

+ 2 · PrExp
ACE-MD-no-write
E,A [dct = true].

(6.5)

To bound the probability of [dct = true], we construct the adver-
sary AsSAN. When invoked on input sp, it first chooses q0 � {1, . . . , qES}
uniformly at random, sets k ← 1 and internally emulates an execution of
A on input sp. Oracle queries by A are answered as follows:

OG(·, ·): Relay queries to the oracle OG of ExpACE-SAN-CCA
E,AsSAN

.

OES(·, ·): On query (i,m), if k ̸= q0, AsSAN queries (i, sen) to its oracle
OG to receive the encryption key ek i. It then computes c′ ←
San(sp,Enc(ek i,m)) and outputs c′ to A. Finally, it sets k ← k + 1.
If k = q0, then AsSAN queries (i, sen) to its oracle OG to receive the
encryption key ek i. It then creates two independent encryptions
of m by computing c̃0 ← Enc(ek i,m) and c̃1 ← Enc(ek i,m), sets
iq0 ← i, mq0 ← m, k ← k + 1, and gives c̃0, c̃1 to the challenger to
obtain c̃′b.

If A1 terminates before k = q0 is reached, AsSAN gives two fresh
encryptions of some fixed message mq0 for a fixed role iq0 to the challenger
and then returns a uniform bit b′ � {0, 1}. Otherwise, when A1 returns i′
and c0, AsSAN evaluates d0 ← DMod(sp, c̃0, c0) and d1 ← DMod(sp, c̃1, c0).
If d0 = d1, then AsSAN also returns a uniform bit; if db′ = 1 for exactly
one b′ ∈ {0, 1}, AsSAN returns b′.

132 CHAPTER 6. ACCESS CONTROL ENCRYPTION

Let Q be the event that d0 = 1 or d1 = 1 and let D be the event
that d1−b = 1. Note that if Q and ¬D occur, AsSAN returns the correct
bit b′ = b. Moreover, if Q does not occur, AsSAN returns a uniform bit.
Hence,

Pr[b′ = b] = Pr
[
[b′ = b] ∩Q ∩ ¬D

]
+ Pr

[
[b′ = b] ∩ ¬(Q ∩ ¬D)

]
≥ Pr[Q ∩ ¬D] + Pr

[
[b′ = b] ∩ ¬Q

]
= Pr[Q ∩ ¬D] + Pr[b′ = b | ¬Q] · Pr[¬Q]

= Pr[Q ∩ ¬D] + 1
2 · (1− Pr[Q]),

where all probabilities are in ExpACE-SAN-CCA
E,AsSAN

. This implies

Pr[Q] = Pr[Q ∩D] + Pr[Q ∩ ¬D] ≤ Pr[D] + Pr[b′ = b]− 1
2 + 1

2 Pr[Q]

and therefore

Pr[Q] ≤ 2 · Pr[D] + 2 · Pr[b′ = b]− 1.

Note that if [dct = true] occurs in ExpACE-MD-no-write
E,A , then Q occurs in

ExpACE-SAN-CCA
E,AsSAN

with probability at least 1/qES . We can therefore conclude
that

PrExp
ACE-MD-no-write
E,A [dct = true] ≤ qES · PrExp

ACE-SAN-CCA
E,AsSAN [Q]

≤ 2qES · PrExp
ACE-SAN-CCA
E,AsSAN [D]

+ qES

(
2 · PrExp

ACE-SAN-CCA
E,AsSAN [b′ = b]− 1

)
.

Let WsSAN be the event that AsSAN wins the strong sanitization game
and consider the events

C :=
[
c̃′0 ̸= ⊥ ≠ c̃′1 ∧ ∀j ∈ J (P (iq0 , j) = 1→ m0,j = m1,j = mq0)

]
,

R :=
[
∀j ∈ J (P (iq0 , j) = 0→ m0,j = m1,j = ⊥)

]
.

We then have that [b′ = b], C, and R together imply WsSAN. Thus,

PrExp
ACE-SAN-CCA
E,AsSAN [b′ = b]

= PrExp
ACE-SAN-CCA
E,AsSAN

[
[b′ = b] ∩ C ∩R

]
+ PrExp

ACE-SAN-CCA
E,AsSAN

[
[b′ = b] ∩ ¬(C ∩R)

]
≤ PrExp

ACE-SAN-CCA
E,AsSAN [WsSAN] + PrExp

ACE-SAN-CCA
E,AsSAN [¬C ∪ ¬R].

6.4. A STRONGER NOTION OF ACE 133

Together with the previous result, this yields

PrExp
ACE-MD-no-write
E,A [dct = true]

≤ 2qES · PrExp
ACE-SAN-CCA
E,AsSAN [D] + qES

[
2 · PrExp

ACE-SAN-CCA
E,AsSAN [WsSAN]− 1

+ 2 · PrExp
ACE-SAN-CCA
E,AsSAN [¬C ∪ ¬R]

]
= 2qES · PrExp

ACE-SAN-CCA
E,AsSAN [D] + qES · AdvACE-sSAN-CCA

E,AsSAN

+ 2qES · PrExp
ACE-SAN-CCA
E,AsSAN [¬C ∪ ¬R].

Now consider the adversary ANDTCT that emulates ExpACE-SAN-CCA
E,AsSAN

and outputs (mq0 , iq0 , c0). Note that the view of A1 in the emulation is
independent of c̃1−b. One can therefore assume that c̃1−b is generated
after A1 outputs c0, as c∗ in ExpACE-NDTCT-FENC

E,ANDTCT
. By assumption, we have

Pr[DMod(sp, c̃1−b, c0) = 1] = Pr[DMod(sp, c0, c̃1−b) = 1], and therefore

PrExp
ACE-SAN-CCA
E,AsSAN [D] = AdvACE-NDTCT-FENC

E,ANDTCT
.

Further consider A′′CORR that emulates ExpACE-SAN-CCA
E,AsSAN

and if there
exists j ∈ J with P (iq0 , j) = 1, it chooses j � J uniformly at random
and outputs (mq0 , iq0 , j). If such a j ∈ J does not exist, A′′CORR finds
j ∈ [n] with P (iq0 , j) = 1 and then outputs (mq0 , iq0 , j). Note that
m0,j = m1,j = mq0 implies c̃′0 ̸= ⊥ ̸= c̃′1 since ⊥ decrypts to ⊥. Hence,
if such a j ∈ J exists and ¬C occurs, A′′CORR wins the correctness game
with probability at least 1/(2|J |) ≥ 1/(2qdk); and if no such j ∈ J exists
and ¬C occurs, A′′CORR wins with probability at least 1/2. The factor 1/2

is due to the fact that the message is encrypted twice in ExpACE-SAN-CCA
E,AsSAN

but only once in the correctness experiment. Overall, we get

PrExp
ACE-SAN-CCA
E,AsSAN [¬C] ≤ 2qdk · AdvACE-CORR

E,A′′
CORR

.

Finally consider Adtct that emulates ExpACE-SAN-CCA
E,AsSAN

, chooses j � J
uniformly at random and outputs (mq0 , iq0 , j). If ¬R occurs, Adtct wins
the detectability game with probability at least 1/(2qdk). Hence,

PrExp
ACE-SAN-CCA
E,AsSAN [¬R] ≤ 2qdk · AdvACE-DTCT

E,Adtct
.

134 CHAPTER 6. ACCESS CONTROL ENCRYPTION

Combining our results, we obtain

PrExp
ACE-MD-no-write
E,A [dct = true] ≤ 2qES · AdvACE-NDTCT-FENC

E,ANDTCT

+ qES · AdvACE-sSAN-CCA
E,AsSAN

+ 4qESqdk ·
(
AdvACE-CORR

E,A′′
CORR

+ AdvACE-DTCT
E,Adtct

)
.

Together with equation (6.5), this yields

AdvACE-no-write
E′,A ≤ AdvACE-SAN-CCA

E,ASAN
+ 4 · AdvACE-RR

E,ARR
+ 2 · AdvACE-CORR

E,A′
CORR

+ 4qES · AdvACE-NDTCT-FENC
E,ANDTCT

+ 2qES · AdvACE-sSAN-CCA
E,AsSAN

+ 8qESqdk · AdvACE-CORR
E,A′′

CORR
+ 8qESqdk · AdvACE-DTCT

E,Adtct
.

For the adversary ACORR that runs A′CORR with probability 2
8qESqdk+2 and

A′′CORR with probability 8qESqdk
8qESqdk+2 , we have (8qESqdk+2) ·AdvACE-CORR

E,ACORR
=

2 · AdvACE-CORR
E,A′

CORR
+ 8qESqdk · AdvACE-CORR

E,A′′
CORR

and the claim of the theorem
follows.

6.5 Enhanced Sanitizable PKE

6.5.1 Definitions
As a stepping stone toward ACE schemes satisfying our new security defini-
tions, we introduce enhanced sanitizable public-key encryption. Sanitizable
public-key encryption has been considered by Damgård et al. [DHO16]
and Fuchsbauer et al. [FGKO17] as a relaxation of universal re-encryption
[GJJS04] and rerandomizable encryption [Gro04; PR07]. It allows to
sanitize a ciphertext to obtain a sanitized ciphertext that cannot be linked
to the original ciphertext except that it decrypts to the correct message.
In contrast to rerandomizable encryption, sanitized ciphertexts can have
a different syntax than ciphertexts, i.e., it is not required that a sanitized
ciphertext is indistinguishable from a fresh encryption. We introduce an
enhanced variant with a different syntax and stronger security guarantees.

Definition 6.5.1. An enhanced sanitizable public-key encryption (sPKE)
scheme consists of the following five PPT algorithms:

Setup: The algorithm Setup on input a security parameter 1κ, outputs
sanitizer parameters sp, and a master secret key msk . We implicitly

6.5. ENHANCED SANITIZABLE PKE 135

assume that all parameters and keys include the finite message
space M and the ciphertext spaces C, C′.

Key generation: The algorithm Gen on input a master secret key msk ,
outputs an encryption key ek and a decryption key dk .

Encryption: The algorithm Enc on input an encryption key ek and a
message m ∈M, outputs a ciphertext c ∈ C.

Sanitization: The algorithm San on input sanitizer parameters sp and
a ciphertext c ∈ C, outputs a sanitized ciphertext c′ ∈ C′ ∪ {⊥}.

Decryption: The algorithm Dec on input a decryption key dk and a
sanitized ciphertext c′ ∈ C′, outputs a message m ∈ M∪ {⊥}; on
input dk and ⊥, it outputs ⊥.

For correctness, we require for all (sp,msk) in the range of Setup, all
(ek , dk) in the range of Gen(msk), and all m ∈M that

Dec
(
dk ,San

(
sp,Enc(ek ,m)

))
= m

with probability 1.

We require robustness in the sense that no ciphertext decrypts to a
message different from ⊥ for two different decryption keys (except with
negligible probability). This is similar to detectability for ACE schemes,
but we allow the adversary to directly output a ciphertext, instead of a
message, which is then honestly encrypted. Our notion therefore closely
resembles unrestricted strong robustness (USROB), introduced by Farshim
et al. [FLPQ13] for public-key encryption, which also allows the adversary
to choose a ciphertext and, in contrast to strong robustness by Abdalla
et al. [ABN10], gives the adversary access to decryption keys.

Definition 6.5.2. For an sPKE scheme E = (Setup,Gen,Enc,San,Dec)
and a probabilistic algorithm A, we define the experiment ExpsPKE-USROB

E,A
that executes (sp,msk)← Setup(1κ) and (c, i0, i1)← AOG(·)(sp), where
the oracle OG on input getNew, outputs a fresh key pair (ek , dk) ←
Gen(msk). Let q be the number of oracle queries and let for i ∈ {1, . . . , q},
(ek i, dk i) be the i-th answer from OG. We define the (unrestricted strong)

136 CHAPTER 6. ACCESS CONTROL ENCRYPTION

Experiment ExpsPKE-IND-CCA
E,A

Input: 1κ, κ ∈ N
(sp,msk)← Setup(1κ)
(ek , dk)← Gen(msk)

(m0,m1, st)← A
OG(·),OSD(·)
1 (sp, ek)

b � {0, 1}
c∗ ← Enc(ek ,mb)

b′ ← AOG(·),OSD(·)
2 (st, c∗)

Exper. ExpsPKE-UPD-CTXT
E,A

Input: 1κ, κ ∈ N
(sp,msk)← Setup(1κ)
(ek , dk)← Gen(msk)

(m, c)← AOG(·)(sp, ek , dk)
c∗ ← Enc(ek ,m)

Figure 6.3: Security experiments ExpsPKE-IND-CCA
E,A and ExpsPKE-UPD-CTXT

E,A
for an sPKE scheme E and an adversary A, where A = (A1,A2) in
the former experiment. The oracle OG on input getNew, outputs a
fresh key pair (ek , dk) ← Gen(msk), and the oracle OSD is defined as
OSD(c) = Dec(dk ,San(sp, c)).

robustness advantage of A as

AdvsPKE-USROB
E,A := Pr

[
1 ≤ i0, i1 ≤ q ∧ i0 ̸= i1

∧ Dec
(
dk i0 ,San(sp, c)

)
̸= ⊥ ≠ Dec

(
dk i1 ,San(sp, c)

)]
,

where the probability is over the randomness in ExpsPKE-USROB
E,A and the

random coins of San and Dec (both executed independently twice). We
say the scheme E is (unrestricted strongly) robust (USROB secure) if
AdvsPKE-USROB

E,A is negligible for all efficient A.

We next define IND-CCA security analogously to the definition for
ordinary public-key encryption. In contrast to the usual definition, we do
not require the adversary to output two messages of equal length, which
implies that schemes satisfying our definition do not leak the length of
the encrypted message.

Definition 6.5.3. For an sPKE scheme E = (Setup,Gen,Enc,San,Dec)
and a pair of probabilistic algorithms A = (A1,A2), consider the ex-
periment ExpsPKE-IND-CCA

E,A in Figure 6.3 and let CA2 be the set of all
ciphertexts that A2 queried to the oracle OSD. We define the ciphertext
indistinguishability under chosen-ciphertext attacks advantage of A as

AdvsPKE-IND-CCA
E,A := 2 · Pr

[
b′ = b ∧ c∗ /∈ CA2

]
− 1,

6.5. ENHANCED SANITIZABLE PKE 137

Experiment ExpsPKE-IK-CCA
E,A

Input: 1κ, κ ∈ N
(sp,msk)← Setup(1κ)
(ek0, dk0)← Gen(msk); (ek1, dk1)← Gen(msk)

(m, st)← A
OG(·),OSD0

(·),OSD1
(·)

1 (sp, ek0, ek1)
b � {0, 1}
c∗ ← Enc(ekb,m)

b′ ← A
OG(·),OSD0

(·),OSD1
(·)

2 (st, c∗)

Figure 6.4: The anonymity security experiment for an sPKE scheme E
and an adversary A = (A1,A2). The oracle OG on input getNew, outputs
a fresh key pair (ek , dk)← Gen(msk), and the oracle OSDj

is defined as
OSDj

(c) = Dec(dk j ,San(sp, c)).

where the probability is over the randomness in ExpsPKE-IND-CCA
E,A . The

scheme E has indistinguishable ciphertexts under chosen-ciphertext attacks
(is IND-CCA secure) if AdvsPKE-IND-CCA

E,A is negligible for all efficient A.

We also need that it is hard to predict a ciphertext generated by Enc
from a message of the adversary’s choice given encryption and decryption
keys. Note that this is not implied by IND-CCA security since the
adversary here obtains the decryption key.

Definition 6.5.4. For an sPKE scheme E = (Setup,Gen,Enc,San,Dec)
and probabilistic algorithm A, consider the experiment ExpsPKE-UPD-CTXT

E,A
in Figure 6.3. We define the ciphertext unpredictability advantage of A as

AdvsPKE-UPD-CTXT
E,A := Pr

[
c = c∗],

where the probability is over the randomness in ExpsPKE-UPD-CTXT
E,A . We

say the scheme E has unpredictable ciphertexts (is UPD-CTXT secure) if
AdvsPKE-UPD-CTXT

E,A is negligible for all efficient A.

We further define anonymity or indistinguishability of keys following
Bellare et al. [BBDP01].

Definition 6.5.5. For an sPKE scheme E = (Setup,Gen,Enc,San,Dec)
and a pair of probabilistic algorithms A = (A1,A2), consider the experi-
ment ExpsPKE-IK-CCA

E,A in Figure 6.4 and let CA2
be the set of all ciphertexts

138 CHAPTER 6. ACCESS CONTROL ENCRYPTION

Experiment ExpsPKE-SAN-CCA
E,A

Input: 1κ, κ ∈ N
(sp,msk)← Setup(1κ)
(ek0, dk0)← Gen(msk); (ek1, dk1)← Gen(msk)

(c0, c1, st)← A
OG(·),OSD0

(·),OSD1
(·)

1 (sp, ek0, ek1)
c′0 ← San(sp, c0); c′1 ← San(sp, c1)
m0,0 ← Dec(dk0, c

′
0); m0,1 ← Dec(dk1, c

′
0)

m1,0 ← Dec(dk0, c
′
1); m1,1 ← Dec(dk1, c

′
1)

b � {0, 1}

b′ ← A
OG(·),OSD0

(·),OSD1
(·)

2 (st, c′b)

Figure 6.5: Sanitization security experiment for an sPKE scheme E and
an adversary A = (A1,A2). The oracle OG on input getNew, outputs a
fresh key pair (ek , dk) ← Gen(msk), and the oracle OSDj

is defined as
OSDj

(c) = Dec(dk j ,San(sp, c)).

that A2 queried to the oracle OSD0 or OSD1 . We define the indistin-
guishability of keys under chosen-ciphertext attacks advantage of A as

AdvsPKE-IK-CCA
E,A := 2 · Pr

[
b′ = b ∧ c∗ /∈ CA2

]
− 1,

where the probability is over the randomness in ExpsPKE-IK-CCA
E,A . The

scheme E has indistinguishable keys under chosen-ciphertext attacks (is
IK-CCA secure) if AdvsPKE-IK-CCA

E,A is negligible for all efficient A.

Sanitization security formalizes that given certain public keys and a
sanitized ciphertext, it is hard to tell which of two adversarially chosen
ciphertexts was actually sanitized. To exclude trivial attacks, we require
that both ciphertexts are encryptions relative to the two challenge public
keys ek0 and ek1. Otherwise, the adversary could use the oracle OG
to obtain a fresh key-pair (ek , dk) and encrypt two different messages
under ek . It could then decrypt the challenge ciphertext using dk and
win the game.

Definition 6.5.6. For an sPKE scheme E = (Setup,Gen,Enc,San,Dec)
and a pair of probabilistic algorithms A = (A1,A2), consider the exper-
iment ExpsPKE-SAN-CCA

E,A in Figure 6.5. We define the sanitization under
chosen-ciphertext attacks advantage of A as

AdvsPKE-SAN-CCA
E,A := 2 · Pr

[
b′ = b ∧ ∃j, j′ ∈ {0, 1} m0,j ̸= ⊥ ≠ m1,j′

]
− 1,

6.5. ENHANCED SANITIZABLE PKE 139

where the probability is over the randomness in ExpsPKE-IK-CCA
E,A . The

scheme E is sanitization under chosen-ciphertext attacks (SAN-CCA)
secure if AdvsPKE-SAN-CCA

E,A is negligible for all efficient A.

We finally define the probability that two independent executions of
the key-generation algorithm produce the same encryption key. This
probability has to be small for all IND-CCA-secure schemes because an
attacker can otherwise obtain a new key pair from OG and if the obtained
encryption key matches the one with which the challenge ciphertext is
generated, the attacker can decrypt and win the IND-CCA game. We
anyway explicitly define this probability to simplify our reductions later.

Definition 6.5.7. For an sPKE scheme E = (Setup,Gen,Enc,San,Dec),
we define the encryption-key collision probability ColekE as the probability of
[ek0 = ek1] in the experiment that runs (sp,msk)← Setup(1κ) and then
(ek0, dk0) ← Gen(msk) and (ek1, dk1) ← Gen(msk) with independent
random coins.

6.5.2 Constructing an sPKE Scheme
We next construct an sPKE scheme satisfying our security definitions. Our
construction resembles the weakly sanitizable PKE scheme by Fuchsbauer
et al. [FGKO17]. We use a variant of ElGamal encryption and obtain
security against chosen-ciphertext attacks using the technique of Naor
and Yung [NY90], i.e., encrypting the message under two independent
keys and proving in zero-knowledge that the ciphertexts are encryptions
of the same message, which was shown to achieve full IND-CCA security
if the zero-knowledge proof is one-time simulation sound by Sahai [Sah99].

Let PKE be a (IND-CPA-secure) public-key encryption scheme, let
Sig be a (EUF-CMA-secure) signature scheme, and let NIZK be a (one-
time simulation sound) NIZK proof system for the language L := {x |
∃w (x,w) ∈ R}, where the relation R is defined as follows: for x =(
g, ekPKE, vkSig, c1, c2, cσ

)
and w = (m, ga, gb, r1, s1, r2, s2, σ, r), we have

(x,w) ∈ R if and only if

c1 = (gr1 , ga·r1 , gs1 , ga·s1 ·m) ∧ c2 = (gr2 , gb·r2 , gs2 , gb·s2 ·m)

∧ Sig.Ver
(
vkSig, (ga, gb), σ

)
= 1 ∧ cσ = PKE.Enc

(
ekPKE, (ga, gb, σ); r

)
.

We define an sPKE scheme as follows:

140 CHAPTER 6. ACCESS CONTROL ENCRYPTION

Setup: The setup algorithm sPKE.Setup first generates(
ekPKE, dkPKE

)
← PKE.Gen(1κ),(

vkSig, skSig
)
← Sig.Gen(1κ),

crs ← NIZK.Gen(1κ).

Let G = ⟨g⟩ be a cyclic group with prime order p generated by g,
with p ≥ 2κ, and let M⊆ G such that |M|/p ≤ 2−κ. The sanitizer
parameters spsPKE contain ekPKE, vkSig, crs , and a description of G,
including g and p. The master secret key msk sPKE consists of ekPKE,
vkSig, skSig, crs, and a description of G, including g and p.

Key generation: The algorithm sPKE.Gen on input msk sPKE, samples
two elements dk1, dk2 � Z∗p and computes ek1 ← gdk1 , ek2 ←
gdk2 , as well as σ ← Sig.Sign

(
skSig, (ek1, ek2)

)
. Finally, it out-

puts ek sPKE :=
(
g, p, crs, ekPKE, vkSig, ek1, ek2, σ

)
and dk sPKE :=

(dk1, dk2).

Encryption: On input an encryption key ek sPKE =
(
g, p, crs, ekPKE,

vkSig, ek1, ek2, σ
)

and a message m ∈ M, the algorithm sPKE.Enc
samples randomness r, chooses r1, s1, r2, s2 � Z∗p uniformly at
random, and computes

c1 ←
(
gr1 , ekr11 , g

s1 , eks11 ·m
)
,

c2 ←
(
gr2 , ekr22 , g

s2 , eks22 ·m
)
,

cσ ← PKE.Enc
(
ekPKE, (ek1, ek2, σ); r

)
.

It generates π ← NIZK.Prove
(
crs, x := (g, ekPKE, vkSig, c1, c2, cσ),

w := (m, ek1, ek2, r1, s1, r2, s2, σ, r)
)
, and finally outputs the cipher-

text c := (c1, c2, cσ, π).

Sanitization: On input sanitizer parameters spsPKE and a ciphertext c =
(c1, c2, cσ, π), the algorithm sPKE.San first verifies the NIZK proof
by evaluating NIZK.Ver

(
crs, x := (g, ekPKE, vkSig, c1, c2, cσ), π

)
. It

then parses (c1,1, c1,2, c1,3, c1,4) ← c1. If the verification succeeds
and c1,1 ̸= 1 ̸= c1,2, then it chooses a random t� Z∗p and outputs
the sanitized ciphertext

c′ :=
(
(c1,1)

t · c1,3, (c1,2)t · c1,4
)
.

6.5. ENHANCED SANITIZABLE PKE 141

If the verification fails or if c1,1 = 1 or c1,2 = 1, it outputs ⊥.

Decryption: On input a decryption key dk sPKE = (dk1, dk2) and a
sanitized ciphertext c′ = (c′1, c

′
2), the algorithm sPKE.Dec computes

the message m ← c′2 ·
(
(c′1)

dk1
)−1. It outputs m if m ∈ M, and

otherwise it outputs ⊥. On input dk sPKE and ⊥, it outputs ⊥.

We first prove correctness and other straightforward properties of the
scheme.

Proposition 6.5.8. If Sig is correct and NIZK has perfect complete-
ness, the scheme sPKE from above is correct, robust, has unpredictable
ciphertexts, and negligible encryption-key collision probability.

