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Abstract

Message dissemination is a fundamental building block in distributed systems and guar-
antees that any message sent eventually reaches all parties. State of the art provably secure
protocols for disseminating messages have a per-party communication complexity that is
linear in the inverse of the fraction of parties that are guaranteed to be honest in the worst
case. Unfortunately, this per-party communication complexity arises even in cases where the
actual fraction of parties that behave honestly is close to 1. In this paper, we propose an
optimistic message dissemination protocol that adopts to the actual conditions in which it is
deployed, with optimal worst-case per-party communication complexity. Our protocol cuts
the complexity of prior provably secure protocols for 49% worst-case corruption almost in
half under optimistic conditions and allows practitioners to combine efficient heuristics with
secure fallback mechanisms.

*The work was partly done while the author was at The Alexandra Institute.


mailto:chen-da.liuzhang@hslu.ch
chen-da.liuzhang@hslu.ch
mailto:christian@primev.xyz
christian@primev.xyz
mailto:soren.eller.thomsen@partisia.com
soren.eller.thomsen@partisia.com

Contents

1

Introduction

1.1 Motivation . ... ... ..
1.2 Contributions . . . . .. ..
1.3 Technical Overview . . . . .
1.4 Related Work . . . .. ...

Model and Preliminaries

2.1 Model .. ..........
2.2 Primitives . . . . . ... ..
2.3 Mathematical Preliminaries

Warmup: PushPullFlood

3.1 Pulling............
3.2 Push-Pull Flooding . . . . .
OptimisticFlood

4.1 Protocol . . . ... ... ..
4.2 Correctness . . . . ... ..

4.3 Communication Complexity

Conclusion

10

11
12
15

18
19
21
24

27



1 Introduction

1.1 Motivation

A basic task in distributed systems is to disseminate a message to all parties in the system. This
is often done using a flooding protocol where a party sends the message to all its neighbors, and
the neighbors in turn send the message to all their neighbors, and so on. Due to the inherent
redundancy in this process, flooding protocols are robust to message loss and random failures of
parties. Practical implementations of flooding protocols often optimize the dissemination latency
using several heuristics, e.g., preferring to send messages to parties that are geographically closer
and have lower latency [LPR10, TM23]. Such heuristic protocols, however, cannot be secure in
the presence of Byzantine corruptions: For example, it is possible that all parties geographically
close to some honest party are corrupted and eclipse the honest party from the network, even
though the corruption fraction in the total network is small.

On the other hand, there are provably secure flooding protocols that guarantee the delivery of
messages to all honest parties after a bounded number of steps as long as the overall corruption
fraction is below a predetermined threshold [MNT22, LZMM™*22, LZMT24]. The inherent
downside of these protocols is that they have a higher per-party communication complexity and
do not allow for heuristic optimizations. Furthermore, the per-party communication complexity
of these protocols is linear in the inverse of the fraction of parties guaranteed to be honest (which
was shown to be optimal in [LZMT24]), where the threshold of honest parties needs to be set
a priori. This communication complexity arises even when the actual fraction of parties that
behave honestly is close to 1. When deploying this type of protocols, the engineers setting the
parameters are thus left choosing between a protocol that always is secure but most of the time
has an excessive bandwidth usage, or choosing a protocol that is secure most of time and always
has a low bandwidth.

1.2 Contributions

Consider two thresholds ygc > ywe. We ask whether there is a protocol which is secure as long
as at least a 7y fraction of parties behave honestly, and achieves a strictly better per-party
communication complexity when the actual number of honest parties is at least vgc:

Is there flooding protocol that has optimal worst-case per-party communication com-
plexity with at least ywe honesty-fraction, and a strictly better complexity in the
optimistic case with yzc honesty-fraction?

We answer this question affirmatively by proposing a flooding protocol with two distinct
features: First, our protocol has an optimistic path that is efficient when the actual fraction of
honest parties is high. If the actual corruption fraction is high, our protocol employs a fall-back
mechanism that guarantees the delivery of messages to all honest parties in this worst-case
scenario. Secondly, the optimistic path of our protocol can be instantiated with an arbitrary
flooding protocol, including those that are optimized for practical deployment. This allows
practitioners to use their favorite flooding protocol together with a secure fallback mechanism.
That way, we achieve the best of both worlds: Protocols that take into account practical
peculiarities such as physical distance, and provably secure protocols that ensure reliable message
delivery even against a Byzantine worst-case adversary.

Applicability of results. Our constructions are built in a black-box manner from existing
flooding protocols, and impose no additional assumptions on the fraction of honest parties beyond



what these underlying protocols require. Additionally, we assume that all parties have access to
a PKI infrastructure and access to a randomness beacon, both of which are readily available
in most blockchain systems. As our protocols rely on splitting messages into multiple shares
and on cryptographic techniques to guarantee the validity of these shares, our constructions are
not suitable for disseminating very short messages. Hence, the protocols are better suited for
disseminating blocks than individual transactions.

We assume a synchronous network with point-to-point channels between all parties. The
protocol as we describe it requires this synchrony (i.e., knowledge of an upper bound on the
delivery time of the point-to-point channels) to guarantee that all honest parties receive all
messages in the worst case. The protocol can be slightly modified to guarantee delivery to all
honest parties in all cases without synchrony, and only require synchrony to achieve better
efficiency in the optimistic case at the expense of slightly more communication in the optimistic
case. The protocol can thus be adapted to best suit the synchrony assumption and delivery
requirements of the application it is used in.

Warm-up: Asymptotically optimal flooding. As a first step, we present a simple protocol
PushPullFlood that achieves asymptotically optimal per-party communication (but is not opti-
mistic). Instead of only “pushing” messages to all parties, it additionally allows parties to “pull”
messages from other parties that have already received the message. We will use this mechanism
also in our optimistic protocol.

Theorem 1 (PushPullFlood (informal)). Let Ilpq be a flooding protocol and let 11 praeFiood
be a flooding protocol that delivers to only a constant fraction of the honest parties. Then,
PushPullFlood(I1 piood, L pracFiood) makes black-box use of both protocols and is a secure flooding
protocol with a per-party communication complexity for sending an [-bit message with security
parameter k proportional to that of Il precriooq distributing [-bit messages plus Il pooq distributing
k-bit messages.

By instantiating ITpjooq and HpacFiood With appropriate protocols from [LZMMT22] and
[LZMT24] respectively, it follows that PushPullFlood can provide flooding with asymptotically
optimal per-party communication.

Asymptotically optimal optimistic flooding. We then strengthen the result above and
present the first flooding protocol OptimisticFlood that is asymptotically-optimal in the worst-case,
but also has improved efficiency in the optimistic case.

Below we use yacruar to quantify the actual fraction of parties behaving honestly and state
an informal version of the theorem we show for OptimisticFlood.

Theorem 2 (OptimisticFlood (informal)). Let ygc > Ywe > 0. Further let lpo be a flooding

protocol secure for the optimistic case Yacruar = Vse and let Ilywe be a flooding protocol secure

for the worst-case Yacruar = Ywe- Then OptimisticFlood(Ilge, ywe) is a secure flooding protocol
assuming a ywe fraction of honesty, with per-party communication complexity and delivery
guarantees roughly equal to that of Ilgc in the optimistic case, and the sum of both Ilzc and Iy

with small overhead in the worst-case.

A natural choice is to let both Ilgc and Il be instantiated with asymptotically optimal
flooding protocols with a per-party communication complexity of O(l - y~!) such as the one
from [LZMT24] (where it was also shown that this is a lower bound). By instantiating the
corresponding honesty-fraction parameters for the best case to be close to 1, e.g., v5c = 0.95, our
protocol shaves off almost a factor of vy& from the communication complexity in the optimistic



case. In particular, if ywe = 0.5, it cuts the per-party communication complexity almost in half
in the optimistic case compared to using only the worst-case protocol.

Further note that one can also instantiate the optimistic good-case protocol with protocols
that do not provide any guarantees for the safety of the overall protocol to be guaranteed.
In particular, this means that algorithms not designed for Byzantine adversaries aiming to
build for example minimum spanning trees such as the Plumtree algorithm [LPR10] (as used in
Ethereum [TM23]) may be used optimistically while still having provable worst-case fallback
guarantees if the network is under attack.

1.3 Technical Overview

Overview of PushPullFlood. At a high level, the protocol PushPullFlood works by first
“pushing” a message to a large fraction of the parties and then allowing the remaining parties
that may not have received the message to “pull” the message from those that have received it,
similarly to the seminal work of [DGH'87]. The protocol is build modularly by being parametric
in two sub protocols: 1) a flooding protocol that must ensure to push a small notification to all
parties and 2) a fractional flooding protocol that must guarantee to push the message to at least
a constant fraction of the honest parties. Combining these, our construction relies on three key
techniques to ensure the efficiency of the pull phase:

1. We use a verifiable random function (VRF) to let a party prove that they are allowed to
pull the message from another party, similar to [CKMR22]. That is, the pulling party
will evaluate the VRF to obtain a seed and use this seed to select whom they will pull
from. A party receiving such pull requests will then verify that this seed indeed was the
output of the VRF to confirm the validity of the pull request. Thereby, we ensure that
honest parties do not need to answer an excessive amount of malicious pull requests while
still ensuring that all honest pull requests will be answered. To prevent malicious parties
from choosing their VRF keys in such a way that many of them can pull from the same
honest party, the VRF is evaluated on an unpredictable value obtained from a randomness
beacon, which is assumed to be available to all parties.