Proof. For correctness, let (spsPKE,msk sPKE) in the range of sPKE.Setup,
(ek sPKE, dk sPKE) in the range of sPKE.Gen(msk sPKE), and let m ∈ M.
By correctness of Sig and completeness of NIZK, the NIZK verification
in sPKE.San in the correctness experiment succeeds with probability 1.
Moreover, since g generates G and r1, dk1 ∈ Z∗p, we have c1,1 = gr1 ̸= 1

and c1,2 = ekr11 = gdk1·r1 ̸= 1. Hence,

c′ = sPKE.San
(
spsPKE, sPKE.Enc(ek sPKE,m)

)
=
(
(c1,1)

t · c1,3, (c1,2)t · c1,4
)

=
(
gr1·t+s1 , ekr1·t+s11 ·m

)
.

and

sPKE.Dec
(
dk sPKE, c′

)
= ekr1·t+s11 ·m ·

((
gr1·t+s1

)dk1
)−1

= gdk1(r1·t+s1) ·m ·
(
gdk1(r1·t+s1)

)−1
= m.

This shows that sPKE is correct.
For ciphertext unpredictability, note that each ciphertext contains gr1 ,

gs1 , gr2 , and gs2 for uniformly chosen r1, s1, r2, s2 ∈ Z∗p. Each of these
elements can only be guessed with probability 1/|Z∗p| = 1/(p− 1), where
p ≥ 2κ. We can therefore conclude that for any A,

AdvsPKE-UPD-CTXT
sPKE,A ≤ 1

(p− 1)4
≤ 1

(2κ − 1)4
.

142 CHAPTER 6. ACCESS CONTROL ENCRYPTION

Similarly, since the encryption keys contain the pairs (ek1 = gdk1 ,
ek2 = gdk2) for uniformly chosen dk1, dk2 ∈ Z∗p, we have

ColeksPKE ≤
1

(p− 1)2
≤ 1

(2κ − 1)2
.

We finally prove robustness. To this end, let A be a probabilistic
algorithm that makes at most q queries to OG and consider ExpsPKE-USROB

E,A .
Further let ek sPKE

i and dk sPKE
i = (dk i,1, dk i,2) be the keys returned from

OG for the i-th query and let (c, i0, i1) be the output of A, where c :=
(c1, c2, cσ, π) and c1 = (ga, gb, gc, gd). Assume that i0 ̸= i1 and that c
passes sanitization, since A cannot win otherwise. This implies a ̸= 0 ̸= b
and sanitizing and decrypting the ciphertext with the two decryption keys
yield m0 = gbt0+d−dki0,1(at0+c) and m1 = gbt1+d−dki1,1(at1+c), respectively,
where t0, t1 ∈ Z∗p are chosen uniformly during sanitization. We then have
that A wins if m0,m1 ∈M. Assume that m0 ∈M. Then,

m1 = m0 · g−b·t0−d+dki0,1(a·t0+c) · gb·t1+d−dki1,1(a·t1+c)

= m0 · g(dki0,1−dki1,1)c · g(a·dki0,1−b)t0 · g(b−a·dki1,1)t1 .

Note that if dk i0,1 ≠ dk i1,1 and a ≠ 0 ̸= b, then a · dk i0,1 − b and
b − a · dk i1,1 cannot both be 0. Hence, in this case, m1 is a uniformly
random element in the group G. The probability that m1 ∈M is therefore
|M|/|G| ≤ 2−κ. Since A obtains at most q decryption keys and the dk i,1
are uniform elements in Z∗p, the probability that dk i0,1 = dk i1,1 is bounded
by q2 · 1/(p− 1) ≤ q2 · 1/(2κ − 1). We can therefore conclude that

AdvsPKE-USROB
sPKE,A ≤ 2−κ +

q2

2κ − 1
≤ q2 + 1

2κ − 1
.

The main result of this section is the security of the scheme, summa-
rized in the following theorem.

Theorem 6.5.9. If the DDH assumption holds in the group G, PKE is
IND-CPA secure, Sig is EUF-CMA secure, and if NIZK is zero-knowledge,
computationally sound, and one-time simulation sound, then the scheme
sPKE from above is IND-CCA secure, IK-CCA secure, and SAN-CCA
secure.

6.5. ENHANCED SANITIZABLE PKE 143

On a high level, our proof proceeds as follows. It is rather straightfor-
ward to show that our variant of ElGamal encryption satisfies the CPA
versions of the three properties. The proof of CCA security follows the
proof by Sahai for public-key encryption [Sah99]: Since the NIZK ensures
that both ciphertext components are encryptions of the same message, it
does not matter which component is decrypted. In a reduction, where we
assume an adversary A against the CCA variants of the desired properties,
and we want to break the corresponding CPA variants, we only get one
public key and no decryption oracle from the challenger. In order to
emulate the view toward A, the reduction chooses an additional public
key and a CRS for the NIZK scheme. Since the reduction thus knows
one of the secret keys, it can emulate a decryption oracle. To generate
a challenge ciphertext, the reduction obtains one challenge ciphertexts
from its CPA challenger, and encrypts another, arbitrary message to get
a second ciphertext. The reduction uses the NIZK simulator to obtain an
accepting proof that is indistinguishable from a “real proof”, even if the
underlying statement is not true. A crucial point here is that the NIZK
scheme has to be one-time simulation sound (see Definition 2.3.11). This
ensures that even if the adversary sees one simulated (accepting) proof
of a wrong statement, it is not capable of producing accepting proofs
of wrong statements, except by reproducing the exact proof obtained
within the challenge, but which A is not allowed to ask to the decryption
oracle by the CCA definition. The fundamental result of Sahai [Sah99]
is that the above strategy successfully simulates a complete CCA attack
toward A.

An additional obstacle we have is that to preserve anonymity, the
NIZK needs to be verified without knowing which encryption keys were
used. On the other hand, the reduction only works if the two used keys
“match”, since otherwise, the emulated decryption oracle would use an
incorrect key to decrypt. To prevent an adversary from mixing different
key pairs for encryptions, the key-generation process signs valid key pairs,
and the NIZK ensures that a signed pair was used. Due to anonymity,
this signature cannot be directly contained in the ciphertexts. Instead,
it is part of the witness. To prove that if a ciphertext is accepted, the
used key pair was indeed signed by the key-generation process, we show
that if A manages to produce a ciphertext that is accepted but the
keys were not signed, we can break EUF-CMA security of the signature
scheme. In this reduction, we have to provide a forgery. Hence, the

144 CHAPTER 6. ACCESS CONTROL ENCRYPTION

reduction needs to extract the signature and the used encryption keys
from the ciphertext. This could be achieved by assuming that the NIZK
is extractable. Extractability and simulation-soundness at the same time
is, however, a quite strong assumption. Instead, we add an encryption
of the signature and the key pair under a separate PKE scheme to the
ciphertexts. The reduction can then generate the keys for this PKE
scheme itself and perform extraction by decrypting that ciphertext.

Since the proofs for IND-CCA and IK-CCA security closely follow the
proof by Sahai [Sah99], we first prove SAN-CCA security.

Lemma 6.5.10. Let sPKE be the scheme from above and let A = (A1,A2)
be a pair of probabilistic algorithms such that A1 and A2 together make
at most qG queries to OG and at most qSD queries to OSD0

and OSD1

combined. Then, there exist adversaries ADDH, Asnd, and ASig (which are
all roughly as efficient as emulating an execution of ExpsPKE-SAN-CCA

sPKE,A) such
that

AdvsPKE-SAN-CCA
sPKE,A ≤ 8 · AdvDDH

g,ADDH
+ (24qSD + 48) · AdvNIZK-snd

NIZK,Asnd

+ 24 · AdvSig-EUF-CMA
Sig,ASig

+
52q2G + 192qG + 196

2κ − 1
.

Proof. Let Wsan be the event that A wins the sanitization game, i.e.,

Wsan :=
[
b′ = b ∧ ∃j, j′ ∈ {0, 1} m0,j ̸= ⊥ ≠ m1,j′

]
.

We define hybrid experiments H0 to H2 as follows:

• H0 := ExpsPKE-SAN-CCA
sPKE,A is the sanitization experiment.

• H1 is identical to H0, except that if c′0 ̸= ⊥, then c′0 is replaced by
two uniformly random group elements (gb, gc).

• H2 is identical to H1, except that if c′1 ̸= ⊥, then c′1 is replaced by
two uniformly random group elements (gb, gc).

In H2, if c′0 ̸= ⊥ and c′1 ̸= ⊥, the view of A is independent of the
bit b. Hence, A cannot guess b with probability more than 1/2 in this
case. On the other hand, if c′0 = ⊥ or c′1 = ⊥, then m0,0 = m0,1 = ⊥ or
m1,0 = m1,1 = ⊥, respectively, since ⊥ decrypts to ⊥. By definition of
the sanitization advantage, A cannot win in this case. Thus,

PrH2 [Wsan] ≤
1

2
. (6.6)

6.5. ENHANCED SANITIZABLE PKE 145

To conclude the proof, we show that the probability of Wsan in H0

differs only negligibly from its probability in H2. To this end, we first
prove that three bad events occur only with negligible probability in any
of the hybrids.

Claim 1. Let i ∈ {0, 1, 2} and consider the experiment Hi. Further let
B1 be the event that A outputs as c0 or c1 or queries at least one of
its decryption oracles with a valid but improper ciphertext (c1, c2, cσ, π),
i.e.,

(
g, ekPKE, vkSig, c1, c2, cσ

)
/∈ L, but where π is an accepting proof, i.e.,

NIZK.Ver
(
crs, x := (g, ekPKE, vkSig, c1, c2, cσ), π

)
= 1. Then, there exists

an adversary Aisnd such that

PrHi [B1] ≤ (qSD + 2) · AdvNIZK-snd
NIZK,Ai

snd
.

Proof of claim. On input crs from the soundness challenger, Aisnd uses
this CRS, generates all needed keys itself, and emulates an execution
of Hi toward A. It initially chooses q0 � {−1, 0, 1, . . . , qSD} uniformly
at random. If q0 > 0 and when A submits the q0-th query to a decryp-
tion oracle, Aisnd outputs the corresponding statement and proof to the
challenger. If q0 ≤ 0 and when A outputs (c0, c1, st), then Aisnd submits
the statement and proof from cq0+1 to the challenger. If B1 occurs, then
for some q0, Aisnd outputs an accepting proof for an incorrect statement.
Hence, the claim follows. ♦

Claim 2. Let i ∈ {0, 1, 2} and consider the experiment Hi. Further let
B2 be the event that A outputs as c0 or c1 or queries at least one of its
decryption oracles with a valid and proper ciphertext (c1, c2, cσ, π), i.e.,(
g, ekPKE, vkSig, c1, c2, cσ

)
∈ L and π is accepting, but where cσ is the

encryption of a triple (ek1, ek2, σ), such that the pair (ek1, ek2) has never
been output by the experiment or the oracle OG. Then, there exists an
adversary AiSig such that

PrHi [B2] ≤ AdvSig-EUF-CMA
Sig,Ai

Sig

.

Proof of claim. On input a signature verification key vkSig, AiSig generates
all keys except for vkSig and skSig, and emulates an execution of Hi. To
generate the encryption keys ek sPKE

0 and ek sPKE
1 and to answer queries

to OG, AiSig obtains the needed signature using the signing oracle of

146 CHAPTER 6. ACCESS CONTROL ENCRYPTION

ExpSig-EUF-CMA
Sig,Ai

Sig

. The rest of Hi is straightforward to emulate since AiSig
possesses all keys except for skSig. Whenever A returns or submits a
ciphertext (c1, c2, cσ, π) to one of the decryption oracles, AiSig decrypts
cσ to obtain a pair (ek ′1, ek

′
2) and a signature σ′. If it has never queried

(ek ′1, ek
′
2) to its signing oracle and if the signature is valid, then it outputs

((ek ′1, ek
′
2), σ

′) as its forgery. Note that if B2 occurs, AiSig obtains a forgery,
so the claim follows. ♦

Claim 3. Let i ∈ {0, 1, 2}, consider the experiment Hi, and let B3

be the event that Hi generates two different encryption keys ek sPKE =(
g, p, crs, ekPKE, vkSig, ek1, ek2, σ

)
and

(
ek sPKE

)′
=
(
g, p, crs, ekPKE, vkSig,

ek ′1, ek
′
2, σ
′) such that ek1 = ek ′1 or ek2 = ek ′2. Then,

PrHi [B3] ≤
2(qG + 2)2

2κ − 1
.

Proof of claim. The experiment Hi initially generates two encryption keys
and then one for each query to OG. Hence, there are at most (qG + 2)2

such pairs. For each of these pairs, the probability that one of the two
components collides is at most 2 · (1/|Z∗p|) = 2/(p− 1). Using p ≥ 2κ and
the union bound implies the claim. ♦

We now bound the difference of the probabilities of Wsan in different
hybrids. To this end, let B := B1 ∪B2 ∪B3.

Claim 4. For all i ∈ {0, 1}, there exists an adversary AiDDH such that

PrHi [Wsan]− PrHi+1 [Wsan] ≤ 2 · AdvDDH
g,Ai

DDH
+ 2 · PrHi [B]

+ 4 · PrHi+1 [B] +
q2G + 1

2κ − 1
.

Proof of claim. Let i ∈ {0, 1} and let G0 and G1 be the events that ci
output by A is an encryption under ek sPKE

0 and ek sPKE
1 , respectively. If B,

G0, and G1 all do not occur, then ci is either invalid or a valid encryption
under a key different from ek sPKE

0 and ek sPKE
1 . Since Wsan can only occur

if the ciphertext decrypts to a message different from ⊥ under one of
these keys, this only happens if robustness is violated. Using the result

6.5. ENHANCED SANITIZABLE PKE 147

on robustness derived in the proof of Proposition 6.5.8, this implies

PrHi [Wsan∩¬B∩¬G1∩¬G2] ≤ PrHi [Wsan | ¬B∩¬G1∩¬G2] ≤
q2G + 1

2κ − 1
.

We also have

PrHi [Wsan]− PrHi+1 [Wsan]

= PrHi [Wsan ∩ ¬B ∩ (G1 ∪G2)] + PrHi [Wsan ∩ (B ∪ ¬(G1 ∪G2))]

− PrHi+1 [Wsan ∩ ¬B ∩ (G1 ∪G2)]

− PrHi+1 [Wsan ∩ (B ∪ ¬(G1 ∪G2))]

≤ PrHi [Wsan ∩ ¬B ∩ (G1 ∪G2)]− PrHi+1 [Wsan ∩ ¬B ∩ (G1 ∪G2)]

+ PrHi [B] + PrHi [Wsan ∩ ¬(G1 ∪G2)],

and

PrHi [Wsan ∩ ¬(G1 ∪G2)] ≤ PrHi [Wsan ∩ ¬B ∩ ¬(G1 ∪G2)] + PrHi [B].

This implies

PrHi [Wsan]− PrHi+1 [Wsan] ≤ PrHi [Wsan ∩ ¬B ∩ (G1 ∪G2)]

− PrHi+1 [Wsan ∩ ¬B ∩ (G1 ∪G2)] + 2 · PrHi [B] +
q2G + 1

2κ − 1
.

(6.7)

We now define the adversary AiDDH. On input (X,Y, T), AiDDH

chooses j � {0, 1} uniformly at random and sets ek j,1 ← X. All re-
maining keys, including ek j,2, are generated as in Hi, and A is invoked
on
(
spsPKE, ek sPKE

0 = (ek0,1, ek0,2), ek
sPKE
1 = (ek1,1, ek1,2)

)
. The adver-

sary AiDDH then emulates an execution of Hi. Since it has all keys except
for the decryption key dk j,1, only the emulation of the decryption oracle
OSDj

is nontrivial. To answer queries to this oracle, AiDDH sanitizes and
decrypts the second ciphertext component instead of the first one using
dk j,2. When A outputs

(
c0, c1, st

)
, both ciphertexts are sanitized and

decrypted as in the emulation of the decryption oracles, except that mi,j

is not set to ⊥ during decryption if mi,j /∈ M. If c′i ̸= ⊥, it is replaced
by c′i ← (Y, T ·mi,j). Moreover, AiDDH decrypts ci,σ and checks whether
it contains the encryption keys corresponding to ek sPKE

j . If this is not
the case, it terminates and returns 0. Otherwise, it continues with the

148 CHAPTER 6. ACCESS CONTROL ENCRYPTION

emulation. Finally, when A terminates, AiDDH outputs d = 1 if Wsan

occurs, and d = 0 otherwise.
Note that B not occurring implies that AiDDH emulates the decryption

oracle perfectly since in this case, all submitted valid ciphertexts contain
two encryptions of the same message under a signed key pair. Moreover,
due to ¬B3, the first encryption key matches the first key of the oracle if
and only if the second keys match. If they match, decryption with either
key yields the correct message with probability 1. Otherwise, the message
(before potentially being set to ⊥) is a uniform group element for both
keys, as shown in the robustness proof of Proposition 6.5.8.

Furthermore, if (X,Y, T) are three independent uniform group ele-
ments, c′i gets replaced by two uniformly random group elements if c′i ≠ ⊥,
as in Hi+1. On the other hand, if ¬B and Gj occur and if c′i ̸= ⊥, then
ci = (ci,1, ci,2, ci,σ, πi) is a valid encryption of mi,j under ek sPKE

j . Hence,
there exist r1, s1 ∈ Z∗p such that

ci,1 =
(
gr1 , (ek j,1)

r1 , gs1 , (ek j,1)
s1 ·mi,j

)
=
(
gr1 , Xr1 , gs1 , Xs1 ·mi,j

)
.

In Hi, this ciphertext is sanitized to c′i =
(
gr1·t+s1 , Xr1·t+s1 ·mi,j

)
for

t � Z∗p. If we further have X = ga, Y = gb, and T = gab, then
this corresponds to c′i =

(
gr1·t+s1 , ga·(r1·t+s1) · mi,j

)
, which is equally

distributed as the sanitization (Y, T ·mi,j) generated by AiDDH. Since we
also have that the probability of ¬B ∩Gj is equal in DDHreal

g,Ai
DDH

and Hi,
as well as in DDHrand

g,Ai
DDH

and Hi+1, we can conclude

Pr
DDHreal

g,Ai
DDH [d = 1 ∩ ¬B ∩Gj] = PrHi [Wsan ∩ ¬B ∩Gj],

Pr
DDHrand

g,Ai
DDH [d = 1 ∩ ¬B ∩Gj] = PrHi+1 [Wsan ∩ ¬B ∩Gj].

Using this together with

AdvDDH
g,Ai

DDH

= Pr
DDHreal

g,Ai
DDH [d = 1]− Pr

DDHrand

g,Ai
DDH [d = 1]

= Pr
DDHreal

g,Ai
DDH [d = 1 ∩ ¬B ∩Gj] + Pr

DDHreal

g,Ai
DDH [d = 1 ∩ (B ∪ ¬Gj)]

− Pr
DDHrand

g,Ai
DDH [d = 1 ∩ ¬B ∩Gj]− Pr

DDHrand

g,Ai
DDH [d = 1 ∩ (B ∪ ¬Gj)],

6.5. ENHANCED SANITIZABLE PKE 149

we obtain

AdvDDH
g,Ai

DDH
≥ PrHi [Wsan ∩ ¬B ∩Gj]− PrHi+1 [Wsan ∩ ¬B ∩Gj]

− Pr
DDHrand

g,Ai
DDH [d = 1 ∩B]− Pr

DDHrand

g,Ai
DDH [d = 1 ∩ ¬Gj].

If ¬B occurs, then ci,σ contains the correct encryption keys and thus, if

also ¬Gj occurs, AiDDH always returns 0. This implies Pr
DDHrand

g,Ai
DDH [d =

1 ∩ ¬Gj ∩ ¬B] = 0, and therefore

Pr
DDHrand

g,Ai
DDH [d = 1 ∩ ¬Gj] = Pr

DDHrand

g,Ai
DDH [d = 1 ∩ ¬Gj ∩ ¬B]

+ Pr
DDHrand

g,Ai
DDH [d = 1 ∩ ¬Gj ∩B]

≤ Pr
DDHrand

g,Ai
DDH [B].

Using Pr
DDHrand

g,Ai
DDH [B] = PrHi+1 [B], we obtain

AdvDDH
g,Ai

DDH
≥ PrHi [Wsan∩¬B∩Gj]−PrHi+1 [Wsan∩¬B∩Gj]−2·PrHi+1 [B].

Combining this with equation (6.7) and the fact that given G1 ∪G2 and
¬B, Gj occurs with probability 1/2 (independently of Wsan), we can
conclude

PrHi [Wsan]− PrHi+1 [Wsan]

≤ 2 · PrHi [Wsan ∩ ¬B ∩Gj]− 2 · PrHi+1 [Wsan ∩ ¬B ∩Gj]

+ 2 · PrHi [B] +
q2G + 1

2κ − 1

≤ 2 · AdvDDH
g,Ai

DDH
+ 4 · PrHi+1 [B] + 2 · PrHi [B] +

q2G + 1

2κ − 1
. ♦

Using Claim 4 and equation (6.6), we obtain

AdvsPKE-SAN-CCA
sPKE,A = 2 · PrH0 [Wsan]− 1

= 2 ·
(
PrH0 [Wsan]− PrH1 [Wsan] + PrH1 [Wsan]

− PrH2 [Wsan] + PrH2 [Wsan]
)
− 1

≤ 4 · AdvDDH
g,A0

DDH
+ 4 · AdvDDH

g,A1
DDH

+ 4 · PrH0 [B]

+ 12 · PrH1 [B] + 8 · PrH2 [B] + 4 · q
2
G + 1

2κ − 1
.

150 CHAPTER 6. ACCESS CONTROL ENCRYPTION

Claims 1 to 3 further imply

PrHi [B] ≤ (qSD + 2) · AdvNIZK-snd
NIZK,Ai

snd
+ AdvSig-EUF-CMA

Sig,Ai
Sig

+
2(qG + 2)2

2κ − 1
.

Hence,

AdvsPKE-SAN-CCA
sPKE,A

≤ 4 · AdvDDH
g,A0

DDH
+ 4 · AdvDDH

g,A1
DDH

+ (4qSD + 8) · AdvNIZK-snd
NIZK,A0

snd

+ (12qSD + 24) · AdvNIZK-snd
NIZK,A1

snd
+ (8qSD + 16) · AdvNIZK-snd

NIZK,A2
snd

+ 4 · AdvSig-EUF-CMA
Sig,A0

Sig
+ 12 · AdvSig-EUF-CMA

Sig,A1
Sig

+ 8 · AdvSig-EUF-CMA
Sig,A2

Sig

+
48(qG + 2)2 + 4q2G + 4

2κ − 1
.

We define the adversary ADDH as running A0
DDH and A1

DDH with probabil-
ity 1

2 each, the adversary Asnd as running A0
snd with probability 4qSD+8

24qSD+48 ,
A1

snd with probability 12qSD+24
24qSD+48 , and A2

snd with probability 8qSD+16
24qSD+48 , and

the adversary ASig as running A0
Sig with probability 4

24 , A1
Sig with proba-

bility 12
24 , and A2

Sig with probability 8
24 . Using the result above, we finally

conclude

AdvsPKE-SAN-CCA
sPKE,A ≤ 8 · AdvDDH

g,ADDH
+ (24qSD + 48) · AdvNIZK-snd

NIZK,Asnd

+ 24 · AdvSig-EUF-CMA
Sig,ASig

+
52q2G + 192qG + 196

2κ − 1
.

We next show that our sPKE scheme is IND-CCA secure. The proof
follows Lindell’s proof for the construction of an IND-CCA secure public-
key encryption scheme from a IND-CPA secure one [Lin06].

Lemma 6.5.11. Let sPKE be the scheme from Section 6.5.2 and let
A = (A1,A2) be a pair of probabilistic algorithms such that A1 and A2

together make at most qG queries to OG and at most qSD queries to OSD.
Then, there exist adversaries ADDH, AZK, Asnd, and ASig (which are all
roughly as efficient as emulating an execution of ExpsPKE-IND-CCA

sPKE,A) such
that

AdvsPKE-IND-CCA
sPKE,A ≤ 4 ·AdvDDH

g,ADDH
+2 ·AdvNIZK-ZK

NIZK,AZK
+2qSD ·AdvNIZK-sim-snd

NIZK,Asnd

+ 2 · AdvSig-EUF-CMA
Sig,ASig

+
4(qG + 1)2 + 8

2κ − 1
.

6.5. ENHANCED SANITIZABLE PKE 151

Proof. We assume without loss of generality that A2 does not query the
challenge ciphertext c∗ to its decryption oracle OSD since doing so can
only decrease the advantage. For b1, b2 ∈ {0, 1}, we define the hybrid
experiment Hb1,b2 as follows: Let Hb1,b2 be as ExpsPKE-IND-CCA

sPKE,A , but where
the common reference string crs is obtained via (crs, τ)← S1(1

κ) (instead
of an invocation of NIZK.Gen). When A1 outputs (m0,m1, st), Hb1,b2

computes c1 as the encryption of mb1 under ek1, c2 as the encryption of
mb2 under ek2, and cσ as in the real experiment (namely as the encryption
of the two ElGamal public keys and the accompanying signature). It
then simulates the proof π using S2 and invokes A2 on input st and
c∗ := (c1, c2, cσ, π).

Claim 1. There exist adversaries A′ZK and A′′ZK such that

PrH0,0 [b′ = 1]− PrExp
sPKE-IND-CCA
sPKE,A [b′ = 1 | b = 0] = AdvNIZK-ZK

NIZK,A′
ZK
,

PrExp
sPKE-IND-CCA
sPKE,A [b′ = 1 | b = 1]− PrH1,1 [b′ = 1] = AdvNIZK-ZK

NIZK,A′′
ZK
.

Proof of claim. We only prove the first part of the claim, the second one
can be shown analogously. The adversary A′ZK on input crs, emulates
toward A the experiment H0,0. To this end, it generates all required
keys. When generating the challenge ciphertext c∗ = (c1, c2, cσ, π), it
obtains π via the proof oracle. Note that in H0,0, this ciphertext is a
valid encryption of m0, so the statement is correct and the proof oracle
consequently returns a valid proof. When A returns a bit b′, A′ZK returns
1−b′. Observe that if the CRS and the proofs are real, then this emulation
is equivalent to the experiment ExpsPKE-IND-CCA

sPKE,A when b = 0, and if the
CRS and the proofs are simulated, then it is equivalent to H0,0. We
therefore have

AdvNIZK-ZK
NIZK,A′

ZK
= Prcrs←Gen(1κ)

[
AProve(crs,·,·)(crs) = 1

]
− Pr(crs,τ)←S1(1

κ)
[
AS

′(crs,τ,·,·)(crs) = 1
]

= 1− PrExp
sPKE-IND-CCA
sPKE,A [b′ = 1 | b = 0]−

(
1− PrH0,0 [b′ = 1]

)
= PrH0,0 [b′ = 1]− PrExp

sPKE-IND-CCA
sPKE,A [b′ = 1 | b = 0],

which implies the claim. ♦

Analogous to the proof of Lemma 6.5.10, we define three bad events:
Let B1 be the event that A queries its decryption oracle with a valid but

152 CHAPTER 6. ACCESS CONTROL ENCRYPTION

improper ciphertext (c1, c2, cσ, π), i.e.,
(
g, ekPKE, vkSig, c1, c2, cσ

)
/∈ L, but

where π is an accepting proof, i.e., NIZK.Ver
(
crs, x := (g, ekPKE, vkSig, c1,

c2, cσ), π
)
= 1. As in the proof of Lemma 6.5.10, one can show that there

exists an adversary Ab1,b2snd such that

PrHb1,b2 [B1] ≤ qSD · AdvNIZK-sim-snd
NIZK,Ab1,b2

snd

,

except that we here need (one-time) simulation soundness since the proof
in the challenge ciphertext is simulated.

Let B2 be the event that A queries its decryption oracle with a valid
and proper ciphertext (c1, c2, cσ, π), i.e.,

(
g, ekPKE, vkSig, c1, c2, cσ

)
∈ L

and π is accepting, but where cσ is the encryption of a triple (ek1, ek2, σ),
such that the pair (ek1, ek2) has never been output by the experiment or
the oracle OG. Again as in the proof of Lemma 6.5.10, it can be shown
that there exists an adversary Ab1,b2Sig such that

PrHb1,b2 [B2] ≤ AdvSig-EUF-CMA

Sig,Ab1,b2
Sig

.

Finally, let B3 be the event that Hb1,b2 generates two different encryp-
tion keys ek sPKE =

(
g, p, crs, ekPKE, vkSig, ek1, ek2, σ

)
and

(
ek sPKE

)′
=(

g, p, crs, ekPKE, vkSig, ek ′1, ek
′
2, σ
′) such that ek1 = ek ′1 or ek2 = ek ′2.

Then,

PrHb1,b2 [B3] ≤
2(qG + 1)2

2κ − 1
,

which can be shown as in the proof of Lemma 6.5.10. For B := B1∪B2∪B3,
we therefore have

PrHb1,b2 [B] ≤ qSD · AdvNIZK-sim-snd
NIZK,Ab1,b2

snd

+ AdvSig-EUF-CMA

Sig,Ab1,b2
Sig

+
2(qG + 1)2

2κ − 1
. (6.8)

Claim 2. There exist adversaries A′DDH and A′′DDH such that

PrH1,0 [b′ = 1]− PrH0,0 [b′ = 1] ≤ 2 · AdvDDH
g,A′

DDH
+ PrH0,0 [B]

+ PrH1,0 [B] + 22−κ,

PrH1,1 [b′ = 1]− PrH1,0 [b′ = 1] ≤ 2 · AdvDDH
g,A′′

DDH
+ 22−κ.

6.5. ENHANCED SANITIZABLE PKE 153

Proof of claim. We define the adversary A′DDH as follows. On input a
triple (X,Y, T), it sets ek1 ← X. It further generates all the remaining
keys of the experiment (and thus lacks only the decryption key dk1),
samples b � {0, 1}, and emulates Hb,0 toward A. The oracle OSD is
emulated by decrypting the second ciphertext component instead of the
first one using dk2. When A1 returns (m0,m1, st), A′DDH samples r � Z∗p
and sets

c1 ← (gr, Xr, Y, T ·mb).

It further computes c2 as an ElGamal encryption of m0, encrypts both
keys and their signature to obtain cσ, and simulates the NIZK proof π
using S2. It continues the emulation by giving c∗ := (c1, c2, cσ, π) to A2.
When A2 outputs its decision bit b′, A′DDH outputs d = 1 if b′ = b, and
d = 0 otherwise.

First note that if (X,Y, T) are three uniform group elements, c1 is
independent of the bit b, and thus

Pr
DDHrand

g,A′
DDH [d = 1] =

1

2
.

On the other hand, if (X,Y, T) is a DDH triple, we have for a uniform
s ∈ Zp,

c1 = (gr, Xr, Y, T ·mb) = (gr, ekr1, g
s, eks1 ·mb),

which corresponds to a proper ElGamal encryption of mb if X ̸= 1 and
Y ̸= 1. Further note that, as in the proof of Lemma 6.5.10, OSD is
emulated perfectly if B does not occur. We therefore have

Pr
DDHreal

g,A′
DDH [d = 1 ∩ ¬B | X ̸= 1 ̸= Y] = PrHb,0 [b′ = b ∩ ¬B].

This implies

AdvDDH
g,A′

DDH

= Pr
DDHreal

g,A′
DDH [d = 1]− Pr

DDHrand
g,A′

DDH [d = 1]

≥ Pr
DDHreal

g,A′
DDH [d = 1 ∩ ¬B | X ̸= 1 ̸= Y] · PrDDHreal

g,A′
DDH [X ̸= 1 ̸= Y]− 1

2

= PrHb,0 [b′ = b ∩ ¬B] · PrDDHreal
g,A′

DDH [X ̸= 1 ̸= Y]− 1

2
.

154 CHAPTER 6. ACCESS CONTROL ENCRYPTION

Using the union bound and |G| = p ≥ 2κ, we further have

Pr
DDHreal

g,A′
DDH [X ̸= 1 ̸= Y]

= 1− Pr
DDHreal

g,A′
DDH [X = 1 ∨ Y = 1]

≥ 1− Pr
DDHreal

g,A′
DDH [X = 1]− Pr

DDHreal
g,A′

DDH [Y = 1]

≥ 1− 2 · 2−κ.

Hence,

AdvDDH
g,A′

DDH
≥ PrHb,0 [b′ = b ∩ ¬B]− 21−κ − 1

2
.

Since

PrHb,0 [b′ = b] ≤ PrHb,0 [(b′ = b ∩ ¬B) ∪B]

≤ PrHb,0 [b′ = b ∩ ¬B] + PrHb,0 [B],

we obtain

AdvDDH
g,A′

DDH
≥ PrHb,0 [b′ = b]− PrHb,0 [B]− 21−κ − 1

2

=
1

2
PrH0,0 [b′ = 0] +

1

2
PrH1,0 [b′ = 1]

− 1

2
PrH0,0 [B]− 1

2
PrH1,0 [B]− 21−κ − 1

2

=
1

2
PrH1,0 [b′ = 1]− 1

2
PrH0,0 [b′ = 1]

− 1

2
PrH0,0 [B]− 1

2
PrH1,0 [B]− 21−κ.

Rearranging the inequality concludes the proof of the first part of the
claim.

The second part of the claim can be proven analogously, where A′′DDH

sets ek2 ← X instead of ek1 ← X. Since it therefore has dk1, which is
the key used by the decryption algorithm, the decryption oracle can be
emulated perfectly, even if B occurs. ♦

6.5. ENHANCED SANITIZABLE PKE 155

Using Claims 1 and 2, we get

AdvsPKE-IND-CCA
sPKE,A

≤ 2 · PrExp
sPKE-IND-CCA
sPKE,A [b′ = b]− 1

= 2 ·
(
1

2
· PrExp

sPKE-IND-CCA
sPKE,A [b′ = 0 | b = 0]

+
1

2
· PrExp

sPKE-IND-CCA
sPKE,A [b′ = 1 | b = 1]

)
− 1

= PrExp
sPKE-IND-CCA
sPKE,A [b′ = 1 | b = 1]− PrExp

sPKE-IND-CCA
sPKE,A [b′ = 1 | b = 0]

= PrExp
sPKE-IND-CCA
sPKE,A [b′ = 1 | b = 1]− PrH1,1 [b′ = 1]

+ PrH1,1 [b′ = 1]− PrH1,0 [b′ = 1] + PrH1,0 [b′ = 1]− PrH0,0 [b′ = 1]

+ PrH0,0 [b′ = 1]− PrExp
sPKE-IND-CCA
sPKE,A [b′ = 1 | b = 0]

≤ AdvNIZK-ZK
NIZK,A′

ZK
+ AdvNIZK-ZK

NIZK,A′′
ZK

+ 2 · AdvDDH
g,A′

DDH
+ 2 · AdvDDH

g,A′′
DDH

+ PrH0,0 [B] + PrH1,0 [B] + 23−κ.

Let AZK be the adversary that runs A′ZK and A′′ZK with probability 1/2
each, let ADDH run A′DDH and A′′DDH with probability 1/2 each, let Asnd run
A0,0

snd and A1,0
snd with probability 1/2 each, and let ASig run A0,0

Sig and A1,0
Sig

with probability 1/2 each. Combing the result above with equation (6.8),
we obtain

AdvsPKE-IND-CCA
sPKE,A ≤ 4 · AdvDDH

g,ADDH
+ 2 · AdvNIZK-ZK

NIZK,AZK
+ 2qSD · AdvNIZK-sim-snd

NIZK,Asnd

+ 2 · AdvSig-EUF-CMA
Sig,ASig

+
4(qG + 1)2 + 8

2κ − 1
,

which concludes the proof.

We finally show that sPKE is IK-CCA secure.

Lemma 6.5.12. Let sPKE be the scheme from Section 6.5.2 and let
A = (A1,A2) be a pair of probabilistic algorithms such that A1 and
A2 together make at most qG queries to OG and at most qSD queries
to OSD0

and OSD1
combined. Then, there exist adversaries ADDH, AZK,

Asnd, APKE, and ASig (which are all roughly as efficient as emulating an

156 CHAPTER 6. ACCESS CONTROL ENCRYPTION

execution of ExpsPKE-IK-CCA
sPKE,A) such that

AdvsPKE-IK-CCA
sPKE,A ≤ 8 · AdvDDH

g,ADDH
+ 2 · AdvNIZK-ZK

NIZK,AZK
+ 8qSD · AdvNIZK-sim-snd

NIZK,Asnd

+ 2 · AdvPKE-IND-CPA
PKE,APKE

+ 8 · AdvSig-EUF-CMA
Sig,ASig

+
16(qG + 2)2 + 32

2κ − 1
.

Proof. We assume without loss of generality that A2 does not query
the challenge ciphertext c∗ to any of its decryption oracles OSD0

or
OSD1

, since doing so can only decrease the advantage. We define hybrid
experiments H0 to H5 as follows:

• H0 is identical to ExpsPKE-IK-CCA
sPKE,A , except that the common reference

string crs is obtained via (crs, τ)← S1(1
κ) (instead of an invocation

of NIZK.Gen), and the proof π in the challenge ciphertext c∗ is
simulated using S2.

• H1 is identical to H0, but when A1 outputs (m, st), the hybrid com-
putes cσ not as an encryption of (ek b,1, ek b,2, σb), but as the encryp-
tion of 0ℓ, where ℓ is the length of the encoding of (ek b,1, ek b,2, σb)
(where the encoding needs to be chosen such that this length is
equal for all keys).

• H2 is identical to H1, except that for the generation of the challenge
ciphertext c∗, the key ek0,1 is replaced by gd0,1 for a freshly sampled
d0,1 � Z∗p.

• H3 is identical to H2, except that for the generation of the challenge
ciphertext c∗, the key ek0,2 is replaced by gd0,2 for a freshly sampled
d0,2 � Z∗p.

• H4 is identical to H3, except that for the generation of the challenge
ciphertext c∗, the key ek1,1 is replaced by gd1,1 for a freshly sampled
d1,1 � Z∗p.

• H5 is identical to H4, except that for the generation of the challenge
ciphertext c∗, the key ek1,2 is replaced by gd1,2 for a freshly sampled
d1,2 � Z∗p.

Note that the view of A in H5 is independent from the bit b, which
implies

PrH5 [b′ = b] =
1

2
. (6.9)

6.5. ENHANCED SANITIZABLE PKE 157

It can be shown as in the proof of Lemma 6.5.11 that there exist an
adversary AZK such that

PrExp
sPKE-IK-CCA
sPKE,A [b′ = b]− PrH0 [b′ = b] = AdvNIZK-ZK

NIZK,AZK
. (6.10)

Claim 1. There exists an adversary APKE such that

PrH0 [b′ = b]− PrH1 [b′ = b] = AdvPKE-IND-CPA
PKE,APKE

.

Proof of claim. When APKE obtains a public key ek from the CPA chal-
lenger, it generates all remaining keys itself and emulates H0 (or H1)
toward A. Note that APKE never needs to decrypt any of the ciphertexts cσ
in the experiment and thus, the missing decryption key is not needed for
the emulation. When A1 outputs (m, st), APKE gives

(
0ℓ, (ek b,1, ek b,2, σb)

)
to its CPA challenger to obtain a ciphertext cσ, where ℓ is the length of
the encoding of (ek b,1, ek b,2, σb). The rest is done as in H0. When A2

returns a bit b′, APKE returns b′′ = 1 if b′ = b, and b′′ = 0 if b′ ̸= b.
Note that if the CPA challenger chooses the bit bCPA = 0, cσ is an

encryption of 0ℓ, as in H1, and if bCPA = 1, cσ is as in H0. Hence,

PrExp
PKE-IND-CPA
PKE,APKE [b′′ = 1 | bCPA = 0] = PrH1 [b′ = b],

PrExp
PKE-IND-CPA
PKE,APKE [b′′ = 1 | bCPA = 1] = PrH0 [b′ = b].

We can therefore conclude

AdvPKE-IND-CPA
PKE,APKE

= 2 · PrExp
PKE-IND-CPA
PKE,APKE [b′′ = bCPA]− 1

= PrExp
PKE-IND-CPA
PKE,APKE [b′′ = 0 | bCPA = 0]

+ PrExp
PKE-IND-CPA
PKE,APKE [b′′ = 1 | bCPA = 1]− 1

= PrExp
PKE-IND-CPA
PKE,APKE [b′′ = 1 | bCPA = 1]

− PrExp
PKE-IND-CPA
PKE,APKE [b′′ = 1 | bCPA = 0]

= PrH0 [b′ = b]− PrH1 [b′ = b]. ♦

We define the event B analogous to the events in the proofs of Lem-
mata 6.5.10 and 6.5.11. As there, one can show for i ∈ {0, . . . , 5} that
there exist adversaries Aisnd and AiSig such that

PrHi [B] ≤ qSD · AdvNIZK-sim-snd
NIZK,Ai

snd
+ AdvSig-EUF-CMA

Sig,Ai
Sig

+
2(qG + 2)2

2κ − 1
. (6.11)

158 CHAPTER 6. ACCESS CONTROL ENCRYPTION

Claim 2. There exist adversaries A1
DDH, . . . ,A4

DDH such that for all i ∈
{1, 3},

PrHi [b′ = b]− PrHi+1 [b′ = b] ≤ AdvDDH
g,Ai

DDH
+ PrHi [B] + PrHi+1 [B] + 22−κ,

and for i ∈ {2, 4},

PrHi [b′ = b]− PrHi+1 [b′ = b] ≤ AdvDDH
g,Ai

DDH
+ 22−κ.

Proof of claim. On input (X,Y, T), A1
DDH sets ek0,1 ← X, A2

DDH sets
ek0,2 ← X, A3

DDH sets ek1,1 ← X, and A4
DDH sets ek1,2 ← X. All adver-

saries generate the remaining keys themselves and emulate Hi (or Hi+1)
toward A. To emulate the decryption oracles, A1

DDH and A3
DDH decrypt

the second ciphertext component instead of the first one; A2
DDH and A4

DDH

can emulate all oracles perfectly. As in the proof of Lemma 6.5.10, OSD is
also emulated perfectly by A1

DDH and A3
DDH if the event B does not occur.

When A1 returns (m, st) and if b = 0, then A1
DDH samples r � Z∗p, sets

c1 ←
(
Y r, T r, Y, T ·m

)
,

and generates the remaining ciphertext components as in the real ex-
periment. The other adversaries generate the ciphertext components
analogously. When A2 returns a bit b′, then AiDDH returns d = 1 if b′ = b
and d = 0 if b′ ̸= b for all i ∈ {1, . . . , 4}.

Consider the case i = 1 and note that if (X,Y, T) is a DDH triple, we
have Y = gs and T = Xs for a uniform s ∈ Zp, and thus, if b = 0,

c1 =
(
Y r, Xs·r, Y,Xs ·m

)
=
(
gs·r, (ek0,1)

s·r, gs, (ek0,1)
s ·m

)
.

If X ̸= 1 ̸= Y , this corresponds to an encryption of m under ek0,1, as in
H1. On the other hand, if (X,Y, T) are three uniform group elements and
X ̸= 1 ̸= Y , then there are (uniformly distributed) s, d0,1 ∈ Z∗p such that
Y = gs and T = gs·d0,1 . Hence, we have in this case

c1 =
(
gs·r, gs·d0,1·r, gs, gs·d0,1 ·m

)
=
(
gs·r,

(
gd0,1

)s·r
, gs,

(
gd0,1

)s ·m),
which corresponds to an encryption under the fresh key gd0,1 , as in H2.
Further note that if b = 1, the emulation, H1, and H2 are all equivalent.
We therefore have

Pr
DDHreal

g,A1
DDH [d = 1 ∩ ¬B | X ̸= 1 ̸= Y] = PrH1 [b′ = b ∩ ¬B],

Pr
DDHrand

g,A1
DDH [d = 1 ∩ ¬B | X ̸= 1 ̸= Y] = PrH2 [b′ = b ∩ ¬B].

6.5. ENHANCED SANITIZABLE PKE 159

As in the proof of Lemma 6.5.11, we obtain

Pr
DDHreal

g,A1
DDH [d = 1] ≥ PrH1 [b′ = b]− PrH1 [B]− 21−κ.

Moreover,

Pr
DDHrand

g,A1
DDH [d = 1]

= Pr
DDHrand

g,A1
DDH [d = 1 ∩ ¬B | X ̸= 1 ̸= Y] · Pr

DDHrand

g,A1
DDH [X ̸= 1 ̸= Y]

+ Pr
DDHrand

g,A1
DDH [d = 1 ∩ (B ∪ [X = 1 ∨ Y = 1])]

≤ PrH2 [b′ = b ∩ ¬B] + Pr
DDHrand

g,A1
DDH [B] + Pr

DDHrand

g,A1
DDH [X = 1 ∨ Y = 1]

≤ PrH2 [b′ = b] + Pr
DDHrand

g,A1
DDH [B] + 21−κ.

Since the probability of B in DDHrand
g,A1

DDH
is equal to its probability in H2,

we conclude

AdvDDH
g,A1

DDH
= Pr

DDHreal

g,A1
DDH [d = 1]− Pr

DDHrand

g,A1
DDH [d = 1]

≥ PrH1 [b′ = b]− PrH2 [b′ = b]− PrH1 [B]− PrH2 [B]− 22−κ.

The proofs for i ∈ {2, 3, 4} are analogous, where for i ∈ {2, 4}, the
occurrence of B does not matter since the decryption oracle can always
be emulated perfectly. ♦

Using equation (6.10), Claims 1 and 2, and equation (6.9), we obtain

PrExp
sPKE-IK-CCA
sPKE,A [b′ = b]

= PrExp
sPKE-IK-CCA
sPKE,A [b′ = b]− PrH0 [b′ = b] + PrH0 [b′ = b]− PrH1 [b′ = b]

+

4∑
i=1

(
PrHi [b′ = b]− PrHi+1 [b′ = b]

)
+ PrH5 [b′ = b]

≤ AdvNIZK-ZK
NIZK,AZK

+ AdvPKE-IND-CPA
PKE,APKE

+

4∑
i=1

(
AdvDDH

g,Ai
DDH

+ PrHi [B]
)

+ 24−κ +
1

2
.

160 CHAPTER 6. ACCESS CONTROL ENCRYPTION

For the adversary Asnd that runs A1
snd, . . . ,A4

snd with probability 1/4 each,
and the adversary ASig that runs A1

Sig, . . . ,A4
Sig with probability 1/4 each,

we obtain using equation (6.11),

4∑
i=1

PrHi [B] ≤ 4qSD · AdvNIZK-sim-snd
NIZK,Asnd

+ 4 · AdvSig-EUF-CMA
Sig,ASig

+
8(qG + 2)2

2κ − 1
.

Further defining ADDH as running A1
DDH, . . . ,A4

DDH with probability 1/4
each yields

AdvsPKE-IK-CCA
sPKE,A ≤ 2 · PrExp

sPKE-IK-CCA
sPKE,A [b′ = b]− 1

≤ 2 · AdvNIZK-ZK
NIZK,AZK

+ 2 · AdvPKE-IND-CPA
PKE,APKE

+ 8 · AdvDDH
g,ADDH

+ 8qSD · AdvNIZK-sim-snd
NIZK,Asnd

+ 8 · AdvSig-EUF-CMA
Sig,ASig

+
16(qG + 2)2

2κ − 1
+ 25−κ.

Observing that 25−κ ≤ 32
2κ−1 concludes the proof.

6.6 Construction of an ACE Scheme

6.6.1 Construction for Equality

Following Fuchsbauer et al. [FGKO17], we first construct an ACE scheme
for the equality policy, i.e., P (i, j) = 1⇔ i = j, and then use such a scheme
in another construction for richer policies. We base our construction on
an sPKE scheme, which already has many important properties needed
for a secure ACE scheme. A syntactical difference between sPKE and
ACE schemes is that the key generation of the former on every invocation
produces a fresh key pair, while the latter schemes allow the generation
of keys for a given role. To bind key pairs to some role i ∈ [n], we use
the output of a pseudorandom function on input i as the randomness for
the sPKE key generation. For role-respecting security, we have to ensure
that an adversary can only produce ciphertexts for keys obtained from
the key generation oracle. This is achieved by signing all keys with a
signing key generated at setup. To prevent malleability attacks as the ones
described in Section 6.3, the encryption algorithm additionally signs all

6.6. CONSTRUCTION OF AN ACE SCHEME 161

ciphertexts with a separate signing key that is tied to the encryption key.
To maintain anonymity, the signatures are not part of the ciphertext but
the encrypters prove in zero-knowledge that they know such signatures.
Finally, the modification detection simply checks whether the ciphertexts
(without the NIZK proofs) are equal. Intuitively, this is sufficient since
we assume the underlying sPKE scheme to be CCA secure, which implies
that it is not possible to meaningfully modify a given ciphertext. Hence,
a ciphertext is either equal to an existing one (and thus detected by the
algorithm) or a fresh encryption.

Our construction. Let sPKE be a sanitizable public-key encryption
scheme, let Sig be a signature scheme, and let F be a PRF. Further
let NIZK be a NIZK proof of knowledge system for the language L :=
{x | ∃w (x,w) ∈ R}, where the relation R is defined as follows: for
x =

(
vkSig, c̃

)
and w =

(
ek sPKE
i ,m, r, vkSig

i , σSig
i , σSig

c

)
, (x,w) ∈ R if and

only if

c̃ = sPKE.Enc
(
ek sPKE
i ,m; r

)
∧ Sig.Ver

(
vkSig,

[
ek sPKE
i , vkSig

i

]
, σSig
i

)
= 1

∧ Sig.Ver
(
vkSig
i , c̃, σSig

c

)
= 1.

We define an ACE with modification detection scheme ACE as follows:

Setup: On input a security parameter 1κ and a policy P : [n] × [n] →
{0, 1} with P (i, j) = 1 ⇔ i = j, the algorithm ACE.Setup picks a
random PRF key K for a PRF F , and runs(

spsPKE,msk sPKE
)
← sPKE.Setup(1κ),(

vkSig, skSig
)
← Sig.Gen(1κ),

crsNIZK ← NIZK.Gen(1κ).

It outputs the master secret key mskACE :=
(
K,msk sPKE, vkSig,

skSig, crsNIZK
)

and the sanitizer parameters spACE :=
(
spsPKE, vkSig,

crsNIZK
)
.