2. We split the message into multiple shares using erasure correcting codes while ensuring that
a constant fraction of these is sufficient to reconstruct the message, similar to [LZMT24].
By letting the answer to a pull request be such individual share, we ensure that honest
parties can send sufficiently many pull requests to be certain to talk to a fraction of parties
answering such pull request honestly, without allowing an adversary to exploit this to
induce excessive communication.

3. We accompany such shares with membership proofs for a cryptographic accumulator similar
to [LZMT24]. This ensures that honest parties are able to recognize which shares belong
together, allowing honest parties to reconstruct efficiently.

Together, these techniques ensure that the per-party communication complexity of the pulling
phase is asymptotically optimal and thereby improves the efficiency of previous protocols with
a similar design. Note that while a certain message length is required for the protocol to be
asymptotically optimal, the usage of erasure correcting codes and cryptographic accumulators
was demonstrated to be concretely advantageous in terms of per-party communication complexity
for a push-based protocol with messages of a length as small as 2 kilobytes in [LZMT24]. In
addition to the cryptographic overhead, it must make sense to first send a small notification
instead of the full message, so messages should be substantially larger than such a notification.
Overall, the protocol is well suited for disseminating blocks in a blockchain system, where each
block contains many transactions.



Remark 1. The use of the VRF and the randomness beacon prevent denial-of-service attacks.
Often, they are dealt with on the network level by rate-limiting, blocking IP addresses, etc.
There are two reasons why such methods are less effective in our setting: First, an adversary
may control a large number of nodes, so even a single pull request from every malicious node
could overwhelm an honest party. Secondly, a malicious pull request not only incurs incoming
traffic to the targeted party, but also forces the party to actively answer the request, leading to
additional outgoing communication. Therefore, such attacks are more damaging to our protocols
than, e.g., in pure push-based flooding protocol. Nevertheless, if denial-of-service attacks are not
a concern, e.g., in a permissioned setting with a limited number of nodes, our protocols can be
simplified by omitting the usage of VRFs.

While the idea of using a push-pull based approach is not new [DGH"87, LPR10], to the
best of the authors knowledge, this is the first time a provably secure construction with a formal
security proof is presented. Additionally, it is the first time erasure correcting codes are used to
obtain asymptotically optimal communication complexity in a protocol utilizing pulling.

Overview of OptimisticFlood. We present the first optimistic flooding protocol OptimisticFlood.
The protocol is also build modularly and takes two protocols as parameters: 1) A flooding
protocol used for the optimistic case and 2) a flooding protocol guaranteed to work even in the
worst-case. Using these two, the protocol runs in three phases:

Phase 1: The message is sent using the optimistic case flooding protocol.

Phase 2: The sender estimates whether the message has been received by sufficiently many
honest parties by asking a committee of parties whether they have received it.

Phase 3: Depending on the conclusion of Phase 2, one of the following steps is taken:

o If it is concluded that sufficiently many honest parties have received the message, any
party that did not receive it is allowed to pull the message from some random peers.

e Otherwise, the sender defaults back to sending the message using the worst-case
protocol.

If the protocol is executed in a setting fulfilling the optimistic conditions, then the optimistic
case protocol ensures delivery to all honest parties and we set the parameters such that the
adversary cannot force defaulting back to the worst-case protocol. Hence, the adversary can
only induce additional complexity by pulling, which is ensured to be minimal using the same
techniques as for the pull-phase of PushPullFlood.

On the other hand, if the protocol is executed in a setting not fulfilling the optimistic
conditions, we do not obtain any guarantees from the optimistic case flooding protocol about
how many parties receive the message. This is not a problem if the sender in Phase 3 defaults
back to the worst-case protocol. However, an adversary may try to convince the sender that the
optimistic protocol succeeded even though it did not. We solve this by carefully tweaking the
parameters of the protocol to ensure that if the sender concludes that the protocol succeeded,
then it is guaranteed that at least a fraction of the honest parties have received the message.
By setting the parameters of the erasure correcting codes correspondingly, we ensure that the
remaining honest parties receive the message when pulling.

1.4 Related Work

There is an extensive line of work on message dissemination and flooding protocols. While
classic epidemic algorithms and gossip protocols [DGH"87, FPRU90, KSSV00, KMG03, DF11]



focused mainly on the crash failure setting, a recent line of work [MNT22 LZMM™*22, LZMT24,
CKMR22] introduced flooding protocols that are resilient against byzantine adversaries. Such
protocols follow graph-theoretic techniques such as [KMGO03], relying on the fact that the graph
induced by the neighbor selection procedure among honest parties remains connected. Most
recently [LZMT24] showed that worst-case per-party communication complexity of a flooding
protocol is lower-bounded by Q(1- VXcerU ) Where [ denotes the length of the message and yacruar,
denotes the fraction of parties remaining honest. The same work presents a protocol achieving
O(l - v5d) worst-case per-party communication complexity where 4y denotes the worst-case
fraction of parties remaining honest and thereby almost matches the lower-bound.