Key generation: The algorithm ACE.Gen on input a master secret key
mskACE =

(
K,msk sPKE, vkSig, skSig, crsNIZK

)
, a role i ∈ [n], and a

type t ∈ {sen, rec}, computes(
ek sPKE
i , dk sPKE

i

)
← sPKE.Gen

(
msk sPKE;FK([i, 0])

)
.

162 CHAPTER 6. ACCESS CONTROL ENCRYPTION

If t = sen, it further computes(
vkSig
i , skSig

i

)
← Sig.Gen

(
1κ;FK([i, 1])

)
,

σSig
i ← Sig.Sign

(
skSig,

[
ek sPKE
i , vkSig

i

]
;FK([i, 2])

)
.

If t = sen, it outputs the encryption key ekACE
i :=

(
vkSig, ek sPKE

i ,

vkSig
i , skSig

i , σSig
i , crsNIZK

)
; if t = rec, it outputs the decryption key

dkACE
i := dk sPKE

i .

Encryption: The algorithm ACE.Enc on input encryption key ekACE
i =(

vkSig, ek sPKE
i , vkSig

i , skSig
i , σSig

i , crsNIZK
)

and message m ∈ MACE,
samples randomness r and computes

c̃← sPKE.Enc
(
ek sPKE
i ,m; r

)
,

σSig
c ← Sig.Sign

(
skSig
i , c̃

)
,

πNIZK ← NIZK.Prove
(
crsNIZK, x :=

(
vkSig, c̃

)
,

w :=
(
ek sPKE
i ,m, r, vkSig

i , σSig
i , σSig

c

))
.

It outputs the ciphertext c :=
(
c̃, πNIZK

)
.

Sanitization: On input sanitizer parameters spACE =
(
spsPKE, vkSig,

crsNIZK
)

and a ciphertext c =
(
c̃, πNIZK

)
, ACE.San outputs the sani-

tized ciphertext c′ ← sPKE.San
(
spsPKE, c̃

)
if NIZK.Ver

(
crsNIZK, x :=(

vkSig, c̃,
)
, πNIZK

)
= 1; otherwise, it outputs ⊥.

Decryption: On input a decryption key dkACE
j and a sanitized cipher-

text c′, ACE.Dec outputs the message m← sPKE.Dec(dkACE
j , c′).

Modification detection: The algorithm ACE.DMod on input spACE,
c1 =

(
c̃1, π

NIZK
1

)
, and c2 =

(
c̃2, π

NIZK
2

)
, outputs 1 if c̃1 = c̃2, and 0

otherwise.

We first show that our scheme is correct and strongly detectable.

Proposition 6.6.1. Let ACE be the scheme from above. Then, ACE
is perfectly correct, i.e., AdvACE-CORR

ACE,A = 0 for all A. Moreover, if F
is pseudorandom and sPKE is unrestricted strongly robust, then ACE is
strongly detectable.

6.6. CONSTRUCTION OF AN ACE SCHEME 163

Proof. Perfect correctness follows from the perfect correctness of the sPKE
and signature schemes and the perfect completeness of the NIZK proof
system.

To prove strong detectability, let A be a probabilistic algorithm.
We assume without loss of generality that A returns (m, r, i, j) with
P (i, j) = 0 since doing otherwise can only reduce the advantage. Let
H0 := ExpACE-sDTCT

ACE,A , let H1 be as H0 where FK is replaced by a truly
uniform function U , and let W be the event that A wins the strong
detectability game, i.e.,

W :=
[
ACE.Dec

(
dkACE

j ,ACE.San(spACE,ACE.Enc(ekACE
i ,m; r))

)
̸= ⊥

]
.

We first show that the difference in the winning probability in H0 and H1

is bounded by the PRF advantage.

Claim 1. There exists a probabilistic algorithm AO(·)
PRF such that

PrH0 [W]− PrH1 [W] = AdvPRFF,APRF
.

Proof of claim. Consider AO(·)
PRF that emulates an execution of H0, where

all invocations of FK(·) are replaced by a call to the oracle O(·). When A
wins, APRF outputs 1, and 0 otherwise. In case O(·) corresponds to FK(·),
APRF perfectly emulates H0, if it corresponds to U(·), it perfectly emulates
H1. Hence,

PrH0 [W]− PrH1 [W] = Pr
[
AFK(·)

PRF (1κ) = 1
]
− Pr

[
AU(·)

PRF (1
κ) = 1

]
= AdvPRFF,APRF

. ♦

We now construct a winner Arob for the robustness game for sPKE. The
algorithm Arob on input spsPKE emulates an execution of H1. To answer
queries of A to the key-generation oracle, Arob uses the oracle OG to obtain
encryption and decryption keys for sPKE; the required signature keys are
generated internally. For each query (i, t), Arob remembers the generated
keys ekACE

i and dkACE
i , and returns the same keys for subsequent queries

with the same i. When A returns (m, r, i, j), Arob first checks whether i
and j have been queried by A to the key-generation oracle. If not, Arob

now generates these keys as above. Let r̃ be the randomness used by
ACE.Enc(ekACE

i ,m; r) for the algorithm sPKE.Enc. Then, Arob computes

164 CHAPTER 6. ACCESS CONTROL ENCRYPTION

c ← sPKE.Enc
(
ek sPKE
i ,m; r̃

)
, and returns (c, i0, i1), such that the i0-th

query and the i1-th query to the key-generation oracle were for the roles
i and j, respectively. Since P is the equality predicate, P (i, j) = 0 is
equivalent to i0 ̸= i1. We further have by the perfect correctness of sPKE
that sPKE.Dec

(
dk sPKE

i , sPKE.San
(
spsPKE, c

))
̸= ⊥. Hence, Arob wins the

robustness game if and only if A wins the strong detectability game in
H1. Using Claim 1, we can therefore conclude

AdvACE-sDTCT
ACE,A = PrH0 [W] = AdvPRFF,APRF

+ PrH1 [W]

= AdvPRFF,APRF
+ AdvsPKE-USROB

sPKE,Arob
.

In the following, we prove the security of our scheme, which is sum-
marized by the theorem below.

Theorem 6.6.2. If F is pseudorandom, NIZK is zero-knowledge and
extractable, Sig is EUF-CMA secure, and the scheme sPKE is IND-CCA,
IK-CCA, SAN-CCA, USROB, and UPD-CTXT secure and has negligible
encryption-key collision probability, then the scheme ACE from above is
PRV-CCA, sANON-CCA, SAN-CCA, UDEC, and RR secure, and has
NDTCT-FENC.

We first show that our scheme satisfies the privacy definition from
Definition 6.4.2 if the underlying sanitizable public-key encryption scheme
is IND-CCA secure, the PRF is secure, and the NIZK is zero-knowledge.

Lemma 6.6.3. Let ACE be the scheme from above, let A = (A1,A2) be
an attacker on the privacy such that A1 makes at most qS queries of the
form (·, sen) to the oracle OG, and at most qD queries to OSD. Then,
there exist probabilistic algorithms APRF, AZK, and AsPKE (which are all
roughly as efficient as emulating an execution of ExpACE-PRV-ANON-CCA

ACE,A)
such that

AdvACE-PRV-CCA
ACE,A ≤ 2 · AdvPRFF,APRF

+ 2 · AdvNIZK-ZK
NIZK,AZK

+ (qS + qD + 1) · AdvsPKE-IND-CCA
sPKE,AsPKE

.

Proof. We assume without loss of generality that A ensures i0 = i1 and
P (i0, j) = 0 for all j ∈ J , since doing otherwise can only decrease the
advantage. Let H0 := ExpACE-PRV-ANON-CCA

ACE,A and H1 be as H0 where FK
is replaced by a truly uniform random function U . The following can be
proven as Claim 1 in the proof of Proposition 6.6.1.

6.6. CONSTRUCTION OF AN ACE SCHEME 165

Claim 1. There exists a probabilistic algorithm AO(·)
PRF such that

PrH0 [b′ = b]− PrH1 [b′ = b] = AdvPRFF,APRF
.

Now let H2 be as H1, where we replace crsNIZK ← NIZK.Gen(1κ) by(
crsNIZK, τNIZK

)
← SNIZK

1 (1κ) in ACE.Setup, and for the generation of the
challenge ciphertext c∗, we replace πNIZK ← NIZK.Prove

(
crsNIZK, x, w

)
in

ACE.Enc by πNIZK ← SNIZK
2

(
crsNIZK, τNIZK, x

)
.

Claim 2. There exists a probabilistic algorithm AO(·,·)
ZK such that

PrH1 [b′ = b]− PrH2 [b′ = b] = AdvNIZK-ZK
NIZK,AZK

.

Proof of claim. The algorithm AO(·,·)
ZK on input crsNIZK proceeds as follows.

It emulates an execution ofH1, where in ACE.Setup, crsNIZK is used instead
of generating it, and for the generation of c∗, NIZK.Prove

(
crsNIZK, x, w

)
in ACE.Enc is replaced by the oracle query (x,w). Finally, AO(·,·)

ZK outputs
b̃ = 1 if A2 returns b′ = b, and b̃ = 0 otherwise. Note that if crsNIZK is gen-
erated by NIZK.Gen and O(·, ·) corresponds to NIZK.Prove

(
crsNIZK, ·, ·

)
,

AO(·,·)
ZK perfectly emulates H1. Moreover, if crsNIZK is generated together

with τNIZK by SNIZK
1 and O(x,w) returns SNIZK

2

(
crsNIZK, τNIZK, x

)
, AO(·,·)

ZK

perfectly emulates H2. Thus, the claim follows. ♦

We finally show how to transform any winner A for H2 to a winner
AsPKE for the IND-CCA game for the scheme sPKE. The strategy of our
reduction is to guess which oracle queries of A1 are for the role i0, use
the key from the sPKE-scheme for these queries, and generate all other
keys as H2. Details follow. On input (spsPKE, ek sPKE), AsPKE initializes
iq0 ← ⊥, kq ← 1, chooses q0 � {0, . . . , qS + qD} uniformly at random,
runs

(
vkSig, skSig

)
← Sig.Gen(1κ), and

(
crsNIZK, τNIZK

)
← SNIZK

1 (1κ), and
gives spACE :=

(
spsPKE, vkSig, crsNIZK

)
to A1. It emulates the oracles for

A1 as follows.

OG(·, ·): On query (i, sen), if kq ̸= q0 and i ̸= iq0 , then generate an
encryption key ekACE

i :=
(
vkSig, ek sPKE

i , vkSig
i , skSig

i , σSig
i , crsNIZK

)
as

H2 does, where
(
ek sPKE
i , dk sPKE

i

)
is obtained via OG and remembered

for future queries. If kq = q0 or i = iq0 , replace ek sPKE
i by ek sPKE

166 CHAPTER 6. ACCESS CONTROL ENCRYPTION

and set iq0 ← i. In both cases, set kq ← kq+1 at the end. On query
(j, rec), obtain a decryption key via OG.

OSD(·, ·): On query
(
j, c =

(
c̃, πNIZK

))
, if kq ̸= q0 and j ̸= iq0 , run

c′ ← ACE.San(spACE, c), generate a decryption key dkACE
j as above,

decrypt c′ using dkACE
j , and return the resulting message. If kq = q0

or j = iq0 , set iq0 ← j and use the oracle OSD of the IND-CCA
experiment to obtain a decryption m of c̃. If NIZK.Ver

(
crsNIZK, x :=(

vkSig, c̃,
)
, πNIZK

)
= 1, return m, otherwise, return ⊥. In all cases,

set kq ← kq + 1 at the end.

When A1 returns (m0,m1, i0, i1, st), output (m0,m1) to the challenger
of the IND-CCA experiment to obtain a challenge ciphertext c̃∗. Then
run πNIZK ← SNIZK

2

(
crsNIZK, τNIZK, x :=

(
vkSig, c̃∗

))
, and give st and the

ciphertext c∗ :=
(
c̃∗, πNIZK

)
to A2. Emulate the oracles for A2 as follows.

OG(·, ·): On query (i, sen), if i ≠ i0, then generate an encryption key
ekACE
i :=

(
vkSig, ek sPKE

i , vkSig
i , skSig

i , σSig
i , crsNIZK

)
as H2 does, where(

ek sPKE
i , dk sPKE

i

)
is obtained via OG and remembered for future

queries. If i = i0, replace ek sPKE
i by ek sPKE. On query (j, rec),

obtain a decryption key from OG.

OSD∗(·, ·): On query
(
j, c =

(
c̃, πNIZK

))
, run ACE.DMod(spACE, c∗, c). If

the output is 1, return test. Otherwise, if j ̸= i0, run c′ ←
ACE.San(spACE, c), generate a decryption key dkACE

j as above, de-
crypt c′ using dkACE

j , and return the resulting message. If j = i0,
use the oracle OSD of the IND-CCA experiment to obtain a de-
cryption m of c̃. If NIZK.Ver

(
crsNIZK, x :=

(
vkSig, c̃,

)
, πNIZK

)
= 1,

return m, otherwise, return ⊥.

Note that we never query the decryption oracle of the IND-CCA
experiment on c̃∗ because we return test whenever this would be necessary.
Denote by Q the event that either iq0 = i0, or q0 = 0 and A1 does not
make the query (i0, sen) to OG and no queries for role i0 to OSD. When
A2 returns a bit b′ and Q holds, AsPKE returns the same bit b′′ ← b′, if
¬Q, AsPKE returns a uniform bit b′′ � {0, 1}.

Let b̃ be the bit chosen by the IND-CCA challenger. Note that by
our assumption on A, i0 = i1 and A does not query (i0, rec) to OG, i.e.,

6.6. CONSTRUCTION OF AN ACE SCHEME 167

i0 /∈ J , since P (i0, i0) = 1. Hence, if Q occurs, the view of A is identical
to the one in H2 with b = b̃. This implies

PrExp
sPKE-IND-CCA
sPKE,AsPKE

[
b′′ = b̃

⏐⏐ Q] = PrH2
[
b′ = b

]
,

and therefore

PrExp
sPKE-IND-CCA
sPKE,AsPKE

[
b′′ = b̃

]
= PrExp

sPKE-IND-CCA
sPKE,AsPKE

[
b′′ = b̃

⏐⏐ Q] · PrExpsPKE-IND-CCA
sPKE,AsPKE [Q]

+ PrExp
sPKE-IND-CCA
sPKE,AsPKE

[
b′′ = b̃

⏐⏐ ¬Q] · PrExpsPKE-IND-CCA
sPKE,AsPKE [¬Q]

= PrH2
[
b′ = b

]
· PrExp

sPKE-IND-CCA
sPKE,AsPKE [Q] +

1

2
PrExp

sPKE-IND-CCA
sPKE,AsPKE [¬Q].

Using that the probability of Q is 1/(qS + qD + 1), this yields

PrH2
[
b′ = b

]
=

1

Pr
ExpsPKE-IND-CCA

sPKE,AsPKE [Q]
·
(
PrExp

sPKE-IND-CCA
sPKE,AsPKE

[
b′′ = b̃

]
− 1

2
·
(
1− PrExp

sPKE-IND-CCA
sPKE,AsPKE [Q]

))
= (qS + qD + 1) ·

(
PrExp

sPKE-IND-CCA
sPKE,AsPKE

[
b′′ = b̃

]
− 1

2

)
+

1

2
.

Combining this with Claims 1 and 2, we can conclude

AdvACE-PRV-CCA
ACE,A

= 2 · PrH0 [b′ = b]− 1

= 2 ·
(
PrH0 [b′ = b]− PrH1 [b′ = b] + PrH1 [b′ = b]

− PrH2 [b′ = b] + PrH2 [b′ = b]
)
− 1

= 2 ·
[
AdvPRFF,APRF

+ AdvNIZK-ZK
NIZK,AZK

+ (qS + qD + 1)

(
PrExp

sPKE-IND-CCA
sPKE,AsPKE

[
b′′ = b̃

]
− 1

2

)
+

1

2

]
− 1

= 2 · AdvPRFF,APRF
+ 2 · AdvNIZK-ZK

NIZK,AZK
+ (qS + qD + 1) · AdvsPKE-IND-CCA

sPKE,AsPKE
.

168 CHAPTER 6. ACCESS CONTROL ENCRYPTION

We next consider anonymity, which can be shown similarly. We provide
a proof for strong anonymity. Note, however, that for the equality policy,
strong anonymity does not provide more guarantees than weak anonymity
because anyone who can decrypt directly learns that the sender role is
equal to the receiver role.

Lemma 6.6.4. Let ACE be the scheme from above, let A = (A1,A2) be
an attacker on the anonymity such that A1 makes at most qS queries of
the form (·, sen) to the oracle OG, and at most qD queries to OSD. Then,
there exist probabilistic algorithms APRF, AZK, and AsPKE (which are all
roughly as efficient as emulating an execution of ExpACE-PRV-ANON-CCA

ACE,A)
such that

AdvACE-sANON-CCA
ACE,A ≤ 2 · AdvPRFF,APRF

+ 2 · AdvNIZK-ZK
NIZK,AZK

+ (qS + qD + 1)2 · AdvsPKE-IK-CCA
sPKE,AsPKE

.

Proof. We assume without loss of generality that A ensures m0 = m1

and P (i0, j) = P (i1, j) for all j ∈ J , since doing otherwise can only
decrease the advantage. Since we have P (i, j) = 1 ⇔ i = j, the latter
condition implies that if i0 ∈ J or i1 ∈ J , then i0 = i1. In case i0 = i1
and m0 = m1, A cannot have positive advantage. Hence, we can further
assume without loss of generality that i0 /∈ J and i1 /∈ J . As in the
proof of Lemma 6.6.3, let H0 := ExpACE-PRV-ANON-CCA

ACE,A , let H1 be as H0

where FK is replaced by a truly uniform random function U , and let
H2 be as H1, where crsNIZK ← NIZK.Gen(1κ) in ACE.Setup is replaced
by
(
crsNIZK, τNIZK

)
← SNIZK

1 (1κ) and for the generation of the challenge
ciphertext c∗, πNIZK ← NIZK.Prove

(
crsNIZK, x, w

)
in ACE.Enc is replaced

by πNIZK ← SNIZK
2

(
crsNIZK, τNIZK, x

)
. An identical proof as the one in the

proof of Lemma 6.6.3 shows that there exist APRF and AZK such that

PrH0
[
b′ = b

]
− PrH2

[
b′ = b

]
= AdvPRFF,APRF

+ AdvNIZK-ZK
NIZK,AZK

.

We now transform A to a winner AsPKE for the anonymity game for
the scheme sPKE. The reduction is similar to the one in the proof of
Lemma 6.6.3, but AsPKE has to guess both i0 and i1, which is why we loose
the quadratic factor (qS + qD + 1)2. On input (spsPKE, ek sPKE

0 , ek sPKE
1),

the adversary AsPKE initializes iq0 , iq1 ← ⊥, kq ← 1, chooses q0, q1 �
{0, . . . , qS + qD} uniformly at random, runs

(
vkSig, skSig

)
← Sig.Gen(1κ),

6.6. CONSTRUCTION OF AN ACE SCHEME 169

(
crsNIZK, τNIZK

)
← SNIZK

1 (1κ), and gives spACE :=
(
spsPKE, vkSig, crsNIZK

)
to A1. It emulates the oracles for A1 as follows.

OG(·, ·): On query (i, sen), if kq /∈ {q0, q1} and i /∈ {iq0 , iq1}, then gener-
ate ekACE

i :=
(
vkSig, ek sPKE

i , vkSig
i , skSig

i , σSig
i , crsNIZK

)
as done in H2,

where
(
ek sPKE
i , dk sPKE

i

)
is obtained via OG and remembered for fu-

ture queries. If kq = ql or i = iql for some l ∈ {0, 1}, replace ek sPKE
i

by ek sPKE
l (by ek sPKE

0 if q0 = q1) and set iql ← i. In both cases, set
kq ← kq + 1 at the end. On query (j, rec), obtain a decryption key
from OG and remember it for later.

OSD(·, ·): On query
(
j, c =

(
c̃, πNIZK

))
, if kq /∈ {q0, q1} and j /∈ {iq0 , iq1},

then execute c′ ← ACE.San(spACE, c), generate a decryption key
dkACE

j as above, decrypt c′ using dkACE
j , and return the resulting

message. If kq = ql or j = iql for some l ∈ {0, 1}, set iql ← j
and use the oracle OSDl

of the IK-CCA experiment to obtain a
decryption m of c̃. If NIZK.Ver

(
crsNIZK, x :=

(
vkSig, c̃,

)
, πNIZK

)
= 1,

return m, otherwise, return ⊥. In all cases, set kq ← kq + 1 at the
end.

When A1 returns (m0,m1, i0, i1, st), AsPKE outputs m0 to the chal-
lenger of the anonymity experiment to obtain a challenge ciphertext c̃∗.
It then runs SNIZK

2

(
crsNIZK, τNIZK, x :=

(
vkSig, c̃∗

))
, and gives st and the

ciphertext c∗ :=
(
c̃∗, πNIZK

)
to A2. It emulates the oracles for A2 as

follows:

OG(·, ·): On query (i, sen), if i /∈ {i0, i1}, then generate an encryption key
ekACE
i :=

(
vkSig, ek sPKE

i , vkSig
i , skSig

i , σSig
i , crsNIZK

)
as H2 does, where(

ek sPKE
i , dk sPKE

i

)
is obtained via OG and remembered for future

queries. If i = iql for some l ∈ {0, 1}, replace ek sPKE
i by ek sPKE

l . On
query (j, rec), obtain a decryption key as before.

OSD∗(·, ·): On query
(
j, c =

(
c̃, πNIZK

))
, run ACE.DMod(spACE, c∗, c).

If the output is 1, return test. Otherwise, if j /∈ {i0, i1}, run
c′ ← ACE.San(spACE, c), generate a decryption key dkACE

j as above,
decrypt c′ using dkACE

j , and return the resulting message. If j = iql
for some l ∈ {0, 1}, use the oracle OSDl

of the IK-CCA exper-
iment to obtain a decryption m of c̃. If NIZK.Ver

(
crsNIZK, x :=(

vkSig, c̃,
)
, πNIZK

)
= 1, return m, otherwise, return ⊥.

170 CHAPTER 6. ACCESS CONTROL ENCRYPTION

Note that AsPKE never queries any of the decryption oracles of the
IK-CCA experiment on c̃∗ because we return test whenever this would
be necessary. Denote by Q the event that for all l ∈ {0, 1} we have either
iql = il, or ql = 0 and A1 does not make the query (il, sen) to OG and
no queries for role il to OSD. When A2 returns a bit b′ and Q holds,
AsPKE returns the same bit b′′ ← b′, if ¬Q, AsPKE returns a uniform bit
b′′ � {0, 1}.

Let b̃ be the bit chosen by the IK-CCA experiment. Note that if Q
occurs, the view of A is identical to the one in H2 with b = b̃. This implies

PrExp
sPKE-IK-CCA
sPKE,AsPKE

[
b′′ = b̃

⏐⏐ Q] = PrH2
[
b′ = b

]
.

Using that the probability of Q is 1/(qS + qD + 1)2, it follows as in the
proof of Lemma 6.6.3 that

AdvACE-sANON-CCA
ACE,A = 2 · AdvPRFF,APRF

+ 2 · AdvNIZK-ZK
NIZK,AZK

+ (qS + qD + 1)2 · AdvsPKE-IK-CCA
sPKE,AsPKE

.

We next prove sanitization security of our scheme.

Lemma 6.6.5. Let ACE be the scheme from above, and let A = (A1,A2)
be an attacker on the sanitization security such that A1 makes at most qS1

queries of the form (·, sen) and at most qR1
queries of the form (·, rec)

to the oracle OG, and at most qD1
queries to OSD, and A2 makes at

most qR2
queries of the form (·, rec) to the oracle OG. Then, there exist

probabilistic algorithms APRF, AZK1 , AZK2 , ASig, AsPKE, and Arob (which
are all roughly as efficient as emulating an execution of ExpACE-SAN-CCA

ACE,A)
such that

AdvACE-SAN-CCA
ACE,A ≤ 2 · AdvPRFF,APRF

+ 2 · AdvNIZK-ext1
NIZK,AZK1

+ 4 · AdvNIZK-ext2
NIZK,AZK2

+ 4 · AdvSig-EUF-CMA
Sig,ASig

+ (qS1 + qR1 + qD1)
2 · AdvsPKE-SAN-CCA

sPKE,AsPKE

+ 4(qR1
+ qR2

) · AdvsPKE-USROB
sPKE,Arob

.

Proof. Let H0 := ExpACE-SAN-CCA
ACE,A , let H1 be as H0 where FK is replaced by

a truly uniform random function U , and let H2 be as H1, where crsNIZK ←
NIZK.Gen(1κ) in ACE.Setup is replaced by

(
crsNIZK, ξNIZK

)
← ENIZK

1 (1κ).
Let WACE denote the event that A wins, i.e.,

WACE :=
[
b′ = b ∧ c′0 ̸= ⊥ ≠ c′1 ∧ ∀j ∈ J m0,j = m1,j = ⊥

]
.