When the protocol PushPullFlood, presented in this paper, is instantiated with suitable
parameters, it matches that worst-case bound. Further, the protocol OptimisticFlood instantiated
with suitable parameters has a per-party communication complexity of only O(l - ;) when
YActuan = Yse While asymptotically matching the protocol of [LZMT24] in the worst-case (i.e.,
if 8¢ > YAacruar = Ywe). Thereby, we improve upon the state of the art for provably secure
protocols when the actual fraction of honest parties is higher than in the worst-case.

In contrast to this, other lines of work that target efficiency by following heuristic approaches
to minimize per-party communication complexity and latency [FOA16,RT19,VT19]. A detailed
overview of existing protocols can be found in [LZMT24].

To the best of our knowledge, current flooding protocols secure under Byzantine corruptions
focus on the worst-case performance and do not explicitly attempt to improve the efficiency
under optimistic conditions. Nevertheless, there is an extensive literature on optimistic protocols
for agreement primitives.

Optimistic latency. The work of Abraham, Nayak, Ren and Xiang [ANRX21] considers
Byzantine fault-tolerant broadcast and optimizes the good-case latency, measured as the number
of rounds for all honest parties to commit when the designated broadcaster is honest.

Another traditional line of work investigates protocols that have a number of rounds propor-
tional to the actual number of corruptions f, rather than a known upper bound on the number of
corruptions t. In this case, it is known that deterministic broadcast solutions have min{ f+2, t+1}
rounds of communication [DS83, DRS90]. A long line of works focused on feasibility results,
including protocols without setup [DRS82,Rei85, TPS87,BGP92,DRS90, Coa93, GM98, AD15], or
protocols with a setup for cryptographic (pseudo-)signatures [PT84, LN24, DKLZ24]. A different
line of work optimizes the delay of each round (rather than the number of rounds), by making
progress as fast as the actual network delay in an optimistic case when the number of corruptions
is small [PS18, LZLM"20)].

Optimistic communication. The work [CKS23] considered protocols with optimistic com-
munication O(nf) for byzantine agreement, improving upon traditional protocols that achieved
O(nt) communication.

2 Model and Preliminaries

2.1 Model

We assume a synchronous network, i.e., that all parties are connected via point-to-point channels
which guarantee delivery within a known time Acyanner. We additionally assume that the actual
fraction of honest parties vacruar, is at least some worst-case bound on the number of honest
parties Yo € (0, 1]. We assume that all parties have access to a PKI (public-key infrastructure).
That is, all parties p; have a public key pk; and a secret key sk; where the former is known by



Table 1: Overview of commonly used symbols.

Symbol Meaning Symbol  Meaning

P Set of all parties. Yso, Ywe Best/worst case honest parties fraction.
n Number of parties, n = |P|. ¢, T Committee size and complaint threshold.
K Security parameter. k Number of received complaints.

l Message length in bits. n Bound on the number of pulling parties.
A Delivery time upper bound. FErasure coding scheme.

P Randomness beacon value. W, T Number of shares and tolerated erasures.
pk, sk Public and secret key. s Share of erasure coding scheme.

r, wvrf Output and proof of VREF. « Cryptographic accumulation scheme.
Yacruan Actual honesty fraction. z, mac€ Accumulated value and proof.

all other parties. Additionally, we assume that all parties have access to a randomness beacon,
which periodically generates unpredictable random values. These values are updated at regular
intervals, referred to as epochs, and are accessible to all parties for both the current and past
epochs. Such randomness beacons are used in many blockchain protocols, e.g., for leader election
in proof-of-stake protocols [DGKR18, Edg25].

Remark 2. When one of our protocols is used to disseminate messages in a blockchain network,
the functioning of the blockchain and consequently the randomness beacon and progressing
epochs rely on message delivery of the flooding protocol. Since our protocols assume such a
randomness beacon with access to epochs, we need to avoid circular dependencies. One way to
achieve this is to upgrade an already functioning blockchain with a traditional flooding protocol
to use our optimistic flooding protocol: In that case, the randomness beacon is already working
and the current epoch is known. Our protocols can thus be used and are guaranteed to reliably
deliver messages in the current epoch. This in turn guarantees the blockchain to progress until
the next epoch, and so on.

Notation. Let H: {0,1}" — {0,1}" denote a collision-resistant hash-function and let {a,a,b}}
denote a multiset containing the elements a, a, and b. In Table 1, we summarize the notation
used in this paper. Note that several symbols are used in the context of our protocols and their
meaning will become clear later.

2.2 Primitives

Below we define properties of flooding protocols and introduce basic primitives our protocols
will use and briefly discuss how they can be instantiated.