6.6. CONSTRUCTION OF AN ACE SCHEME 171

Similarly as in the proof of Lemma 6.6.3, it can be shown that there exist
APRF and AZK1

such that

PrH0 [WACE]− PrH2 [WACE] = AdvPRFF,APRF
+ AdvNIZK-ext1

NIZK,AZK1
. (6.12)

Let H3 be as H2 except that after A1 returns
(
c0 =

(
c̃0, π

NIZK
0

)
,

c1 =
(
c̃1, π

NIZK
1

)
, st
)
, H3 executes for b̃ ∈ {0, 1}

wb̃ :=
(
ek sPKE
ib̃

,mb̃, rb̃, vk
Sig
ib̃
, σSig
ib̃
, σSig
cb̃

)
← ENIZK

2

(
crsNIZK, ξNIZK,

xb̃ :=
(
vkSig, c̃b̃

)
, πNIZK
b̃

)
.

We clearly have
PrH3 [WACE] = PrH2 [WACE]. (6.13)

Let Vb̃ :=
[
NIZK.Ver

(
crsNIZK, xb̃, π

NIZK
b̃

)
= 1
]

and let BE be the event that
(at least) one of the extractions fail, i.e.,

BE :=
[
(V0 ∧ (x0, w0) /∈ R) ∨ (V1 ∧ (x1, w1) /∈ R)

]
.

If BE occurs, the knowledge extraction of NIZK is broken. To prove this,
we define AZK2

as follows. On input crsNIZK, it emulates an execution
of H3, where in ACE.Setup, crsNIZK is used instead of generating it. When
A1 returns (c0, c1, st), AZK2

flips a coin b̃� {0, 1} and returns
(
xb̃, π

NIZK
b̃

)
.

If the b̃’s extraction fails, AZK2
wins the extraction game. Hence,

PrH3 [BE] ≤ 2 · AdvNIZK-ext2
NIZK,AZK2

. (6.14)

For b̃ ∈ {0, 1}, let BS,b̃ be the event that (xb̃, wb̃) ∈ R and ek sPKE
ib̃

is not
contained in an answer from OG to A1, and let BS be the union of BS,0
and BS,1. We next show that if BS occurs, the adversary found a forgery
for the signature scheme.

Claim 1. There exists a probabilistic algorithm ASig such that

PrH3 [BS] ≤ 2 · AdvSig-EUF-CMA
Sig,ASig

. (6.15)

Proof of claim. On input vkSig, ASig emulate an execution of H3, where
vkSig is used in mskACE and spACE. Queries (i, sen) by A1 to the oracle OG

172 CHAPTER 6. ACCESS CONTROL ENCRYPTION

are answered by executing ACE.Gen (with FK replaced by U) where σSig
i

is generated using the signing oracle of ExpSig-EUF-CMA
E,A . After extracting

w0 and w1, ASig flips a coin b̃� {0, 1} and returns
([

ek sPKE
ib̃

, vkSig
ib̃

]
, σSig
ib̃

)
.

If BS,b̃ occurs,
[
ek sPKE
ib̃

, vkSig
ib̃

]
was not queried to the signing oracle and

(xb̃, wb̃) ∈ R. The latter implies that σSig
ib̃

is a valid signature and hence
ASig successfully forged a signature. We conclude

PrH3 [BS] ≤ 2 ·
(
1

2
PrH3 [BS,0] +

1

2
PrH3 [BS,1]

)
= 2 · AdvSig-EUF-CMA

Sig,ASig
. ♦

Let H4 be identical to H3 with the difference that we replace for
k ∈ {0, 1} and j ∈ J , mk,j ← ACE.Dec

(
ACE.Gen(msk , j, rec), c′k

)
by

mk,j ←

⎧⎪⎨⎪⎩
mk, ek sPKE

j = ek sPKE
ik

for
(
ek sPKE
j , dk sPKE

j

)
=

sPKE.Gen
(
msk sPKE;U([j, 0])

)
,

⊥, else,
(6.16)

where ek sPKE
ik

are the extracted keys. Note that if Vk, ¬BE , and ¬BS occur,
we have c′k = San(spsPKE, c̃k), c̃k = sPKE.Enc

(
ek sPKE
ik

,mk; rk
)
, and ek sPKE

ik

was generated by OG. Hence, for j ∈ J with ek sPKE
j = ek sPKE

ik
, we have

ACE.Dec
(
ACE.Gen(msk , j, rec), c′k

)
= mk by the correctness of the sPKE

scheme, i.e., mk,j = mk in both H3 and H4. For other j ∈ J , decryption
only yields a message different from ⊥ if robustness of the sPKE scheme
is violated. Since |J | ≤ qR1

+ qR2
, this implies for V := V0 ∩ V1,

PrH3 [WACE | V ∩ ¬BE ∩ ¬BS]− PrH4 [WACE | V ∩ ¬BE ∩ ¬BS]
≤ 2(qR1

+ qR2
)AdvsPKE-USROB

sPKE,Arob
,

(6.17)

where Arob emulates the experiment and outputs c̃k for a uniformly chosen
k ∈ {0, 1}, i such that the i-th query to the key-generation oracle yields
ek sPKE
ik

, and a uniformly chosen j.5
We finally construct an adversary AsPKE against the sanitization

security of sPKE. On input (spsPKE, ek sPKE
0 , ek sPKE

1), AsPKE initializes
iq0 , iq1 ← ⊥, kq ← 1, chooses distinct q0, q1 � {1, . . . , qS1 + qR1 + qD1}

5Note that robustness is only defined for encryption and decryption keys generated
by sPKE.Gen. Hence, it is important to also condition on ¬BS .

6.6. CONSTRUCTION OF AN ACE SCHEME 173

uniformly at random, executes
(
vkSig, skSig

)
← Sig.Gen(1κ), and

(
crsNIZK,

ξNIZK
)
← ENIZK

1 (1κ), and gives spACE :=
(
spsPKE, vkSig, crsNIZK

)
to A1. It

emulates the oracles for A1 as follows.

OG(·, ·): On query (i, sen), if kq /∈ {q0, q1} and i /∈ {iq0 , iq1}, generate
an encryption key

(
vkSig, ek sPKE

i , skSig
i , σSig

i , crsNIZK
)

as H4, where(
ek sPKE
i , dk sPKE

i

)
is obtained via OG and remembered for future

queries. If kq = ql or i = iql for some l ∈ {0, 1}, replace ek sPKE
i by

ek sPKE
l and set iql ← i. In both cases, set kq ← kq + 1 at the end.

On query (j, rec), if kq /∈ {q0, q1} and j /∈ {iq0 , iq1}, obtain a
decryption key from OG, remember it, and set kq ← kq + 1. If
kq = ql or j = iql for some l ∈ {0, 1}, then return ⊥ and set
kq ← kq + 1.

OSD(·, ·): On query
(
j, c =

(
c̃, πNIZK

))
, if kq /∈ {q0, q1} and j /∈ {iq0 , iq1},

then execute c′ ← ACE.San(spACE, c), generate a decryption key
dkACE

j as above, decrypt c′ using dkACE
j , and return the resulting

message. If kq = ql or j = iql for some l ∈ {0, 1}, set iql ← j, if
NIZK.Ver

(
crsNIZK, x :=

(
vkSig, c̃,

)
, πNIZK

)
= 0, return ⊥, otherwise,

use the oracle OSDl
of the sPKE-sanitization experiment to obtain

a decryption of c̃ and return it. In all cases, set kq ← kq + 1 at the
end.

When A1 returns
(
c0 =

(
c̃0, π

NIZK
0

)
, c1 =

(
c̃1, π

NIZK
1

)
, st
)
, AsPKE veri-

fies the proofs πNIZK
0 and πNIZK

1 and extracts the witnesses to check the
events V , BE , and BS . Denote by Q the event that ek sPKE

i0 , ek sPKE
i1 ∈

{ek sPKE
0 , ek sPKE

1 }, where ek sPKE
i0 , ek sPKE

i1 are the extracted keys. Note that
if V , ¬BE , and ¬BS occur, both ek sPKE

i0 and ek sPKE
i1 have been returned

by OG to A1. This implies

PrExp
sPKE-SAN-CCA
sPKE,AsPKE [Q | V ∩ ¬BE ∩ ¬BS] ≥ 1/(qS1 + qR1 + qD1)

2. (6.18)

If Q, V , ¬BE , and ¬BS occur, AsPKE returns (c̃0, c̃1) to the challenger of
the sPKE-sanitization experiment to obtain the sanitized ciphertext c′

b̃
.

It then gives
(
st , c′

b̃

)
to A2 and emulates the oracles as above. After A2

returned the bit b′, AsPKE returns b′′ ← b′. If Q ∩ V ∩ ¬BE ∩ ¬BS does
not occur, AsPKE runs c̄ ← sPKE.Enc(ek sPKE

0 , m̄) for an arbitrary fixed

174 CHAPTER 6. ACCESS CONTROL ENCRYPTION

message m̄ and returns (c0 := c̄, c1 := c̄) to the challenger. After receiving
back a sanitized ciphertext c′

b̃
, it returns a uniform bit b′′ � {0, 1}.

Let WsPKE be the event that AsPKE wins, i.e.,

WsPKE :=
[
b′′ = b̃ ∧ ∃j, j′ ∈ {0, 1} msPKE

0,j ̸= ⊥ ≠ msPKE
1,j′)

)]
,

where the messages refer to the ones generated by ExpsPKE-SAN-CCA
sPKE,AsPKE

. Note
that if Q ∩ V ∩ ¬BE ∩ ¬BS does not occur, we have msPKE

0,0 = msPKE
1,0 =

m̄ ̸= ⊥ by the correctness of sPKE, and thus

PrExp
sPKE-SAN-CCA
sPKE,AsPKE [WsPKE | ¬(Q ∩ V ∩ ¬BE ∩ ¬BS)] =

1

2
. (6.19)

Next consider the case that the event Q ∩ V ∩ ¬BE ∩ ¬BS occurs. In
this case, the view of A is identical to the one in H4 with b = b̃, as
long as the emulated OG never returns ⊥. Moreover, if A wins, we
have mH4

0,j = mH4
1,j = ⊥ for all j ∈ JH4 , where the messages here refer

to the ones in H4, generated according to (6.16), and JH4 is the set
of all j such that A1 or A2 issued the query (j, rec) to the oracle OG.
Therefore, OG is never gets a query for which it returns ⊥ in this case.
The event Q ∩ V ∩ ¬BE implies that the ciphertexts are encryptions of
some message under ek sPKE

0 or ek sPKE
1 . Correctness of sPKE now implies

that msPKE
0,0 ̸= ⊥ ≠ msPKE

1,0 , i.e., the winning condition for AsPKE is satisfied.
We can conclude that

PrExp
sPKE-SAN-CCA
sPKE,AsPKE [WsPKE | Q ∩ V ∩ ¬BE ∩ ¬BS]

≥ PrH4 [WACE | V ∩ ¬BE ∩ ¬BS].
(6.20)

For brevity, we introduce

pG := PrExp
sPKE-SAN-CCA
sPKE,AsPKE [Q ∩ V ∩ ¬BE ∩ ¬BS].

Putting our results together, we obtain

PrExp
sPKE-SAN-CCA
sPKE,AsPKE [WsPKE]

= PrExp
sPKE-SAN-CCA
sPKE,AsPKE [WsPKE | Q ∩ V ∩ ¬BE ∩ ¬BS] · pG

+ PrExp
sPKE-SAN-CCA
sPKE,AsPKE [WsPKE | ¬(Q ∩ V ∩ ¬BE ∩ ¬BS)] · (1− pG)

(6.19)
= PrExp

sPKE-SAN-CCA
sPKE,AsPKE [WsPKE | Q ∩ V ∩ ¬BE ∩ ¬BS] · pG +

1

2
(1− pG).

6.6. CONSTRUCTION OF AN ACE SCHEME 175

This implies

PrExp
sPKE-SAN-CCA
sPKE,AsPKE [WsPKE | Q ∩ V ∩ ¬BE ∩ ¬BS]

=
1

pG

[
PrExp

sPKE-SAN-CCA
sPKE,AsPKE [WsPKE]−

1

2
(1− pG)

]
=

1

2 pG
· AdvsPKE-SAN-CCA

sPKE,AsPKE
+

1

2
.

(6.21)

Furthermore, using that we defined H0 = ExpACE-SAN-CCA
ACE,A , the definitions

of WACE and the sanitization advantage, and equations (6.12) and (6.13),
we obtain

AdvACE-SAN-CCA
ACE,A = 2 · PrH0 [WACE]− 1

= 2 ·
(
AdvPRFF,APRF

+ AdvNIZK-ext1
NIZK,AZK1

+ PrH3 [WACE]
)
− 1.

Since the events BE , ¬BE ∩ BS , and ¬BE ∩ ¬BS partition the sample
space, the law of total probability together with our results from above
implies

PrH3 [WACE] = PrH3 [WACE ∩BE] + PrH3 [WACE ∩ ¬BE ∩BS]
+ PrH3 [WACE ∩ ¬BE ∩ ¬BS]

≤ PrH3 [BE] + PrH3 [BS] + PrH3 [WACE ∩ ¬BE ∩ ¬BS]
(6.14),(6.15)
≤ 2 · AdvNIZK-ext2

NIZK,AZK2
+ 2 · AdvSig-EUF-CMA

Sig,ASig

+ PrH3 [WACE ∩ ¬BE ∩ ¬BS].

Note that the event WACE implies c′0 ≠ ⊥ and c′1 ̸= ⊥ and thus also the
event V because if the verification fails, the algorithm ACE.San always
returns ⊥. Therefore, we can conclude that WACE =WACE ∩ V . We thus
have

PrH3 [WACE ∩ ¬BE ∩ ¬BS]
= PrH3 [WACE ∩ V ∩ ¬BE ∩ ¬BS]
= PrH3 [WACE | V ∩ ¬BE ∩ ¬BS] · PrH3 [V ∩ ¬BE ∩ ¬BS].

176 CHAPTER 6. ACCESS CONTROL ENCRYPTION

Using results from above, we further have

PrH3 [WACE | V ∩ ¬BE ∩ ¬BS]
(6.17)
≤ PrH4 [WACE | V ∩ ¬BE ∩ ¬BS]  
(6.20)
≤ Pr

ExpsPKE-SAN-CCA
sPKE,AsPKE [WsPKE|Q∩V ∩¬BE∩¬BS]

+ 2(qR1 + qR2) · Adv
sPKE-USROB
sPKE,Arob

(6.21)
≤ 1

2 pG
· AdvsPKE-SAN-CCA

sPKE,AsPKE
+

1

2
+ 2(qR1

+ qR2
) · AdvsPKE-USROB

sPKE,Arob
.

Since PrH3 [V ∩ ¬BE ∩ ¬BS] = PrExp
sPKE-SAN-CCA
sPKE,AsPKE [V ∩ ¬BE ∩ ¬BS], we have

PrH3 [V ∩ ¬BE ∩ ¬BS]
pG

=
PrExp

sPKE-SAN-CCA
sPKE,AsPKE [V ∩ ¬BE ∩ ¬BS]

Pr
ExpsPKE-SAN-CCA

sPKE,AsPKE [Q ∩ V ∩ ¬BE ∩ ¬BS]

=
(
PrExp

sPKE-SAN-CCA
sPKE,AsPKE [Q | V ∩ ¬BE ∩ ¬BS]

)−1
(6.18)
≤ (qS1 + qR1 + qD1)

2.

Therefore,

PrH3 [WACE ∩ ¬BE ∩ ¬BS] ≤
PrH3 [V ∩ ¬BE ∩ ¬BS]

2 pG
· AdvsPKE-SAN-CCA

sPKE,AsPKE

+
1

2
+ 2(qR1 + qR2) · Adv

sPKE-USROB
sPKE,Arob

≤ 1

2
· (qS1

+ qR1
+ qD1

)2 · AdvsPKE-SAN-CCA
sPKE,AsPKE

+
1

2
+ 2(qR1

+ qR2
) · AdvsPKE-USROB

sPKE,Arob
.

This implies

AdvACE-SAN-CCA
ACE,A ≤ 2 · AdvPRFF,APRF

+ 2 · AdvNIZK-ext1
NIZK,AZK1

+ 4 · AdvNIZK-ext2
NIZK,AZK2

+ 4 · AdvSig-EUF-CMA
Sig,ASig

+ (qS1 + qR1 + qD1)
2 · AdvsPKE-SAN-CCA

sPKE,AsPKE

+ 4(qR1
+ qR2

) · AdvsPKE-USROB
sPKE,Arob

and concludes the proof.

6.6. CONSTRUCTION OF AN ACE SCHEME 177

We next prove non-detection of fresh encryptions, which follows from
ciphertext unpredictability of the underlying sPKE scheme and the security
of the PRF.

Lemma 6.6.6. Let ACE be the scheme from above and let A be an
attacker on the non-detection of fresh encryptions that makes at most q
queries to the oracle OG. Then, there exist probabilistic algorithms APRF

and AsPKE (which are both roughly as efficient as emulating an execution
of ExpACE-NDTCT-FENC

ACE,A) such that

AdvACE-NDTCT-FENC
ACE,A ≤ AdvPRFF,APRF

+ (q + 1) · AdvsPKE-UPD-CTXT
sPKE,AsPKE

.

Proof. Let H0 := ExpACE-NDTCT-FENC
ACE,A and H1 be as H0 where FK is

replaced by a truly uniform random function U . As in the proof of
Lemma 6.6.3, one can show that there exists APRF such that

PrH0 [b = 1]− PrH1 [b = 1] = AdvPRFF,APRF
.

The adversary AsPKE on input
(
spsPKE, ek sPKE, dk sPKE

)
, sets iq0 ←

⊥, kq ← 1, samples q0 � {0, . . . , q}, runs
(
vkSig, skSig

)
← Sig.Gen(1κ),

crsNIZK ← NIZK.Gen(1κ), and gives spACE :=
(
spsPKE, vkSig, crsNIZK

)
to A.

It emulates the oracle OG for A1 as follows. On query (i, t), if kq ̸= q0 and
i ≠ iq0 , then generate an encryption key ekACE

i :=
(
vkSig, ek sPKE

i , vkSig
i ,

skSig
i , σSig

i , crsNIZK
)

and a decryption key dkACE
i := dk sPKE

i as H1 does,
where

(
ek sPKE
i , dk sPKE

i

)
is obtained via OG and remembered for future

queries. Return ekACE
i if t = sen, and dkACE

i if t = rec. If kq = q0 or
i = iq0 , replace ek sPKE

i and dk sPKE
i by ek sPKE and dk sPKE, respectively, and

set iq0 ← i. In both cases, set kq ← kq + 1 at the end. When A returns(
m, i, c =

(
c̃, πNIZK

))
, AsPKE returns

(
m, c̃

)
.

Let Q be the event that iq0 = i, or q0 = 0 and A does not make the
query (i, sen) or (i, rec) to OG. Note that the probability of Q is 1/(q+1)
and since b = ACE.DMod

(
spACE,

(
c̃, πNIZK

)
,
(
c̃∗, πNIZK∗)) = 1 if and only

if c̃∗ = c̃, we have

PrExp
sPKE-UPD-CTXT
sPKE,AsPKE [c = c∗ | Q] = PrH1 [b = 1].

178 CHAPTER 6. ACCESS CONTROL ENCRYPTION

Hence, we can conclude

AdvACE-NDTCT-FENC
ACE,A = PrH0

[
b = 1

]
= AdvPRFF,APRF

+ PrH1 [b = 1]

= AdvPRFF,APRF
+ PrExp

sPKE-UPD-CTXT
sPKE,AsPKE [c = c∗ | Q]

≤ AdvPRFF,APRF
+ (q + 1) · PrExp

sPKE-UPD-CTXT
sPKE,AsPKE [c = c∗]

= AdvPRFF,APRF
+ (q + 1) · AdvsPKE-UPD-CTXT

sPKE,AsPKE
.

We finally prove the uniform decryption and role-respecting properties
of our scheme.

Lemma 6.6.7. Let ACE be the scheme from above and let A be an attacker
on the uniform-decryption security that makes at most qR queries of the
form (·, rec) to the oracle OG. Then, there exist probabilistic algorithms
APRF, AZK1

, AZK2
, ASig, and Arob (which are all roughly as efficient as

emulating an execution of ExpACE-URRACE,A) such that

AdvACE-UDEC
ACE,A ≤ AdvPRFF,APRF

+ AdvNIZK-ext1
NIZK,AZK1

+ AdvNIZK-ext2
NIZK,AZK2

+ AdvSig-EUF-CMA
Sig,ASig

+ qR · AdvsPKE-USROB
sPKE,Arob

.

Proof. Note that we can assume without loss of generality that A does
not use the oracle OE since obtaining encryption keys from OG does not
decrease the advantage. Let H0 := ExpACE-URR

ACE,A and let WUDec be the event
that A wins the uniform-decryption game:

WUDec :=
[
∃j, j′ ∈ J mj ̸= ⊥ ≠ mj′ ∧ mj ̸= mj′

]
.

As in the proof of Lemma 6.6.5, let H1 be as H0 with FK replaced by a
uniform random function U , let H2 be as H1 with crsNIZK being generated
by ENIZK

1 , and let H3 be as H2, but after A returns c =
(
c̃, πNIZK

)
, a

witness
w :=

(
ek sPKE
iw ,mw, rw, vk

Sig
iw
, σSig
iw
, σSig
c,w

)
for the statement x :=

(
vkSig, c̃

)
is extracted from the proof πNIZK by

ENIZK
2 . We define the events V :=

[
NIZK.Ver

(
crsNIZK, x, πNIZK

)
= 1

]
,

BE :=
[
V ∧ (x,w) /∈ R

]
, and BS as the event that (x,w) ∈ R and ek sPKE

iw
is not contained in an answer from OG to A. Is can be shown as in the

6.6. CONSTRUCTION OF AN ACE SCHEME 179

proof of Lemma 6.6.5 that there exist APRF, AZK1
, AZK2

, and ASig such
that

PrH0 [WUDec]− PrH3 [WUDec] = AdvPRFF,APRF
+ AdvNIZK-ext1

NIZK,AZK1
,

PrH3 [BE] ≤ AdvNIZK-ext2
NIZK,AZK2

,

PrH3 [BS] ≤ AdvSig-EUF-CMA
Sig,ASig

,

where the last inequality uses that A does not query the oracle OE . Now
let H4 be as H3 where mj ← ACE.Dec

(
ACE.Gen(msk , j, rec), c′

)
is for

j ∈ J replaced by

mj ←

⎧⎪⎨⎪⎩
mw, ek sPKE

j = ek sPKE
iw for

(
ek sPKE
j , dk sPKE

j

)
=

sPKE.Gen
(
msk sPKE;U([j, 0])

)
,

⊥, else.

One can show as in the proof of Lemma 6.6.5 that there exists a proba-
bilistic algorithm Arob such that

PrH3 [WUDec | V ∩ ¬BE ∩ ¬BS]− PrH4 [WUDec | V ∩ ¬BE ∩ ¬BS]
≤ qR · AdvsPKE-USROB

sPKE,Arob
.

Note that A cannot win in H4 since if mj ≠ ⊥ ̸= mj′ , then mj = mw =
mj′ . This implies that

PrH3 [WUDec | V ∩ ¬BE ∩ ¬BS] ≤ qR · AdvsPKE-USROB
sPKE,Arob

.

Note that A can only win in H3 if V occurs since otherwise c′ = ⊥ and
consequently mj = ⊥ for all j ∈ J . We therefore obtain

PrH3 [WUDec] = PrH3 [WUDec ∩ V ∩BE] + PrH3 [WUDec ∩ V ∩ ¬BE ∩BS]
+ PrH3 [WUDec ∩ V ∩ ¬BE ∩ ¬BS]

≤ PrH3 [BE] + PrH3 [BS] + PrH3 [WUDec | V ∩ ¬BE ∩ ¬BS]

≤ AdvNIZK-ext2
NIZK,AZK2

+ AdvSig-EUF-CMA
Sig,ASig

+ qR · AdvsPKE-USROB
sPKE,Arob

.

Together with PrH0 [WUDec] − PrH3 [WUDec] = AdvPRFF,APRF
+ AdvNIZK-ext1

NIZK,AZK1
,

this concludes the proof.

180 CHAPTER 6. ACCESS CONTROL ENCRYPTION

Lemma 6.6.8. Let ACE be the scheme from above and let A be an
attacker on the role-respecting security that makes at most qS queries
of the form (·, sen) and at most qR queries of the form (·, rec) to the
oracle OG, and at most qE queries to the oracle OE. Then, there exist
probabilistic algorithms APRF, AZK1 , AZK2 , ASig, and Arob (which are all
roughly as efficient as emulating an execution of ExpACE-URRACE,A) such that

AdvACE-RRACE,A ≤ AdvPRFF,APRF
+ AdvNIZK-ext1

NIZK,AZK1
+ AdvNIZK-ext2

NIZK,AZK2

+ (qE + 1) · AdvSig-EUF-CMA
Sig,ASig

+ qR · AdvsPKE-USROB
sPKE,Arob

+ (qS + qR + qE)
2 · ColeksPKE.

Proof. Let H0, . . . ,H4, V :=
[
NIZK.Ver

(
crsNIZK, x, πNIZK

)
= 1

]
, and

BE :=
[
V ∧ (x,w) /∈ R

]
for the statement x :=

(
vkSig, c̃

)
and the

extracted witness w :=
(
ek sPKE
iw ,mw, rw, vk

Sig
iw
, σSig
iw
, σSig
c,w

)
be defined as in

the proof of Lemma 6.6.7, and let WRR be the event that A wins the
role-respecting game:

WRR :=
[
c′ ̸= ⊥ ∧ dct = false

∧ ¬
(
∃i ∈ I ∀j ∈ J (mj ̸= ⊥ ↔ P (i, j) = 1)

)]
.

As in that proof, there exist APRF, AZK1
, and AZK2

such that

PrH0 [WRR]− PrH3 [WRR] = AdvPRFF,APRF
+ AdvNIZK-ext1

NIZK,AZK1
, (6.22)

and
PrH3 [BE] ≤ AdvNIZK-ext2

NIZK,AZK2
. (6.23)

Let EG be the event that the extracted key ek sPKE
iw is contained in an answer

from OG to A. One can show similarly as in the proof of Lemma 6.6.5
that there exists an algorithm Arob such that

PrH3 [WRR ∩ V ∩ ¬BE ∩ EG]− PrH4 [WRR ∩ V ∩ ¬BE ∩ EG]
≤ qR · AdvsPKE-USROB

sPKE,Arob
.

(6.24)

We first show that if V , ¬BE , and EG occur in H4, A can only win if two
encryption keys generated by sPKE.Gen are equal, which happens only
with negligible probability.

6.6. CONSTRUCTION OF AN ACE SCHEME 181

Claim 1. We have

PrH4 [WRR ∩ V ∩ ¬BE ∩ EG] ≤ (qS + qR + qE)
2 · ColeksPKE.

Proof of claim. If V , ¬BE , and EG occur, there is an i0 ∈ I such that
ek sPKE
i0 = ek sPKE

iw for
(
ek sPKE
i0 , dk sPKE

i0

)
= sPKE.Gen

(
msk sPKE;U([i0, 0])

)
.

Using P (i, j) = 1 ⇔ i = j, we have that A only wins if there exists
j ∈ J \ {i0} such that mj ̸= ⊥ or if i0 ∈ J and mi0 = ⊥. Because in H4,
mj for j ∈ J is equal to mw if ek sPKE

j = ek sPKE
iw for

(
ek sPKE
j , dk sPKE

j

)
=

sPKE.Gen
(
msk sPKE;U([j, 0])

)
, and ⊥ otherwise, we have mi0 ≠ ⊥ if i0 ∈ J .

Moreover, for i0 ̸= j ∈ J , we have mj = ⊥ unless ek sPKE
j = ek sPKE

i0 . This
means that A can only win if sPKE.Gen generates the same encryption
key for the randomness values U([i0, 0]) and U([j, 0]) for some i0 ̸= j ∈ J .
Since at most qS + qR + qE key pairs are generated in the experiment,
there are at most (qS + qR + qE)

2 pairs of encryption keys that could
collide. For each such pair, the collision probability is bounded by ColeksPKE
because for i ̸= i′, U([i, 0]) and U([i′, 0]) are independent and uniformly
distributed. Hence, the claim follows. ♦

Now let EE be the event that A made a query (i, ·) to OE such that(
vkSig
i , ek sPKE

i

)
=
(
vkSig
iw
, ek sPKE

iw

)
for
(
vkSig
i , skSig

i

)
= Sig.Gen

(
1κ;U([i, 1])

)
and

(
ek sPKE
i , dk sPKE

i

)
= sPKE.Gen

(
msk sPKE;U([i, 0])

)
. We next show that

if A wins and V ∩ ¬BE ∩ ¬EG ∩ EE occurs, A forged a signature on c̃.

Claim 2. There exists a probabilistic algorithm ASig1 such that

PrH3 [WRR ∩ V ∩ ¬BE ∩ ¬EG ∩ EE] ≤ qE · AdvSig-EUF-CMA
Sig,ASig1

.

Proof of claim. On input vkSig∗, the adversary ASig1 initializes the values
iq0 ← ⊥, kq ← 1, chooses q0 � {1, . . . , qE} uniformly at random, gen-
erates

(
spsPKE,msk sPKE

)
← sPKE.Setup(1κ),

(
vkSig, skSig

)
← Sig.Gen(1κ),

and
(
crsNIZK, ξNIZK

)
← ENIZK

1 (1κ) as H3, and gives spACE :=
(
spsPKE,

vkSig, crsNIZK
)

to A. It emulates the oracles for A as follows.

OG(·, ·): Generate the requested key exactly as H3 does and return it.

OE(·, ·): On query
(
i,m

)
, if kq ̸= q0 and i ̸= iq0 , generate an encryp-

tion key ekACE
i as H3, encrypt m using ekACE

i , and return the

182 CHAPTER 6. ACCESS CONTROL ENCRYPTION

resulting ciphertext. If kq = q0 or i = iq0 , then set iq0 ← i,
execute

(
ek sPKE
i , dk sPKE

i

)
← sPKE.Gen

(
msk sPKE;U([i, 0])

)
, σSig

i ←
Sig.Sign

(
skSig,

[
ek sPKE
i , vkSig

i

]
;U([i, 2])

)
, and set vkSig

i := vkSig∗. Af-
terwards, sample randomness r, run c̃ ← sPKE.Enc

(
ek sPKE
i ,m; r

)
,

query the signing oracle on c̃ to obtain a signature σSig
c , and execute

πNIZK ← NIZK.Prove
(
crsNIZK, x :=

(
vkSig, c̃

)
,

w :=
(
ek sPKE
i ,m, r, vkSig

i , σSig
i , σSig

c

))
.

Finally, return the ciphertext c :=
(
c̃, πNIZK

)
. In all cases, set

kq ← kq + 1 at the end.

When A returns c =
(
c̃, πNIZK

)
, ASig1 extracts a witness

w :=
(
ek sPKE
iw ,mw, rw, vk

Sig
iw
, σSig
iw
, σSig
c,w

)
← ENIZK

2

(
crsNIZK, ξNIZK,

x :=
(
vkSig, c̃

)
, πNIZK

)
.

It finally returns the forgery attempt
(
c̃, σSig

c,w

)
.

Note that if A wins the role-respecting game, then we have for all ĉ
that OE has returned that ACE.DMod

(
spACE, ĉ, c

)
= 0. Since ACE.DMod

checks for equality of sPKE ciphertexts, this means that ASig1 has not
issued the query c̃ to its signing oracle. Furthermore, if the extraction and
verification succeed, σSig

c,w is a valid signature for c̃. Let Q be the event that
ek sPKE
iq0

= ek sPKE
iw and vkSig

iq0
= vkSig

iw
. If Q and V ∩¬BE ∩¬EG ∩EE occur,

A has not requested ekACE
iq0

from OG and hence ASig1 perfectly emulates
H3. This implies

Pr
ExpSig-EUF-CMA

Sig,ASig1 [WSig | V ∩ ¬BE ∩ ¬EG ∩ EE ∩Q]

≥ PrH3 [WRR | V ∩ ¬BE ∩ ¬EG ∩ EE],

where WSig denotes the event that ASig1 wins in the signature forgery
game. We further have

Pr
ExpSig-EUF-CMA

Sig,ASig1 [Q | V ∩ ¬BE ∩ ¬EG ∩ EE] = 1/qE .

6.6. CONSTRUCTION OF AN ACE SCHEME 183

This implies for pG := Pr
ExpSig-EUF-CMA

Sig,ASig1 [V ∩ ¬BE ∩ ¬EG ∩ EE ∩Q],

AdvSig-EUF-CMA
Sig,ASig1

= Pr
ExpSig-EUF-CMA

Sig,ASig1 [WSig]

≥ Pr
ExpSig-EUF-CMA

Sig,ASig1 [WSig | V ∩ ¬BE ∩ ¬EG ∩ EE ∩Q] · pG
≥ PrH3 [WRR | V ∩ ¬BE ∩ ¬EG ∩ EE] · pG

= PrH3 [WRR ∩ V ∩ ¬BE ∩ ¬EG ∩ EE] ·
pG

PrH3 [V ∩ ¬BE ∩ ¬EG ∩ EE]
.

Since [V ∩ ¬BE ∩ ¬EG ∩ EE] in H3 has the same probability as in
ExpSig-EUF-CMA

Sig,ASig1
, we have

pG

PrH3 [V ∩ ¬BE ∩ ¬EG ∩ EE]
= Pr

ExpSig-EUF-CMA
Sig,ASig1 [Q | V ∩ ¬BE ∩ ¬EG ∩ EE]

=
1

qE
,

which implies the claim. ♦

Finally, we show that if A wins and V ∩ ¬BE ∩ ¬EG ∩ ¬EE occurs,
A forged a signature on

[
ek sPKE
iw , vkSig

iw

]
.

Claim 3. There exists a probabilistic algorithm ASig2 such that

PrH3 [WRR ∩ V ∩ ¬BE ∩ ¬EG ∩ ¬EE] ≤ AdvSig-EUF-CMA
Sig,ASig2

.

Proof of claim. The algorithm ASig2 on input vkSig∗ executes
(
spsPKE,

msk sPKE
)
← sPKE.Setup(1κ) and

(
crsNIZK, ξNIZK

)
← ENIZK

1 (1κ), and gives
spACE :=

(
spsPKE, vkSig∗, crsNIZK

)
to A. It emulates the oracles for A as

follows.

OG(·, ·): Generate the requested key as H3, but obtain the signature σSig
i

via a query to the signing oracle. Remember the signature and when
asked again for the same i, reuse σSig

i instead of issuing another
query. This ensures that the oracle behaves as the one in H3 and
returns the same key for repeated queries.

184 CHAPTER 6. ACCESS CONTROL ENCRYPTION

OE(·, ·): On query
(
i,m

)
, generate an encryption key as for a query

(i, sen) to OG, encrypt m using that key, and return the resulting
ciphertext.

When A returns c =
(
c̃, πNIZK

)
, ASig1 extracts a witness

w :=
(
ek sPKE
iw ,mw, rw, vk

Sig
iw
, σSig
iw
, σSig
c,w

)
← ENIZK

2

(
crsNIZK, ξNIZK,

x :=
(
vkSig, c̃

)
, πNIZK

)
.

It finally returns the forgery attempt
([
ek sPKE
iw , vkSig

iw

]
, σSig
iw

)
. Note that

if WRR ∩ V ∩ ¬BE ∩ ¬EG ∩ ¬EE occurs, σSig
iw

is a valid signature for[
ek sPKE
iw , vkSig

iw

]
and ASig2 has not requested a signature for this value from

the signing oracle. Therefore, ASig2 wins the forgery game and thus the
probability of that event is bounded by AdvSig-EUF-CMA

Sig,ASig2
. ♦

Combining Claims 2 and 3, we obtain

PrH3 [WRR ∩ V ∩ ¬BE ∩ ¬EG] ≤ qE · AdvSig-EUF-CMA
Sig,ASig1

+ AdvSig-EUF-CMA
Sig,ASig2

.

Let ASig be the algorithm that runs ASig1 with probability qE
qE+1 and ASig2

with probability 1
qE+1 . We then have

AdvSig-EUF-CMA
Sig,ASig

=
qE

qE + 1
· AdvSig-EUF-CMA

Sig,ASig1
+

1

qE + 1
· AdvSig-EUF-CMA

Sig,ASig2

≥ 1

qE + 1
· PrH3 [WRR ∩ V ∩ ¬BE ∩ ¬EG]. (6.25)

Note that WRR implies c′ ≠ ⊥ and therefore V , i.e., the events WRR and
WRR ∩ V are equal. Thus,

PrH3 [WRR] = PrH3 [WRR ∩BE] + PrH3 [WRR ∩ V ∩ ¬BE ∩ EG]
+ PrH3 [WRR ∩ V ∩ ¬BE ∩ ¬EG]

(6.23),(6.24),(6.25)
≤ AdvNIZK-ext2

NIZK,AZK2
+ qR · AdvsPKE-USROB

sPKE,Arob

+ PrH4 [WRR ∩ V ∩ ¬BE ∩ EG]

+ (qE + 1) · AdvSig-EUF-CMA
Sig,ASig

.

Combined with Claim 1 and equation (6.22), this concludes the proof.

6.6. CONSTRUCTION OF AN ACE SCHEME 185

6.6.2 Lifting Equality to Disjunction of Equalities

We finally show how an ACE scheme for equality, as the one from Sec-
tion 6.6.1, can be used to construct a scheme for the policy PDEq : Dℓ ×
Dℓ → {0, 1} with

PDEq

(
x = (x1, . . . , xℓ),y = (y1, . . . , yℓ)

)
= 1 :⇐⇒

ℓ⋁
i=1

xi = yi,

where D is some finite set and ℓ ∈ N.6 This policy can for example
be used to implement the no read-up and now write-down principle
(P (i, j) = 1 ⇔ i ≤ j) from the Bell–LaPadula model [BL73] via an
appropriate encoding of the roles [FGKO17].

The intuition of our construction is as follows. A key for a role
x = (x1, . . . , xℓ) contains one key of the ACE scheme for equality for each
component xi of the role vector. To encrypt a message, it is encrypted
with each of these keys. To decrypt, one tries to decrypt each ciphertext
component with the corresponding key. If at least one component of the
sender and receiver roles match (i.e., if the policy is satisfied), one of the
decryptions is successful. So far, the construction is identical to the one
by Fuchsbauer et al. [FGKO17]. That construction is, however, not role-
respecting, since a dishonest sender with keys for more than one role can
arbitrarily mix the components of the keys for the encryption. Moreover,
the construction does not guarantee uniform decryption, because different
messages can be encrypted in different components. We fix these issues
using the same techniques we used in our construction of the scheme for
equality, i.e., we add a signature of the key vector to the encryption keys,
sign the ciphertexts, and require a zero-knowledge proof of knowledge
that a valid key combination was used to encrypt the same message for
each component and that all signatures are valid.

Our construction. Let ACE= be an ACE with modification detection
scheme for the equality predicate on D× [ℓ], let Sig be a signature scheme,
let F be a PRF, and let NIZK be a NIZK proof of knowledge system for

6In this section, we denote roles by x and y instead of i and j. To be compatible
with our definitions that consider policies [n] × [n] → {0, 1}, one needs to identify
elements of Dℓ with numbers in [n]. We will ignore this technicality to simplify the
presentation.

186 CHAPTER 6. ACCESS CONTROL ENCRYPTION

the language L := {x | ∃w (x,w) ∈ R}, where R is defined as follows:
for x =

(
vkSig, c1, . . . , cℓ

)
and w =

(
ekACE=

(x1,1)
, . . . , ekACE=

(xℓ,ℓ)
,m, r1, . . . , rℓ,

vkSig
x , σSig

x , σSig
c

)
, (x,w) ∈ R if and only if

ℓ⋀
i=1

ci = ACE=.Enc
(
ekACE=

(xi,i)
,m; ri

)
∧ Sig.Ver

(
vkSig

x , [c1, . . . , cℓ], σ
Sig
c

)
= 1

∧ Sig.Ver
(
vkSig,

[
ekACE=

(x1,1)
, . . . , ekACE=

(xℓ,ℓ)
, vkSig

x

]
, σSig

x

)
= 1.

We define an ACE scheme ACEDEq as follows:

Setup: On input a security parameter 1κ and the policy PDEq, the algo-
rithm ACEDEq.Setup picks a random key K for F and runs(

mskACE= , spACE=
)
← ACE=.Setup(1

κ),(
vkSig, skSig

)
← Sig.Gen(1κ),

crsNIZK ← NIZK.Gen(1κ).

It outputs the master secret key mskACEDEq :=
(
K,mskACE= , vkSig,

skSig, crsNIZK
)

and the sanitizer parameters spACEDEq :=
(
spACE= ,

vkSig, crsNIZK
)
.

Key generation: The algorithm ACEDEq.Gen on input a master secret
key mskACEDEq =

(
K,mskACE= , vkSig, skSig, crsNIZK

)
, a role x ∈ Dℓ,

and the type sen, generates

ekACE=

(xi,i)
← ACE=.Gen

(
mskACE= , (xi, i), sen

)
(for i ∈ [ℓ]),(

vkSig
x , skSig

x

)
← Sig.Gen(1κ;FK([x, 0])),

σSig
x ← Sig.Sign

(
skSig,

[
ekACE=

(x1,1)
, . . . , ekACE=

(xℓ,ℓ)
, vkSig

x

]
;

FK([x, 1])
)
,

and outputs the encryption key

ekACEDEq
x :=

(
vkSig, ekACE=

(x1,1)
, . . . , ekACE=

(xℓ,ℓ)
, vkSig

x , skSig
x , σSig

x , crsNIZK
)
;

on input mskACEDEq , a role y ∈ Dℓ, and rec, it generates for i ∈ [ℓ],

dkACE=

(yi,i)
← ACE=.Gen

(
mskACE= , (yi, i), rec

)
,

and outputs the decryption key dkACEDEq
y :=

(
dkACE=

(y1,1)
, . . . , dkACE=

(yℓ,ℓ)

)
.

6.6. CONSTRUCTION OF AN ACE SCHEME 187

Encryption: On input an encryption key ekACEDEq
x =

(
vkSig, ekACE=

(x1,1)
, . . . ,

ekACE=

(xℓ,ℓ)
, vkSig

x , skSig
x , σSig

x , crsNIZK
)

and a message m ∈ MACEDEq , the
algorithm ACEDEq.Enc samples randomness r1, . . . , rℓ and computes

ci ← ACE=.Enc
(
ekACE=

(xi,i)
,m; ri

)
(for i ∈ [ℓ]),

σSig
c ← Sig.Sign

(
skSig

x , [c1, . . . , cℓ]
)
,

πNIZK ← NIZK.Prove
(
crsNIZK, x :=

(
vkSig, c1, . . . , cℓ

)
,

w :=
(
ekACE=

(x1,1)
, . . . , ekACE=

(xℓ,ℓ)
,m, r1, . . . , rℓ, vk

Sig
x , σSig

x , σSig
c

))
.

It outputs the ciphertext c :=
(
c1, . . . , cℓ, π

NIZK
)
.

Sanitization: On input sanitizer parameters spACEDEq =
(
spACE= , vkSig,

crsNIZK
)

and a ciphertext c =
(
c1, . . . , cℓ, π

NIZK
)
, ACEDEq.San checks

whether NIZK.Ver
(
crsNIZK, x :=

(
vkSig, c1, . . . , cℓ

)
, πNIZK

)
= 1. If

this is the case, it runs c′i ← ACE=.San
(
ci
)

for i ∈ [ℓ]. If c′i ̸= ⊥
for all i ∈ [ℓ], it outputs the sanitized ciphertext c′ :=

(
c′1, . . . , c

′
ℓ

)
.

If the verification fails or any of the sanitized ciphertexts is ⊥, it
outputs ⊥.

Decryption: The algorithm ACEDEq.Dec on input a decryption key
dkACEDEq

y =
(
dkACE=

(y1,1)
, . . . , dkACE=

(yℓ,ℓ)

)
and a sanitized ciphertext c′ :=(

c′1, . . . , c
′
ℓ

)
, computes the message mi ← ACE=.Dec

(
dkACE=

(yi,i)
, c′i
)

for
i ∈ [ℓ]. If mi ̸= ⊥ for some i ∈ [ℓ], ACEDEq.Dec outputs the first
such mi; otherwise it outputs ⊥.

Modification detection: On input sanitizer parameters spACEDEq :=(
spACE= , vkSig, crsNIZK

)
and two ciphertexts c =

(
c1, . . . , cℓ, π

NIZK
)

and c̃ :=
(
c̃1, . . . , c̃ℓ, π̃

NIZK
)
, the algorithm ACEDEq.DMod checks for

i ∈ [ℓ] whether ACE=.DMod
(
spACE= , ci, c̃i

)
= 1. If this is the case

for some i ∈ [ℓ], it outputs 1; otherwise, it outputs 0.

Weak and strong anonymity. As we show below, our scheme enjoys
weak anonymity. It is easy to see that it does not have strong anonymity:
Given a decryption key for the role (1, 2), one can decrypt ciphertexts
encrypted under a key for the roles (1, 1) and (2, 2). One does, however,
also learn which of the two components decrypted successfully. If it is

188 CHAPTER 6. ACCESS CONTROL ENCRYPTION

the first one, the sender role must be (1, 1), if it is the second one, the
sender role must be (2, 2). For similar reasons, we do not achieve strong
sanitization security.

A similar construction can be used to achieve strong anonymity for
less expressive policies: If a sender role still corresponds to a vector
(x1, . . . , xℓ) ∈ Dℓ but a receiver role only to one component (j, y) ∈ [ℓ]×D,
one can consider the policy that allows to receive if xj = y. Now, we
do not need several components for the decryption key and the problem
sketched above disappears.

Proposition 6.6.9. If ACE= is correct and detectable, then ACEDEq from
above is correct and detectable. If ACE= is strongly detectable, then
ACEDEq is also strongly detectable. More precisely, for all probabilistic
algorithms A, there exist probabilistic algorithms Acorr, Adtct, A′dtct, and
Asdtct such that

AdvACE-CORR
ACEDEq,A ≤ AdvACE-CORR

ACE=,Acorr
+ (ℓ− 1) · AdvACE-DTCT

ACE=,Adtct
,

AdvACE-DTCT
ACEDEq,A ≤ ℓ · Adv

ACE-DTCT
ACE=,A′

dtct
,

AdvACE-sDTCT
ACEDEq,A ≤ ℓ · AdvACE-sDTCT

ACE=,Asdtct
.

Proof. We first prove correctness. Let A be a probabilistic algorithm
and let (m,x,y) with PDEq(x,y) = 1 be the output of A in an execution
of ExpACE-CORR

ACEDEq,A . Correctness of the signature scheme and completeness
of the NIZK imply that the verification in the sanitizer algorithm suc-
ceeds with probability 1. Note that PDEq(x,y) = 1 implies that there
exists i ∈ [ℓ] with xi = yi. Let i0 be the first such i. Then, A only
wins the correctness game if either ACE=.Dec

(
dkACE=

(yi0 ,i0)
, c′i0

)
̸= m, or

ACE=.Dec
(
dkACE=

(yi,i)
, c′i
)
̸= ⊥ for some i < i0. The probability of the

former event is bounded by AdvACE-CORR
ACE=,Acorr

where Acorr emulates this ex-
periment and returns

(
m, (xi0 , i0), (yi0 , i0)

)
. For the latter event, note

that there are at most ℓ − 1 such i, so the probability that ACE=.Dec
returns a message different from ⊥ for any of them can be bounded by
(ℓ−1) ·AdvACE-DTCT

ACEDEq,Adtct
for the adversary Adtct that emulates the experiment

and returns
(
m, (xi, i), (yi, i)

)
for a uniformly chosen i < i0.

To prove detectability, consider the adversary A′dtct that emulates an
execution of ExpACE-DTCT

ACEDEq,A and when A returns (m,x,y), A′dtct outputs
(m, (xi, i), (yi, i)) for a uniformly chosen i ∈ {1, . . . , ℓ}. Note that A only

6.6. CONSTRUCTION OF AN ACE SCHEME 189

wins if PDEq(x,y) = 0, which implies that xi ̸= yi for all i ∈ [ℓ]. In this
case, A wins if any of the ciphertext components decrypt to something
different from ⊥. Thus, A′dtct also wins if the component i was guesses
correctly, which happens with probability 1/ℓ. The proof for strong
detectability is similar, while Asdtct additionally outputs the randomness
used for encrypting the chosen component when the randomness output
by A is used to generate the whole ciphertext.

The following theorem summarizes the security properties we prove
for our scheme.

Theorem 6.6.10. If F is pseudorandom, NIZK is zero-knowledge and ex-
tractable, Sig is EUF-CMA secure, and ACE= is perfectly correct, strongly
detectable, has NDTCT-FENC, and is PRV-CCA, wANON-CCA, SAN-
CCA, RR, and UDEC secure, then the scheme ACEDEq from above has
NDTCT-FENC and is PRV-CCA, wANON-CCA, SAN-CCA, RR, and
UDEC secure.

We prove this theorem in a sequence of lemmata, which each prove
some of the individual properties. We begin by showing that privacy and
weak anonymity of the scheme follow from the corresponding properties
of the underlying scheme for equality and the zero-knowledge property of
the NIZK. Note that security of the PRF is not needed for this step since
the PRF is only used for the signatures, which are irrelevant for privacy
and anonymity.

Lemma 6.6.11. Let ACEDEq, be the scheme from above, let A = (A1,A2)
be a probabilistic algorithm. Then, there exist probabilistic algorithms AZK,
AACE, A′ZK, and A′ACE (which are all roughly as efficient as emulating an
execution of ExpACE-PRV-ANON-CCA

ACEDEq,A) such that

AdvACE-PRV-CCA
ACEDEq,A ≤ 2 · AdvNIZK-ZK

NIZK,AZK
+ ℓ · AdvACE-PRV-CCA

ACE=,AACE
,

AdvACE-wANON-CCA
ACEDEq,A ≤ 2 · AdvNIZK-ZK

NIZK,A′
ZK

+ ℓ · AdvACE-wANON-CCA
ACE=,A′

ACE
.