Flooding. We use a property-based definition of flooding as it was shown in [LZMT24] that
security w.r.t. this definition implies a secure implementation of the flooding functionality in the
UC framework [Can20]. However, unlike previous property based definitions, we include the
fraction of parties that must remain honest for the delivery guarantee to apply in the definition.
This allows us to capture optimistic protocols that perform better when the actual fraction of
honest parties is high.

Definition 1 (Flooding). A flooding protocol is a protocol II executed by parties P, where each
party p € P can input a message at any time, and as a consequence, parties may get a message
as output.



Definition 2 ((v, A)-delivery). We say that a flooding protocol IT has (v, A)-delivery for
v € [0,1] and A > 0 if the following holds: When an honest party inputs a message m at time ¢
and YacruaL = 7Y, then all other honest parties output m by time t + A, except with probability

negligible in the security parameter k.

Additionally, we define the key metric for flooding networks most relevant for this paper
namely per-party communication complexity.

Definition 3 (Per-Party Communication Complexity). Let IT be a flooding protocol and let
[ € N be the bit-length of a message m. We say that the per-party communication complexity of
the protocol II to send a message of length [ is bounded by X if for any adversary, the probability
that there is an honest party sending more than X bits as a consequence of an honest sender
having input m is negligible in the security parameter x. We write PPCC(II,7) < X to denote
this.

Note that the delivery time parameter A is a crucial metric for flooding protocols. To
keep the per-party communication asymptotically optimal and in particular independent of the
number of parties n, the delivery time must grow at least logarithmically with n. Our protocols,
however, introduce only a small constant overhead beyond the latency of the underlying protocols
we use in a black-box manner.

Verifiable Random Function (VRF). In our constructions, we will use a VRF to prevent
corrupt parties creating excess network traffic. Below, we define an abstraction of VRF as a pair
of two algorithms with the standard properties defined in [GRPV23].

Definition 4 (Verifiable Random Function). A pair vrf is a VRF if it consists of the following
two algorithms:

o vrf.Eval: An evaluation algorithm that takes an input i € {0,1}" and a secret key sk as
parameters and outputs an output r and proof 7.

o vrf.Verify: A verification algorithm that takes an input 4, an output 7, a proof 7, and a
public key pk as parameters and outputs a boolean value b € {L, T}.

With the following properties:

Full uniqueness: An adversary cannot find a public key pk, an input ¢, two different outputs
vrf _vrf

r1 # 12, and proofs 7y, ¥ s.t. vrf Verify(i,r1, 7¥") = T and vrf.Verify(i, ry, 7¥F) = T.

Full pseudorandomness: An adversary not knowing a secret key sk cannot distinguish the
output value r of vrf.Eval(i, sk) (for any input 7 chosen by the adversary) from a value
drawn uniformly at random without the proof 7¥'F.

For simplicity, we will assume all these properties to hold throughout all our executions and
disregard the negligible probability that they do not hold. Note that there exist several simple
implementation of such a VRF [GRPV23].

Erasure correcting code scheme. Our protocols will make use of erasure correcting codes.
Below, we recap the definition given in [LZMT24].

Definition 5 (Erasure Correcting Code Scheme). Let p € N be the number of shares, and let
7 € N be the number of erasures that are to be tolerated. A pair of algorithms ¢ is a (i, 7)-
erasure-correcting-code-scheme (abbreviated (u,7)-ECCS) if it consists of two deterministic
algorithms:



e (.Enc: An encoding algorithm that takes a message m € {0,1}* and produces a sequence
of shares s1,...,5,.

o (.Dec: A decoding algorithm that if a sequence of shares s, ... ,SL s.t. it holds for at
least ;1 — 7 of them that s, = s; and for the remaining s, = L is input, then the original
message m is returned.

We will use the notation (.ShareSize(l) for a function that bounds the size of each share
when a message of length [ is encoded.

Note that we here assume the algorithms to be deterministic, which we will exploit in our
constructions. While this is not the case for all erasure correcting codes, e.g., Reed-Solomon
codes [RS60] are deterministic. Using Reed-Solomon codes with the same encoding of messages

as in [LZMT24], we obtain (.ShareSize(l) = O(Hlj)
Weak cryptographic accumulator. In our protocols, we will make use of a weak form of
cryptographic accumulators. Below we recap the definition from [LZMT24].

Definition 6 (Weak Static Cryptographic Accumulation Scheme). A pair of algorithms « is
a weak static cryptographic accumulation scheme (abbreviated WSCAS) if it consists of two
deterministic algorithms:

o a.Accumulate({my,...,my}) : An algorithm for accumulating a set of values {my, ..., my}.
It returns an accumulated value z and a sequence of proofs i, ..., 73 where 77 can

be used to prove that m; is in the accumulated value z where each m; € {0,1}".

o a.Verify(m, 3¢, z): A function that checks if a proof 72 proves that a message m was in
the set of elements used to create the accumulated value z.

With the following properties:
Completeness: All honestly generated proofs are accepted by a.Verify.

Collision-freeness: No polynomial-time adversary can find a set of values M = {mq,...,m)},
avaluem’ ¢ M, and a proof 72 such that a.Verify(m', 72, z) = T for z + a.Accumulate(M).

We use the notation a.AccSize for a bound on the size of the accumulated value and
a.ProofSize(\) for a function that bounds the size of each proof as a function of the number of
messages accumulated .

Note that we here assume deterministic accumulators. Similarly to erasure correcting codes,
this is needed for our constructions. One can use Merkle trees [Mer90] to instantiate such a
WSCAS, where the accumulated value is the root of the Merkle tree and the proofs are the
Merkle proofs for each message. This yields an efficient deterministic scheme with

a.AccSize = O(k) and a.ProofSize(A) = O(log(M) - k). (1)

2.3 Mathematical Preliminaries
We use the following generalized Chernoff bounds in our proofs [Doe20, Theorem 1.10.21].

Lemma 1 (Chernoff bound). Let Xi,...,X,, be independent random variables with X; € {0,1}
for all i, and let = > E[> 7 X;] and p= < E[}-7, X;]. We then have for all 6 € [0,1],
= _ 82 & et
Prid X;<(1-6)p | <e 2z and Pr|d X;>(1+6ut|<e
i=1 i=1
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3 Warmup: PushPullFlood

We design a new flooding protocol based upon the push-pull paradigm from [DGH"87], by first
pushing a message to a fraction of the parties and then letting the remaining parties pull the
message from those that have received it. The original push-pull protocol proposed in [DGH™87]
relied on periodic pulling but is unfortunately not practical in the Byzantine setting because of
two issues:

1. The time period between pull requests must be set. If it is too low, it takes a long time
before a message reaches everybody. If it is too high, a lot of excess traffic is created.

2. Byzantine parties may issue an excessive amount of pull request and because honest parties
cannot determine whether these request are malicious, they have to answer the requests.
Thereby, the bandwidth of honest parties may be exhausted.

We address Issue 1 by letting our new protocol take an existing flooding protocol as a
parameter and use this to notify parties that a message is being flooded. Thereby parties can
simply issue pull requests when they receive such notification but no message. At first it may
seem paradoxical to design a flooding protocol that is parameterized by an existing flooding
protocol. However, note that the existing flooding protocol is only used to flood notifications
showing that a message has been flooded, and such notifications are therefore significantly
shorter than the actual message being flooded. Therefore, previous provably secure flooding
protocols [MNT22, LZMM™22] for short messages can be used to instantiate this protocol without
blowing up the communication complexity of this new protocol.

A naive way to limit the number of pull requests that honest parties must answer is to have
each honest party enforce a local (possibly statistical) cap on the number of requests they respond
to. However, to prevent dishonest parties from exhausting this response budget—thereby blocking
genuine pull requests—such limits would need to be enforced per sending party. Unfortunately,
even if an honest party answers just one pull request from each other party, it would still induce
a per-party communication cost of Q(n - (1 — ywc)), which is already too high. Instead, a partial
solution to Issue 2 is to use a VRF to enforce from which neighbors a party is allowed to pull a
message from, similar to how connections are established in [CKMR22]. In more detail, each
party uses a VRF to obtain a random seed, which is then used to deterministically sample the
set of parties from which it pulls. Parties receiving pull requests can thus verify the VRF proof
and ignore illegitimate pull requests. To further prevent malicious parties from biasing their
VRF keys to skew the sampling, parties evaluate the VRF on an unpredictable value from the
randomness beacon, which is updated every epoch.

To ensure that an honest party pulls from at least one honest party, they must be allowed to
pull from at least Q(x) neighbors. Thus, if parties are allowed to pull the entire message from
all their neighbors, adversaries can induce a communication of least Q(x - [+ (1 — yacruan) - 1) by
letting all corrupt parties pull for a message of length [ from all their neighbors. To overcome
this, we adapt the techniques from [LZMT24] to work for pulling instead of pushing. That is,
to reduce the communication complexity of the pull phase, we let parties pull only an erasure
correcting share of the original message from each neighbor. As a final ingredient and similarly
to [LZMT24], we use a weak cryptographic accumulator to let honest parties recognize which
shares belong together and thereby ensure that they can reconstruct the message.

We next describe our push-pull protocol for the Byzantine setting. We describe the pull
step in a modular fashion, as we will reuse this step for our optimistic flooding protocol in
later sections. We therefore first introduce the protocol Pull and analyze its communication
complexity before presenting the protocol PushPullFlood.

11



3.1 Pulling

The pull-phase of the protocol has the purpose of ensuring that if a constant fraction of the
parties already knows a message, then if the remaining parties begin pulling, they are all able to
obtain the message with a per-communication complexity of just O(n - - yyd).