Proof. We only prove the statement about the privacy advantage. The
proof for weak anonymity is completely analogous. We can assume
without loss of generality that the adversary A ensures that x0 = x1

and P (x0,y) = 0 for all y ∈ J , since doing otherwise can only de-
crease the privacy advantage of A. Let H0 := ExpACE-PRV-ANON-CCA

ACEDEq,A

190 CHAPTER 6. ACCESS CONTROL ENCRYPTION

and let H1 be as H0 where we replace crsNIZK ← NIZK.Gen(1κ) by(
crsNIZK, τNIZK

)
← SNIZK

1 (1κ) in ACEDEq.Setup, and for the generation of
the challenge ciphertext c∗, we replace πNIZK ← NIZK.Prove

(
crsNIZK, x, w

)
in ACEDEq.Enc by πNIZK ← SNIZK

2

(
crsNIZK, τNIZK, x

)
. It can be shown as in

the proof of Lemma 6.6.3 that there exists a probabilistic algorithm AZK

such that

PrH0 [b′ = b]− PrH1 [b′ = b] = AdvNIZK-ZK
NIZK,AZK

. (6.26)

For k ∈ {0, . . . , ℓ}, we define H2,k as follows. It is identical to H1 except
that after the adversary A1 returns (m0,m1,x

0,x1, st), we replace the
ciphertext components in c∗ by ci ← ACE=.Enc

(
ekACE=

(x0
i ,i)
,m0; ri

)
for all

1 ≤ i ≤ k, and by ci ← ACE=.Enc
(
ekACE=

(x1
i ,i)
,m1; ri

)
for k < i ≤ ℓ. Note

that H2,0 corresponds to H1 with b = 1 and H2,ℓ corresponds to H1 with
b = 0.

Now consider the adversary AACE that on input sp chooses k0 �
{1, . . . , ℓ} uniformly at random and emulates an execution of H1. It
emulates the oracle OG by obtaining all the required sub-keys from its
own oracle OG. To emulate the oracle OSD, it first checks the NIZK proof
as ACEDEq.San does and if the verification succeeds, it uses its oracle OSD
to sanitize and decrypt all ciphertext components. As ACEDEq.Dec, it out-
puts the first message different from ⊥, or it outputs ⊥ if the verification
fails or if no such message exists. When A1 returns (m0,m1,x

0,x1, st),
AACE generates the challenge ciphertext c∗ by encrypting m0 under the
key ekACE=

(x0
i ,i)

to obtain ci for 1 ≤ i < k0, and by encrypting m1 under the

key ekACE=

(x1
i ,i)

for k0 < i ≤ ℓ, where these keys can be obtained from OG
without changing the advantage. For the k0-th component, it returns(
m0,m1, x

0
k0
, x1k0

)
to the challenger and uses the obtained challenge ci-

phertext as ck0 . It then proceeds with the emulation of H1. It emulates
the oracle OG as above and the oracle OSD∗ as OSD with the difference
that if its own oracle returns test for any of the components, it returns
test as well. Finally, when A2 returns the bit b′, AACE returns the same
bit b′′ ← b′.

Note that if b = 0 or b = 1, AACE perfectly emulates an execution of
H2,k0 or H2,k0−1, respectively. Further note that since A by assumption
does not query OG on a decryption key for any y with P (x0,y) = 1,
AACE also does not ask for a decryption that could decrypt the challenge

6.6. CONSTRUCTION OF AN ACE SCHEME 191

ciphertext. Hence, AACE wins if b′′ = b and we have

AdvACE-PRV-CCA
ACE=,AACE

= 2 · PrExp
ACE-PRV-ANON-CCA
ACE=,AACE [b′′ = b]− 1

= PrExp
ACE-PRV-ANON-CCA
ACE=,AACE [b′′ = 1 | b = 1]

− PrExp
ACE-PRV-ANON-CCA
ACE=,AACE [b′′ = 1 | b = 0]

=

ℓ∑
k=1

1

ℓ
PrH2,k−1 [b′ = 1]−

ℓ∑
k=1

1

ℓ
PrH2,k [b′ = 1].

Since H2,0 corresponds to H1 with b = 1 and H2,ℓ corresponds to H1 with
b = 0, this yields

ℓ · AdvACE-PRV-CCA
ACE=,AACE

= PrH2,0 [b′ = 1]− PrH2,ℓ [b′ = 1]

= PrH1 [b′ = 1 | b = 1]− PrH1 [b′ = 1 | b = 0]

= 2 · PrH1 [b′ = b]− 1.

Combining this with equation (6.26) concludes the proof.

Next, we sketch how to prove sanitization security.

Lemma 6.6.12. If F is pseudorandom, NIZK is extractable, Sig is EUF-
CMA secure, and ACE= is perfectly correct, strongly detectable, and SAN-
CCA secure, then the scheme ACEDEq from above is SAN-CCA secure.

Proof sketch. The basic idea is to construct an adversary ASAN against
the sanitization security of ACE= that chooses k0 � {1, . . . ℓ} uniformly at
random and emulates an execution of ExpACE-SAN-CCA

ACEDEq,A . When A1 returns
two ciphertexts c0, c1, ASAN gives the sanitized ciphertext

(
c′1, . . . , c

′
ℓ

)
to A2 where c′i ← ACE=.San

(
c0,i
)

for 1 ≤ i < k0, c′i ← ACE=.San
(
c1,i
)

for k0 < i ≤ ℓ, and c′k0 is obtained from the challenger by submitting(
c0,k0 , c1,k0

)
. When A2 returns the bit b′, ASAN returns the same bit b′.

Note that ASAN wins if the bit is guessed correctly and if both returned
ciphertexts sanitize properly and no decryption key has been obtained
that decrypts any of the ciphertexts. If the last two conditions are not
satisfied, then also A does not win. For the hybrid argument to go through,
however, we need to ensure that ASAN still wins with probability 1/2 when
A violates one of these two conditions. To achieve this, ASAN needs to

192 CHAPTER 6. ACCESS CONTROL ENCRYPTION

detect that this would next happen and in this case abort the emulation,
return two valid ciphertexts (if not done already) and guess a uniform
bit. To detect this event before it happens, extract witnesses from the
ciphertexts returned by A1. If the ciphertexts are valid, the extractions
are successful, the signature scheme is EUF-CMA secure, and the PRF is
pseudorandom, then the ciphertexts have with overwhelming probability
been obtained by encrypting messages with encryption keys that A1 has
obtained from the oracle OG. Hence, ASAN knows in this case for which
roles the messages have been encrypted. When A2 asks for a decryption
key, ASAN checks whether the policy allows this key to decrypt any of the
two ciphertexts. Given perfect correctness and strong detectability, the
decryptions yield ⊥ if and only if the policy does not allow decryption.
Therefore, ASAN can detect when the bad event is about to happen and
abort in this case.

Non-detection of fresh encryptions directly follows from the same
property of the underlying ACE scheme.

Lemma 6.6.13. Let ACEDEq, be the scheme from above and let A be an
attacker on the non-detection of fresh encryptions. Then, there exists a
probabilistic algorithm A′ (which is roughly as efficient as emulating an
execution of ExpACE-NDTCT-FENC

ACEDEq,A) such that

AdvACE-NDTCT-FENC
ACEDEq,A ≤ ℓ · AdvACE-NDTCT-FENC

ACE=,A′ .

Proof. Let A′ emulate an execution of ExpACE-NDTCT-FENC
ACEDEq,A , using OG to

answer oracle queries from A. When the adversary A returns
(
m,x, c =(

c1, . . . , cℓ, π
NIZK

))
, A′ chooses k � {1, . . . , ℓ} uniformly at random, and

returns
(
m, (xk, k), ck

)
. If A wins, a fresh encryption of m under x

is detected as a modification of c. Since encryption and modification
detection are defined component-wise, this means that there exists a
component k0 such that a fresh encryption of m under (xk0 , k0) is detected
to be a modification of ck0 . Hence, A′ also wins if additionally k = k0,
which happens with probability 1/ℓ.

We finally prove role-respecting and uniform decryption security.

Lemma 6.6.14. Let ACEDEq, be the scheme from above and let A be a
probabilistic algorithm that makes at most at most qE queries to the ora-
cle OE. Then, there exist probabilistic algorithms APRF, AZK1

, AZK2
, ASig,

6.7. ACE IN CONSTRUCTIVE CRYPTOGRAPHY 193

and AACE (which are all roughly as efficient as emulating an execution of
ExpACE-URRACEDEq,A) such that

AdvACE-RRACEDEq,A + AdvACE-UDEC
ACEDEq,A ≤ 2 · AdvPRFF,APRF

+ 2 · AdvNIZK-ext1
NIZK,AZK1

+ 2 · AdvNIZK-ext2
NIZK,AZK2

+ 2(qE + 1) · AdvSig-EUF-CMA
Sig,ASig

+ 2ℓ ·
(
AdvACE-RRACE=,AACE

+ AdvACE-UDEC
ACE=,AACE

)
.

Proof sketch. As in the proof of Lemma 6.6.8, we define hybrids H0 :=
ExpACE-URR

ACEDEq,A, H1 as H0 where FK is replaced by a uniform random func-
tion U , H2 as H1 where crsNIZK is generated by ENIZK

1 , H3 as H2 where
a witness w =

(
ekACE=

(x1,1)
, . . . , ekACE=

(xℓ,ℓ)
,m, r1, . . . , rℓ, vk

Sig
x , σSig

x , σSig
c

)
is ex-

tracted from πNIZK by ENIZK
2 after A returned c :=

(
c1, . . . , cℓ, π

NIZK
)
.

We can bound the probability that no valid witness is extracted even
though πNIZK is a valid proof by the knowledge extraction advantage of a
suitable adversary, and the probability that a valid witness was extracted
and the contained encryption key was not obtained via an oracle call
by the signature forgery advantage of another adversary as in the proof
of Lemma 6.6.8. If these events do not occur, the ciphertext c is an
encryption of the message m under a valid key that was returned by
OG. Hence, A can in this case only win the role-respecting game or the
uniform decryption game if some ciphertext component violates one of
these properties. We can construct an adversary AACE that emulates the
execution, guesses this component, and uses the corresponding ciphertext
component to win the game for the underlying scheme for equality.

6.7 ACE in Constructive Cryptography

6.7.1 The Natural Construction with ACE

We first briefly sketch the natural ideal resource one would like to construct
with an ACE scheme. This resource corresponds to a repository with
an interface for a trusted authority and n interfaces for the users of the
system that provides the following functionalities: The trusted authority
should be able to register parties for certain roles such that users having
role i should be able to input a message m for role i into the repository,

194 CHAPTER 6. ACCESS CONTROL ENCRYPTION

and users having role j should be able to access this message if and only
if P (i, j) = 1.

The real resource from which ACE should construct this ideal resource
contains a repository whose contents can be read by everyone and only
the sanitizer can write to. For a user to input data into the repository,
it must be encrypted and the resulting ciphertext has to be sent to the
sanitizer, who then sanitizes it and inputs the result into the repository
(if the sanitization is successful and the ciphertext is not detected to be
modification of a previously received ciphertext). To allow this, the real
resource also needs to contain (anonymous) secure channels from the
users to the sanitizer. To access data, users simply read the sanitized
ciphertexts from the repository and decrypt them with their decryption
keys. To distribute keys, the real resource also needs to contain secure
channels from the central authority to the users, and an authenticated
channel from the central authority to the sanitizer.

6.7.2 Issues Preventing the Construction

If we allow the registrations of roles to be dynamic, the same commit-
ment problem arises that we encountered for identity-based encryption in
Section 4.4.1 and for functional encryption in Section 5.5.1.

But even for static registrations at the beginning or when allowing
random oracles, there is a more fundamental problem that prevents us
from constructing such a repository. Consider for example users A1, A2,
and B such that A1 has role i1 that allows to send information to B, but
A2 has no role that allows this. In an ideal world, it should therefore
be possible at the interface for A1 to send messages to B, but not at
the interface for A2. In the real world, however, everyone who knows
the encryption key for the role i1 can produce ciphertexts that pass
sanitization and can subsequently be decrypted by B. If this is modeled
in constructive cryptography and A1 is dishonest, this means that the
distinguisher knows such a key and can produce such ciphertexts. If A2

is also dishonest, then the distinguisher can input these ciphertexts at
the interface of A2, and B will receive it. Hence, the ideal resource must
allow all dishonest users to send messages to B if at least one of them
is allowed to do so. If the receiver B is also dishonest, B can decrypt
if there exists a dishonest user who is allowed to decrypt. In general, a
dishonest party A can send messages to another dishonest party B if (and

6.7. ACE IN CONSTRUCTIVE CRYPTOGRAPHY 195

only if) there exist dishonest parties A′ and B′ such that A′ has some
role i0 and B′ has some role j0 with P (i0, j0) = 1.

At first, this might seem to be reasonable and to simply capture
potential collusions among dishonest parties. Indeed, if such a system is
implemented in practice, dishonest users can exchange their keys outside
the system and use them to encrypt and decrypt as in the examples above.
For many policies, however, the remaining guarantees are extremely weak.
For example, assume that P (i, i) = 1 for all roles i, i.e., users are allowed
to send to themselves and to other users with the same role. This is a
quite natural assumption and for example the case for the Bell-LaPadula
policy P (i, j) = 1⇔ i ≤ j. In this setting, two dishonest users A and B
can communicate if there exists some dishonest user who has some role.
That is because this user’s encryption key can be used by A to encrypt
and the corresponding decryption key can be used by B to decrypt. Hence,
dishonest users can essentially always communicate, which completely
undermines the goal of access control encryption.

6.7.3 Conclusions

One possible conclusion is that ACE simply only provides very weak
guarantees. This can be justified by the fact that dishonest parties can
indeed share their keys and use them as described above to communicate.

Another conclusion is that constructive cryptography is too pessimistic.
While it is true that users can exchange their keys, they actively have to
do so in practice. There are many reasons why they might not do that,
e.g., the keys could be very large or somehow protected by hardware,
users might fear punishment if it is discovered that they have shared their
keys, or they might simply not want to do so. Hence, a more useful and
realistic guarantee one can expect from the construction described above
is that two users A and B can communicate via the system if they have
roles that allow them to do so, or if they have obtained keys from other
users that are allowed to communicate. This means that the ideal resource
needs to be quantified over the collusion of dishonest parties.

In constructive cryptography, it is not possible to quantify over the
information dishonest parties have exchanged since the distinguisher
obtains all information from all dishonest parties. In this sense, the
framework captures the worst-case scenario in which all dishonest parties
collude with each other. To formalize the intuition above, it is therefore

196 CHAPTER 6. ACCESS CONTROL ENCRYPTION

necessary to develop a variant of constructive cryptography that allows
such a quantification. This is, however, beyond the scope of this thesis
and left for future research.

Chapter 7

Conclusion

We have analyzed several types of encryption schemes in the constructive
cryptography framework and have taken a critical look at classical security
definitions for these schemes. This has led to a better understanding of
how those schemes can be used and which security notions are needed
for natural applications of them. Due to our analysis, we could also
identify issues with existing definitions and introduce new ones to fix
these issues. Below, we discuss our results and open problems for the
individual primitives in detail.

One-time pad. We have analyzed encryption with a dishonest receiver
and have shown that it is impossible in this setting to construct a fully
secure channel from a shared secret key and an authenticated channel.
We have further shown that the one-time pad, in contrast to ordinary
encryption schemes, can be used to construct a variant of a secure channel
that allows a dishonest receiver to leak the message only before receiving
it, not afterwards.

An open problem is the analogous treatment of the setting with a
potentially dishonest sender for the one-time pad as well as for other types
of encryption schemes. Furthermore, it would be interesting to analyze
which constructions one can achieve with different types of deniable
encryption schemes, which provide similar features as the one of the
one-time pad we used in our construction.

198 CHAPTER 7. CONCLUSION

Identity-based encryption. The standard application of identity-
based encryption is non-interactive secure communication. We have
modeled this in the constructive cryptography framework and analyzed
the security against passive attackers. Our analysis revealed that the
construction of an ideal resource that allows to adaptively register new
users after sending messages is impossible in the standard model. We have
further shown that this ideal resource can be constructed in the random
oracle model and that weaker ideal resources can be constructed in the
standard model. To achieve the latter construction, the IBE scheme has
to be IND-ID1-CPA secure. This is a new security notion we introduce
and which is weaker than IND-ID-CPA security, the standard notion for
IBE schemes. Similarly, we have introduced IND-sID1-CPA security as
a variant of selective security and shown for which construction schemes
satisfying it can be used.

An open problem is to find IND-ID1-CPA or IND-sID1-CPA secure
IBE schemes that are more efficient than existing ones. While our new
notions are formally weaker than existing ones (but still achieve meaningful
constructions), it is unclear how to exploit their weakness to obtain more
efficient schemes. A further open problem is to transfer our analysis to a
setting with active attackers and understand the precise connection to
chosen-ciphertext attacks.

Functional encryption. We have formalized the security of functional
encryption schemes via the construction of a repository with fine-grained
access control. Similarly to our results for identity-based encryption, the
construction of a repository that allows to adaptively grant access rights
is impossible in the standard model and possible in the random oracle
model. We then have compared existing security definitions to the con-
struction of different variants of repositories. Due to our analysis, we were
able to clarify a misconception about the adequacy of the security defini-
tion by Boneh, Sahai, and Waters [BSW11], and to improve the overall
understanding of simulation-based security for functional encryption.

We have sketched how our results can be generalized to variants of
functional encryption for randomized functions and functions of more
than one variable. A possible direction for future research is to precisely
formalize these more general repositories and to investigate whether
existing security definitions are sufficient for their construction.

199

Access control encryption. In contrast to the other types of encryp-
tion discussed above, we have not formally carried out a constructive
treatment of access control encryption. By considering how such schemes
would be used, we could nevertheless identify issues of existing security
notions, most importantly a lack of security against chosen-ciphertext
attacks. We have introduced new security definitions to fix these issues
and presented new schemes satisfying our strong notions.

Analyzing our new notions in the constructive cryptography framework
is left as an open problem. As discussed in Section 6.7.3, meaningful
results in this direction require an extension of the framework to allow
the quantification of the ideal resource over the collusions of dishonest
parties. A further open problem is to find more efficient schemes and
schemes that support more general security policies for our new notions.

Bibliography

[ABN10] M. Abdalla, M. Bellare, and G. Neven, “Robust encryp-
tion,” in Theory of Cryptography Conference (TCC) 2010,
Springer Berlin Heidelberg, 2010, pp. 480–497. doi: 10.
1007/978-3-642-11799-2_28.

[AGVW13] S. Agrawal, S. Gorbunov, V. Vaikuntanathan, and H.
Wee, “Functional encryption: New perspectives and low-
er bounds,” in Advances in Cryptology—CRYPTO 2013,
Springer Berlin Heidelberg, 2013, pp. 500–518. doi: 10.
1007/978-3-642-40084-1_28.

[ABF+13] J. Alwen, M. Barbosa, P. Farshim, R. Gennaro, S. D. Gor-
don, S. Tessaro, and D. A. Wilson, “On the relationship
between functional encryption, obfuscation, and fully homo-
morphic encryption,” in IMA International Conference on
Cryptography and Coding (IMACC) 2013, Springer Berlin
Heidelberg, 2013, pp. 65–84. doi: 10.1007/978-3-642-
45239-0_5.

[AOZZ15] J. Alwen, R. Ostrovsky, H.-S. Zhou, and V. Zikas, “In-
coercible multi-party computation and universally com-
posable receipt-free voting,” in Advances in Cryptology—
CRYPTO 2015, Springer Berlin Heidelberg, 2015, pp. 763–
780. doi: 10.1007/978-3-662-48000-7_37.

[BPW07] M. Backes, B. Pfitzmann, and M. Waidner, “The reac-
tive simulatability (RSIM) framework for asynchronous
systems,” Information and Computation, vol. 205, no. 12,
pp. 1685–1720, 2007. doi: 10.1016/j.ic.2007.05.002.

https://doi.org/10.1007/978-3-642-11799-2_28
https://doi.org/10.1007/978-3-642-11799-2_28
https://doi.org/10.1007/978-3-642-40084-1_28
https://doi.org/10.1007/978-3-642-40084-1_28
https://doi.org/10.1007/978-3-642-45239-0_5
https://doi.org/10.1007/978-3-642-45239-0_5
https://doi.org/10.1007/978-3-662-48000-7_37
https://doi.org/10.1016/j.ic.2007.05.002

202 BIBLIOGRAPHY

[BMM17] C. Badertscher, C. Matt, and U. Maurer, “Strengthening
access control encryption,” in Advances in Cryptology—
ASIACRYPT 2017, to appear, Springer Berlin Heidelberg,
2017.

[BMM+15a] C. Badertscher, C. Matt, U. Maurer, P. Rogaway, and B.
Tackmann, “Augmented secure channels and the goal of
the TLS 1.3 record layer,” in International Conference on
Provable Security (ProvSec) 2015, Springer International
Publishing, 2015, pp. 85–104. doi: 10.1007/978-3-319-
26059-4_5.

[BMM+15b] ——, “Robust authenticated encryption and the limits of
symmetric cryptography,” in IMA International Conference
on Cryptography and Coding (IMACC) 2015, Springer Inter-
national Publishing, 2015, pp. 112–129. doi: 10.1007/978-
3-319-27239-9_7.

[BF13] M. Barbosa and P. Farshim, “On the semantic security
of functional encryption schemes,” in IACR International
Conference on Practice and Theory in Public-Key Cryp-
tography (PKC) 2013, Springer Berlin Heidelberg, 2013,
pp. 143–161. doi: 10.1007/978-3-642-36362-7_10.

[Bea92] D. Beaver, “Foundations of secure interactive comput-
ing,” in Advances in Cryptology—CRYPTO 1991, Springer
Berlin Heidelberg, 1992, pp. 377–391. doi: 10.1007/3-
540-46766-1_31.

[BL73] D. E. Bell and L. J. LaPadula, “Secure computer systems:
Mathematical foundations,” MITRE, Tech. Rep. MTR-
2547, 1973.

[BBDP01] M. Bellare, A. Boldyreva, A. Desai, and D. Pointcheval,
“Key-privacy in public-key encryption,” in Advances in
Cryptology—ASIACRYPT 2001, Springer Berlin Heidel-
berg, 2001, pp. 566–582. doi: 10.1007/3-540-45682-
1_33.

[BDPR98] M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway,
“Relations among notions of security for public-key en-
cryption schemes,” in Advances in Cryptology—CRYPTO

https://doi.org/10.1007/978-3-319-26059-4_5
https://doi.org/10.1007/978-3-319-26059-4_5
https://doi.org/10.1007/978-3-319-27239-9_7
https://doi.org/10.1007/978-3-319-27239-9_7
https://doi.org/10.1007/978-3-642-36362-7_10
https://doi.org/10.1007/3-540-46766-1_31
https://doi.org/10.1007/3-540-46766-1_31
https://doi.org/10.1007/3-540-45682-1_33
https://doi.org/10.1007/3-540-45682-1_33

BIBLIOGRAPHY 203

1998, Springer Berlin Heidelberg, 1998, pp. 26–45. doi:
10.1007/BFb0055718.

[BO13] M. Bellare and A. O’Neill, “Semantically-secure functional
encryption: Possibility results, impossibility results and the
quest for a general definition,” in International Conference
on Cryptology and Network Security (CANS) 2013, Springer
International Publishing, 2013, pp. 218–234. doi: 10.1007/
978-3-319-02937-5_12.

[BR93] M. Bellare and P. Rogaway, “Random oracles are practical:
A paradigm for designing efficient protocols,” in ACM
Conference on Computer and Communications Security
(CCS) 1993, ACM, 1993, pp. 62–73. doi: 10.1145/168588.
168596.

[BB04] D. Boneh and X. Boyen, “Efficient selective-ID secure iden-
tity-based encryption without random oracles,” in Advances
in Cryptology—EUROCRYPT 2004, Springer Berlin Hei-
delberg, 2004, pp. 223–238. doi: 10.1007/978-3-540-
24676-3_14.

[BCHK07] D. Boneh, R. Canetti, S. Halevi, and J. Katz, “Chosen-
ciphertext security from identity-based encryption,” SIAM
Journal on Computing, vol. 36, no. 5, pp. 1301–1328, 2007.
doi: 10.1137/S009753970544713X.

[BF01] D. Boneh and M. Franklin, “Identity-based encryption from
the Weil pairing,” in Advances in Cryptology—CRYPTO
2001, Springer Berlin Heidelberg, 2001, pp. 213–229. doi:
10.1007/3-540-44647-8_13.

[BSW11] D. Boneh, A. Sahai, and B. Waters, “Functional encryption:
Definitions and challenges,” in Theory of Cryptography
Conference (TCC) 2011, Springer Berlin Heidelberg, 2011,
pp. 253–273. doi: 10.1007/978-3-642-19571-6_16.