The protocol makes use of a VRF and the randomness beacon we assume to be available
to all parties (see Section 2.1). We assume that the VRF keys of all parties participating in
the protocol are generated independently of the current (and future) values of the randomness
beacon. This means in practice, users have to register their VRF keys at least one epoch before
participating in the protocol. This prevents malicious parties from repeatedly generating VRF
keys to skew the probabilities in their favor.

—| Protocol Pull(¢, «)

The protocol takes the following parameters:
¢: An (p,7)-ECCS.
a: A WSCAS.

Each party p; € P keeps track of a set of shares received for a particular accumulator z,
ReceivedShares;[z] and a set of received messages Messages;,.
Each party accepts the following three commands:

Pull message: When a party p; € P gets the input (Pull; h) they do the following:

1. Obtain random value ¢ from randomness beacon for the current epoch.®

2. Use vrf.Eval((¢,h),sk;) = (r,7") to obtain a random seed r and a proof
7. Use the seed to deterministically sample with replacement a multiset
S = {p1,...,pu} from P st. |S| = pu, and S is distributed uniformly for
uniform 7.

3. Now, the parties in S are deterministically enumerated S = {p1,...,p,}. For
each party p; € S they send (Pull,r,h, 7", j) to this party.

4. Whenever a party p; € S responds with the requested share and a proof of which
accumulator it belongs to (Share, sj, 7, z), p; first check that the proof 72
verifies that the share s; belongs to the accumulator z. If both checks pass, then
pi adds s; to ReceivedShares;[z].

5. When a party has received sufficiently many shares they will reconstruct the
shares to get a message m’ which they will add to Messages,.

Accept pull: When a party p; € P gets the input (AcceptPull,m) they first share the

message m into shares (.Enc(m) = s1,...,s,. Furthermore, they obtain an accu-
mulated value and proofs for each share and its share number z, 73, ... ST =

a.Accumulate({(s;,7) | 1 < j < p}).

Afterwards, whenever, a message (Pull,r, h, 7, ) is received from a party p; for the
first time, then party p; checks that p; should send this message to p;. This is done by
obtaining the random value ¥ from randomness beacon for the current epoch, checking
that vrf. Verify((¢, h),r, ﬂvrf,pkj) = T, and checking that p; was indeed sampled as
the j'th party using the seed r. If this check passes, the party sends the accumulator
and share values (Share, s;, 7, z) that belong to the hash value h to party p;.
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Get messages: On input (GetMessages) to p; the party returns the set of messages they
have received Messages;,.

“We here assume for simplicity that all parties agree on what the current epoch is. In practice, this can
be achieved by letting the sender of message include the epoch number v in the message and propagate this
epoch number to protocol calls, i.e., the party would in this case get the input (Puff; v, h) instead of (Pull;h)
etc.

We now state and prove the necessary property of this protocol.

Lemma 2. Let ¢ € (0,1], let ¢ be an (pu, 7)-ECCS and let a be a WSCAS. For any S € (0,1]
and any message m, if

1. at least B - n of the parties are honest and have input (AcceptPull, m),
2. the last honest party inputs (Pull,H(m)) to the protocol Pull((, ) at time t,
3.andT>p-(1—(1-96)-5),

then the probability that some party has not received the message m by time t + 2 - Acpyanne, S
52.4-8
less than Yacrya -1 - €~ o)

Proof. Consider an honest party p that has not received (AcceptPull, m) as input. We introduce
indicator random variables X1,..., X, where X; indicates whether the j'th party from which p
requests a share is honest and has already received (AcceptPull,m) before time ¢. Since we
assume both the erasure correcting code as well as the weak cryptographic accumulator to be
deterministic, that party will in this case have generated the same shares and accumulator
proofs as other parties. Therefore, p will in this case have received share j and a valid proof by
time ¢ + 2 - AcuanneL. Further, note that if p has received at least y — 7 valid shares by time
t + 2 - Acuanner, then p is able to reconstruct the original message timely by the correctness
property of the ECCS and the unforgeability of the WSCAS. Therefore, by the assumption that

To>p-(1-(1-0)-f)e=pu-1<1-08 p-b (2)
we have

Pr[p has not received message m by time ¢ + 2 - Acyanne]

m
ZXjéu—Tl

j=1

"
ZXjS(l—cs)-u-ﬁ].
=1

< Pr

< Pr

Parties sample the p neighbors with replacement using a random seed r obtained from the
VRF given the message hash and a fresh value from the randomness beacon. Since we assume
the randomness beacon produces unpredictable values, independent from the VRF keys, the X
are computationally indistinguishable from independent and identically distributed values. We
further note that, up to some negligible distinguishing advantage, the expected value of any X;
is given by E[X] = 8, and there Chernoff (Lemma 1)implies

528

Pr ing(lf&-uoﬁ <e T2 . (4)
j=1
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Noting that there are at most yacruaL - 7 such parties and using a union-bound together with
Equation (3), we get the desired bound