[BSW12] ——, “Functional encryption: A new vision for public-key
cryptography,” Commun. ACM, vol. 55, no. 11, pp. 56–64,
Nov. 2012. doi: 10.1145/2366316.2366333.

https://doi.org/10.1007/BFb0055718
https://doi.org/10.1007/978-3-319-02937-5_12
https://doi.org/10.1007/978-3-319-02937-5_12
https://doi.org/10.1145/168588.168596
https://doi.org/10.1145/168588.168596
https://doi.org/10.1007/978-3-540-24676-3_14
https://doi.org/10.1007/978-3-540-24676-3_14
https://doi.org/10.1137/S009753970544713X
https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1007/978-3-642-19571-6_16
https://doi.org/10.1145/2366316.2366333

204 BIBLIOGRAPHY

[Can01] R. Canetti, “Universally composable security: A new par-
adigm for cryptographic protocols,” in IEEE Symposium
on Foundations of Computer Science (FOCS) 2001, Oct.
2001, pp. 136–145. doi: 10.1109/SFCS.2001.959888.

[CDNO97] R. Canetti, C. Dwork, M. Naor, and R. Ostrovsky, “Deni-
able encryption,” in Advances in Cryptology—CRYPTO
1997, Springer Berlin Heidelberg, 1997, pp. 90–104. doi:
10.1007/BFb0052229.

[CFGN96] R. Canetti, U. Feige, O. Goldreich, and M. Naor, “Adap-
tively secure multi-party computation,” in ACM Sympo-
sium on Theory of Computing (STOC) 1996, ACM, 1996,
pp. 639–648. doi: 10.1145/237814.238015.

[CHK03] R. Canetti, S. Halevi, and J. Katz, “A forward-secure pub-
lic-key encryption scheme,” in Advances in Cryptology—
EUROCRYPT 2003, Springer Berlin Heidelberg, 2003,
pp. 255–271. doi: 10.1007/3-540-39200-9_16.

[CKN03] R. Canetti, H. Krawczyk, and J. B. Nielsen, “Relaxing
chosen-ciphertext security,” in Advances in Cryptology—
CRYPTO 2003, Springer Berlin Heidelberg, 2003, pp. 565–
582. doi: 10.1007/978-3-540-45146-4_33.

[CV12] R. Canetti and M. Vald, “Universally composable security
with local adversaries,” in International Conference on Se-
curity and Cryptography for Networks (SCN) 2012, Springer
Berlin Heidelberg, 2012, pp. 281–301. doi: 10.1007/978-
3-642-32928-9_16.

[Coc01] C. Cocks, “An identity based encryption scheme based on
quadratic residues,” in IMA International Conference on
Cryptography and Coding (IMACC) 2001, Springer Berlin
Heidelberg, 2001, pp. 360–363. doi: 10.1007/3- 540-
45325-3_32.

[CMT13] S. Coretti, U. Maurer, and B. Tackmann, “Constructing
confidential channels from authenticated channels—public-
key encryption revisited,” in Advances in Cryptology—
ASIACRYPT 2013, Springer Berlin Heidelberg, 2013,
pp. 134–153. doi: 10.1007/978-3-642-42033-7_8.

https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1007/BFb0052229
https://doi.org/10.1145/237814.238015
https://doi.org/10.1007/3-540-39200-9_16
https://doi.org/10.1007/978-3-540-45146-4_33
https://doi.org/10.1007/978-3-642-32928-9_16
https://doi.org/10.1007/978-3-642-32928-9_16
https://doi.org/10.1007/3-540-45325-3_32
https://doi.org/10.1007/3-540-45325-3_32
https://doi.org/10.1007/978-3-642-42033-7_8

BIBLIOGRAPHY 205

[CS98] R. Cramer and V. Shoup, “A practical public key cryp-
tosystem provably secure against adaptive chosen cipher-
text attack,” in Advances in Cryptology—CRYPTO 1998,
Springer Berlin Heidelberg, 1998, pp. 13–25. doi: 10.1007/
BFb0055717.

[DHO16] I. Damgård, H. Haagh, and C. Orlandi, “Access control
encryption: Enforcing information flow with cryptogra-
phy,” in Theory of Cryptography Conference (TCC) 2016-B,
Springer Berlin Heidelberg, 2016, pp. 547–576. doi: 10.
1007/978-3-662-53644-5_21.

[DIJ+13] A. De Caro, V. Iovino, A. Jain, A. O’Neill, O. Paneth, and
G. Persiano, “On the achievability of simulation-based secu-
rity for functional encryption,” in Advances in Cryptology—
CRYPTO 2013, Springer Berlin Heidelberg, 2013, pp. 519–
535. doi: 10.1007/978-3-642-40084-1_29.

[DDN00] D. Dolev, C. Dwork, and M. Naor, “Nonmalleable cryp-
tography,” SIAM Journal on Computing, vol. 30, no. 2,
pp. 391–437, 2000. doi: 10.1137/S0097539795291562.

[Elg85] T. Elgamal, “A public key cryptosystem and a signature
scheme based on discrete logarithms,” IEEE Transactions
on Information Theory, vol. 31, no. 4, pp. 469–472, Jul.
1985. doi: 10.1109/TIT.1985.1057074.

[FLPQ13] P. Farshim, B. Libert, K. G. Paterson, and E. A. Quaglia,
“Robust encryption, revisited,” in IACR International Con-
ference on Practice and Theory in Public-Key Cryptography
(PKC) 2013, Springer Berlin Heidelberg, 2013, pp. 352–368.
doi: 10.1007/978-3-642-36362-7_22.

[FGKO17] G. Fuchsbauer, R. Gay, L. Kowalczyk, and C. Orlandi,
“Access control encryption for equality, comparison, and
more,” in IACR International Conference on Practice and
Theory in Public-Key Cryptography (PKC) 2017, Springer
Berlin Heidelberg, 2017, pp. 88–118. doi: 10.1007/978-3-
662-54388-7_4.

https://doi.org/10.1007/BFb0055717
https://doi.org/10.1007/BFb0055717
https://doi.org/10.1007/978-3-662-53644-5_21
https://doi.org/10.1007/978-3-662-53644-5_21
https://doi.org/10.1007/978-3-642-40084-1_29
https://doi.org/10.1137/S0097539795291562
https://doi.org/10.1109/TIT.1985.1057074
https://doi.org/10.1007/978-3-642-36362-7_22
https://doi.org/10.1007/978-3-662-54388-7_4
https://doi.org/10.1007/978-3-662-54388-7_4

206 BIBLIOGRAPHY

[GGH+13] S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and
B. Waters, “Candidate indistinguishability obfuscation and
functional encryption for all circuits,” in IEEE Symposium
on Foundations of Computer Science (FOCS) 2013, Oct.
2013, pp. 40–49. doi: 10.1109/FOCS.2013.13.

[GPV08] C. Gentry, C. Peikert, and V. Vaikuntanathan, “Trapdoors
for hard lattices and new cryptographic constructions,” in
ACM Symposium on Theory of Computing (STOC) 2008,
ACM, 2008, pp. 197–206. doi: 10.1145/1374376.1374407.

[GMW87] O. Goldreich, S. Micali, and A. Wigderson, “How to play
any mental game,” in ACM Symposium on Theory of
Computing (STOC) 1987, ACM, 1987, pp. 218–229. doi:
10.1145/28395.28420.

[GGG+14] S. Goldwasser, S. D. Gordon, V. Goyal, A. Jain, J. Katz,
F.-H. Liu, A. Sahai, E. Shi, and H.-S. Zhou, “Multi-input
functional encryption,” in Advances in Cryptology—EURO-
CRYPT 2014, Springer Berlin Heidelberg, 2014, pp. 578–
602. doi: 10.1007/978-3-642-55220-5_32.

[GGJS13] S. Goldwasser, V. Goyal, A. Jain, and A. Sahai, Multi-input
functional encryption, Cryptology ePrint Archive, Report
2013/727, http://eprint.iacr.org/2013/727, 2013.

[GKP+13] S. Goldwasser, Y. Kalai, R. A. Popa, V. Vaikuntanathan,
and N. Zeldovich, “Reusable garbled circuits and succinct
functional encryption,” in ACM Symposium on Theory of
Computing (STOC) 2013, ACM, 2013, pp. 555–564. doi:
10.1145/2488608.2488678.

[GM84] S. Goldwasser and S. Micali, “Probabilistic encryption,”
Journal of Computer and System Sciences, vol. 28, no. 2,
pp. 270–299, 1984. doi: 10.1016/0022-0000(84)90070-9.

[GJJS04] P. Golle, M. Jakobsson, A. Juels, and P. Syverson, “Uni-
versal re-encryption for mixnets,” in Topics in Cryptology—
CT-RSA 2004, Springer Berlin Heidelberg, 2004, pp. 163–
178. doi: 10.1007/978-3-540-24660-2_14.

https://doi.org/10.1109/FOCS.2013.13
https://doi.org/10.1145/1374376.1374407
https://doi.org/10.1145/28395.28420
https://doi.org/10.1007/978-3-642-55220-5_32
http://eprint.iacr.org/2013/727
https://doi.org/10.1145/2488608.2488678
https://doi.org/10.1016/0022-0000(84)90070-9
https://doi.org/10.1007/978-3-540-24660-2_14

BIBLIOGRAPHY 207

[GVW12] S. Gorbunov, V. Vaikuntanathan, and H. Wee, “Functional
encryption with bounded collusions via multi-party com-
putation,” in Advances in Cryptology—CRYPTO 2012,
Springer Berlin Heidelberg, 2012, pp. 162–179. doi: 10.
1007/978-3-642-32009-5_11.

[GKL+13] S. D. Gordon, J. Katz, F.-H. Liu, E. Shi, and H.-S. Zhou,
Multi-input functional encryption, Cryptology ePrint Ar-
chive, Report 2013/774, http://eprint.iacr.org/2013/
774, 2013.

[GJKS15] V. Goyal, A. Jain, V. Koppula, and A. Sahai, “Functional
encryption for randomized functionalities,” in Theory of
Cryptography Conference (TCC) 2015, Springer Berlin Hei-
delberg, 2015, pp. 325–351. doi: 10.1007/978-3-662-
46497-7_13.

[GPSW06] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-
based encryption for fine-grained access control of en-
crypted data,” in ACM Conference on Computer and Com-
munications Security (CCS) 2006, ACM, 2006, pp. 89–98.
doi: 10.1145/1180405.1180418.

[Gro04] J. Groth, “Rerandomizable and replayable adaptive cho-
sen ciphertext attack secure cryptosystems,” in Theory
of Cryptography Conference (TCC) 2004, Springer Berlin
Heidelberg, 2004, pp. 152–170. doi: 10.1007/978-3-540-
24638-1_9.

[Gro06] ——, “Simulation-sound NIZK proofs for a practical lan-
guage and constant size group signatures,” in Advances in
Cryptology—ASIACRYPT 2006, Springer Berlin Heidel-
berg, 2006, pp. 444–459. doi: 10.1007/11935230_29.

[HMM15] D. Hofheinz, C. Matt, and U. Maurer, “Idealizing iden-
tity-based encryption,” in Advances in Cryptology—ASIA-
CRYPT 2015, Springer Berlin Heidelberg, 2015, pp. 495–
520. doi: 10.1007/978-3-662-48797-6_21.

[HS15] D. Hofheinz and V. Shoup, “GNUC: A new universal com-
posability framework,” Journal of Cryptology, vol. 28, no. 3,
pp. 423–508, 2015. doi: 10.1007/s00145-013-9160-y.

https://doi.org/10.1007/978-3-642-32009-5_11
https://doi.org/10.1007/978-3-642-32009-5_11
http://eprint.iacr.org/2013/774
http://eprint.iacr.org/2013/774
https://doi.org/10.1007/978-3-662-46497-7_13
https://doi.org/10.1007/978-3-662-46497-7_13
https://doi.org/10.1145/1180405.1180418
https://doi.org/10.1007/978-3-540-24638-1_9
https://doi.org/10.1007/978-3-540-24638-1_9
https://doi.org/10.1007/11935230_29
https://doi.org/10.1007/978-3-662-48797-6_21
https://doi.org/10.1007/s00145-013-9160-y

208 BIBLIOGRAPHY

[KW17] S. Kim and D. J. Wu, “Access control encryption for gen-
eral policies from standard assumptions,” in Advances in
Cryptology—ASIACRYPT 2017, to appear, Springer Berlin
Heidelberg, 2017.

[KMO+13] M. Kohlweiss, U. Maurer, C. Onete, B. Tackmann, and
D. Venturi, “Anonymity-preserving public-key encryption:
A constructive approach,” in International Symposium on
Privacy Enhancing Technologies (PETS) 2013, Springer
Berlin Heidelberg, 2013, pp. 19–39. doi: 10.1007/978-3-
642-39077-7_2.

[KT09] R. Küsters and M. Tuengerthal, “Universally composable
symmetric encryption,” in IEEE Computer Security Foun-
dations Symposium (CSF) 2009, Jul. 2009, pp. 293–307.
doi: 10.1109/CSF.2009.18.

[KT13] ——, The IITM model: A simple and expressive model for
universal composability, Cryptology ePrint Archive, Report
2013/025, http://eprint.iacr.org/2013/025, 2013.

[Lin06] Y. Lindell, “A simpler construction of CCA2-secure public-
key encryption under general assumptions,” Journal of
Cryptology, vol. 19, no. 3, pp. 359–377, 2006. doi: 10.
1007/s00145-005-0345-x.

[MM13] C. Matt and U. Maurer, “The one-time pad revisited,”
in IEEE International Symposium on Information Theory
(ISIT) 2013, Jul. 2013, pp. 2706–2710. doi: 10.1109/ISIT.
2013.6620718.

[MM15] ——, “A definitional framework for functional encryption,”
in IEEE Computer Security Foundations Symposium (CSF)
2015, Jul. 2015, pp. 217–231. doi: 10.1109/CSF.2015.22.

[Mau12] U. Maurer, “Constructive cryptography – a new paradigm
for security definitions and proofs,” in Theory of Security
and Applications: Joint Workshop, TOSCA 2011, Springer
Berlin Heidelberg, 2012, pp. 33–56. doi: 10.1007/978-3-
642-27375-9_3.

https://doi.org/10.1007/978-3-642-39077-7_2
https://doi.org/10.1007/978-3-642-39077-7_2
https://doi.org/10.1109/CSF.2009.18
http://eprint.iacr.org/2013/025
https://doi.org/10.1007/s00145-005-0345-x
https://doi.org/10.1007/s00145-005-0345-x
https://doi.org/10.1109/ISIT.2013.6620718
https://doi.org/10.1109/ISIT.2013.6620718
https://doi.org/10.1109/CSF.2015.22
https://doi.org/10.1007/978-3-642-27375-9_3
https://doi.org/10.1007/978-3-642-27375-9_3

BIBLIOGRAPHY 209

[MY91] U. M. Maurer and Y. Yacobi, “Non-interactive public-key
cryptography,” in Advances in Cryptology—EUROCRYPT
1991, Springer Berlin Heidelberg, 1991, pp. 498–507. doi:
10.1007/3-540-46416-6_43.

[MR11] U. Maurer and R. Renner, “Abstract cryptography,” in
Symposium on Innovations in Computer Science (ICS)
2011, Tsinghua University Press, Jan. 2011, pp. 1–21.

[MRT12] U. Maurer, A. Rüedlinger, and B. Tackmann, “Confiden-
tiality and integrity: A constructive perspective,” in Theory
of Cryptography Conference (TCC) 2012, Springer Berlin
Heidelberg, 2012, pp. 209–229. doi: 10.1007/978-3-642-
28914-9_12.

[MR92] S. Micali and P. Rogaway, “Secure computation,” in Ad-
vances in Cryptology—CRYPTO 1991, Springer Berlin Hei-
delberg, 1992, pp. 392–404. doi: 10.1007/3-540-46766-
1_32.

[NY90] M. Naor and M. Yung, “Public-key cryptosystems provably
secure against chosen ciphertext attacks,” in ACM Sympo-
sium on Theory of Computing (STOC) 1990, ACM, 1990,
pp. 427–437. doi: 10.1145/100216.100273.

[Nie02] J. B. Nielsen, “Separating random oracle proofs from com-
plexity theoretic proofs: The non-committing encryption
case,” in Advances in Cryptology—CRYPTO 2002, Springer
Berlin Heidelberg, 2002, pp. 111–126. doi: 10.1007/3-
540-45708-9_8.

[NMO06] R. Nishimaki, Y. Manabe, and T. Okamoto, “Universally
composable identity-based encryption,” in Progress in Cryp-
tology—VIETCRYPT 2006, Springer Berlin Heidelberg,
2006, pp. 337–353. doi: 10.1007/11958239_23.

[ONe10] A. O’Neill, Definitional issues in functional encryption,
Cryptology ePrint Archive, Report 2010/556, http://
eprint.iacr.org/2010/556, 2010.

https://doi.org/10.1007/3-540-46416-6_43
https://doi.org/10.1007/978-3-642-28914-9_12
https://doi.org/10.1007/978-3-642-28914-9_12
https://doi.org/10.1007/3-540-46766-1_32
https://doi.org/10.1007/3-540-46766-1_32
https://doi.org/10.1145/100216.100273
https://doi.org/10.1007/3-540-45708-9_8
https://doi.org/10.1007/3-540-45708-9_8
https://doi.org/10.1007/11958239_23
http://eprint.iacr.org/2010/556
http://eprint.iacr.org/2010/556

210 BIBLIOGRAPHY

[PW01] B. Pfitzmann and M. Waidner, “A model for asynchronous
reactive systems and its application to secure message
transmission,” in IEEE Symposium on Security and Privacy
(S&P) 2001, 2001, pp. 184–200. doi: 10.1109/SECPRI.
2001.924298.

[PR07] M. Prabhakaran and M. Rosulek, “Rerandomizable RCCA
encryption,” in Advances in Cryptology—CRYPTO 2007,
Springer Berlin Heidelberg, 2007, pp. 517–534. doi: 10.
1007/978-3-540-74143-5_29.

[RS92] C. Rackoff and D. Simon, “Non-interactive zero-knowledge
proof of knowledge and chosen ciphertext attack,” in Ad-
vances in Cryptology—CRYPTO 1991, Springer Berlin Hei-
delberg, 1992, pp. 433–444. doi: 10.1007/3-540-46766-
1_35.

[RSM05] D. Raub, R. Steinwandt, and J. Müller-Quade, “On the
security and composability of the one time pad,” in Con-
ference on Current Trends in Theory and Practice of Com-
puter Science (SOFSEM) 2005, Springer Berlin Heidelberg,
2005, pp. 288–297. doi: 10.1007/978-3-540-30577-4_32.

[SPPM13] R. Sadikin, Y. Park, K. Park, and S. Moon, “Universal
composability notion for functional encryption schemes,”
Journal of the Korea Industrial Information Systems Re-
search, vol. 18, no. 3, pp. 17–26, 2013. doi: 10.9723/
jksiis.2013.18.3.017.

[Sah99] A. Sahai, “Non-malleable non-interactive zero knowledge
and adaptive chosen-ciphertext security,” in IEEE Sympo-
sium on Foundations of Computer Science (FOCS) 1999,
1999, pp. 543–553. doi: 10.1109/SFFCS.1999.814628.

[SW05] A. Sahai and B. Waters, “Fuzzy identity-based encryp-
tion,” in Advances in Cryptology—EUROCRYPT 2005,
Springer Berlin Heidelberg, 2005, pp. 457–473. doi: 10.
1007/11426639_27.

[Sha85] A. Shamir, “Identity-based cryptosystems and signature
schemes,” in Advances in Cryptology—CRYPTO 1984,
Springer Berlin Heidelberg, 1985, pp. 47–53. doi: 10.1007/
3-540-39568-7_5.

https://doi.org/10.1109/SECPRI.2001.924298
https://doi.org/10.1109/SECPRI.2001.924298
https://doi.org/10.1007/978-3-540-74143-5_29
https://doi.org/10.1007/978-3-540-74143-5_29
https://doi.org/10.1007/3-540-46766-1_35
https://doi.org/10.1007/3-540-46766-1_35
https://doi.org/10.1007/978-3-540-30577-4_32
https://doi.org/10.9723/jksiis.2013.18.3.017
https://doi.org/10.9723/jksiis.2013.18.3.017
https://doi.org/10.1109/SFFCS.1999.814628
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/3-540-39568-7_5
https://doi.org/10.1007/3-540-39568-7_5

BIBLIOGRAPHY 211

[Sha49] C. E. Shannon, “Communication theory of secrecy sys-
tems,” The Bell System Technical Journal, vol. 28, no. 4,
pp. 656–715, Oct. 1949. doi: 10.1002/j.1538-7305.1949.
tb00928.x.

[TZMT17] G. Tan, R. Zhang, H. Ma, and Y. Tao, “Access control en-
cryption based on LWE,” in ACM International Workshop
on ASIA Public-Key Cryptography (APKC) 2017, ACM,
2017, pp. 43–50. doi: 10.1145/3055504.3055509.

[UM10] D. Unruh and J. Müller-Quade, “Universally composable
incoercibility,” in Advances in Cryptology—CRYPTO 2010,
Springer Berlin Heidelberg, 2010, pp. 411–428. doi: 10.
1007/978-3-642-14623-7_22.

[Wat05] B. Waters, “Efficient identity-based encryption without ran-
dom oracles,” in Advances in Cryptology—EUROCRYPT
2005, Springer Berlin Heidelberg, 2005, pp. 114–127. doi:
10.1007/11426639_7.

https://doi.org/10.1002/j.1538-7305.1949.tb00928.x
https://doi.org/10.1002/j.1538-7305.1949.tb00928.x
https://doi.org/10.1145/3055504.3055509
https://doi.org/10.1007/978-3-642-14623-7_22
https://doi.org/10.1007/978-3-642-14623-7_22
https://doi.org/10.1007/11426639_7

Curriculum Vitae

Christian Matt
Citizen of the Federal Republic of Germany.
Born on May 12, 1986, in Speyer, Germany.

High School Education

09/1997–03/2006 Gymnasium,
Hannah-Arendt-Gymnasium, Haßloch, Germany.

Internships

04/2006–09/2006 Intern, software development,
SAP AG, St. Leon-Rot, Germany.

University Studies

10/2006–10/2011 Diplom in computer science,
Karlsruhe Institute of Technology, Germany.

10/2006–12/2011 Diplom in mathematics,
Karlsruhe Institute of Technology, Germany.

10/2009–06/2010 Exchange student,
Lancaster University, United Kingdom.

03/2012–present Dr. sc. ETH Zurich in computer science,
ETH Zurich, Switzerland.

	Introduction
	Motivation
	Constructive Cryptography
	Studied Encryption Types and Results
	One-Time Pad
	Identity-Based Encryption
	Functional Encryption
	Access Control Encryption

	Related Work

	Preliminaries
	General Notation
	Security Definitions and Advantages
	Cryptographic Primitives and Games
	Decisional Diffie-Hellman Assumption
	Pseudorandom Functions
	Public-Key Encryption
	Digital Signature Schemes
	Non-Interactive Zero-Knowledge Proofs

	Constructive Cryptography
	Resources, Converters, and Distinguishers
	Filtered Resources
	Basic Resources
	Construction of Resources

	Deniability of the One-Time Pad
	Introduction
	Motivation
	Contributions
	Related Work

	Encryption with a Dishonest Receiver
	General Limitations
	The One-Time Pad with a Dishonest Receiver

	Identity-Based Encryption
	Introduction
	Motivation
	Identity-Based Encryption and its Security
	Contributions
	Related Work

	Delivery Controlled Channels
	Overview and General Definition
	Static Identity Management
	Predetermined Identities

	IBE Schemes and Protocols
	Standard Definitions for IBE
	Non-Adaptive Security
	Using IBE Schemes in Constructions

	Constructions with IBE
	Impossibility Result
	Construction Equivalent to IND-ID-CPA
	Construction Equivalent to IND-sID-CPA

	Construction with Random Oracles
	Random Oracles
	Construction of Delivery Controlled Channels

	Functional Encryption
	Introduction
	Motivation
	Contributions
	Related Work and Relation to IBE

	Definition of Functional Encryption
	Repositories and Access Control
	Repository Resources
	Access Control via Functional Encryption

	Security of Functional Encryption
	Definition of CFE Security
	Equivalence of CFE Security and Construction
	Alleged Insufficiency of BSW's Definition

	Special Cases and Impossibility Results
	Public-Key Encryption and its Impossibility
	Circumventing Impossibility Results

	Construction with Random Oracles
	Weaker Security Definitions
	Definitions
	Sufficiency of NA-SIM Security

	More General Notions of FE
	Dishonest Senders
	Randomized Functions
	Functions of Several Variables

	Application of Constructed Repository

	Access Control Encryption
	Introduction
	Model and Security Requirements
	Contributions
	Related Work

	Existing Definitions for ACE
	Access Control Encryption
	Existing Security Definitions

	Ciphertext-Revealing Attacks
	Generic Description of Attack
	DHO Scheme Based on ElGamal
	FGKO Scheme Based on ElGamal

	A Stronger Notion of ACE
	ACE with Modification Detection
	New Security Definitions
	Relation to the Original Security Notions

	Enhanced Sanitizable PKE
	Definitions
	Constructing an sPKE Scheme

	Construction of an ACE Scheme
	Construction for Equality
	Lifting Equality to Disjunction of Equalities

	ACE in Constructive Cryptography
	The Natural Construction with ACE
	Issues Preventing the Construction
	Conclusions

	Conclusion