Pr[some honest party has not received message m by time ¢ + 2 - Acganne)

_52%5
< YacruaL "N - e 2. O

Communication complexity of pulling. Let us now analyze the communication complexity
of the pulling protocol. We first concentrate on the communication complexity induced for a
party to pull a message. For each party pulling, there will be p pulling requests. The pulling
requests will each consist of:

1. A tag Pull of size O(1),
2. the random seed from the VRF to determine whom to pull from of size O(k),
3. the proof that this seed has been correctly calculated of size O(k),
4. the hash of the message of size O(k),
5. and the index of the requested share of size O(log(u)).
Therefore, each such pull request will have size
O(1) + O(r) + O(x) + O(r) + O(log(n)) = O(x + log(n)), (5)
and the total communication complexity for such pulling party will be
p- O(k +1log(p)) = O(p - (ks +log(p)))- (6)

Next, let us analyze the communication complexity of responding to such walid' pull requests.
A response to such pulling request will consist of:

1. A tag Share of size O(1),
2. a share of size (.ShareSize(l),
3. the accumulated value of all shares and indexes with size «.AccSize,
4. and the proof that the share is a part of the accumulator with size o.ProofSize(u).
Therefore, each such response will have size
O(1) + (.ShareSize(l) + o.AccSize + a.ProofSize(u). (7)

The total communication complexity for a party having accepted pulls, will therefore be
what is given in Equation (7) multiplied with the number of such valid pull requests the party
receives.

By the pseudorandomness property of the VRF, a verifying pull requests can only be
established by letting the party knowing their secret key evaluate the VRF.2 To upper bound

!That is, a pull request where the attached VRF-proof proofs that the share should actually be requested from
this specific party.

2To see that this follows from the pseudorandomness, consider for the sake of contradiction an adversary with
a non-negligible probability of evaluating a VRF without knowing a corresponding secret key. This can be used to
distinguish an output of the VRF from a uniformly random value non-negligibly by using the adversary capable
of evaluating such VRF with a non-negligible probability and if the output matches the challenge, guess that it
was produced by the VRF.
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the per-party communication complexity let n be an upper bound on the number of secret keys
that are used to evaluate the VRF for a particular message. Each VRF evaluation gives rise
to p pull requests. The outputs of each such evaluation from a secret key is guaranteed to be
unique by the full uniqueness property which ensures that there are therefore at most 7 -  valid
pull requests in total for a particular message.

For a particular party p, we introduce an indicator random variable X; for each of the pull
requests i € {1,...n - u} where X; = 1if and only if the 7’th of these potential pull requests targets
p as a valid receiver of the pull request. As the target of a valid pull request is drawn uniformly
at random among all parties (up to some negligible distance by the pseudorandomness property
of the VRF and the definition of the protocol), we have for any X; that the expected value is

E[X;] = n~! and therefore E{Zyznl“ X,} =1 - u-n~'. Further, because the sampling is done
with replacement, we have as in the proof of Lemma 2 that the values X; are indistinguishable

from independent and identically distributed random variables. We can thus apply the Chernoff
bound to obtain (up to negligible distance) for any § € [0, 1]

2.np

<e T . (8)

e
PT[ZX2‘>(1+5)'77-M-71_1
i=1

Further, using the union bound, we can bound the probability that any party receives more pull
requests than what we used in the bound above:

521

Pr [Elp receiving more than (1+0)-7-p-n~* pull requests} <n-e Fn . (9)

Letting 0 be constant, we note that the probability that any party receives more than O(7- ,u-n_l)
valid pull requests is negligible in £ when p > 3-n - (log(n) + k) - (62 -1)~!. Hence, the per-party
communication complexity for a party accepting pull requests with these parameters will be

O(n-p-n~"(¢.ShareSize(l) + a.AccSize + a.ProofSize(n))). (10)

3.2 Push-Pull Flooding

We now present the full protocol that combines the push and pull phases. Before presenting the
actual protocol, we introduce a weakened delivery guarantee, that will be used for the push-phase
of the protocol.

Fractional delivery. We here introduce a weakened version of the (v, A)-delivery guarantee,
namely a version where it is not required that a message is delivered to all parties, but rather
only to a fraction of the parties. The idea is that we will use a protocol with this weaker delivery
guarantee to spread out messages to a large fraction of the parties before the pulling phase is
initiated. We dub this weakened property fractional delivery and define it formally below.

Definition 7 ((3,~, A)-fractional delivery). We say that a flooding protocol II has (3,v, A)-
fractional delivery for B, € [0,1] and A > 0 if the following holds: When a message m is
input to an honest party at time ¢t and yacruaL = 7y, then at least a 8 fraction of honest parties
output m by time t + A, except with probability negligible in the security parameter .

Sometimes, we will refer to a flooding protocol with this property as a fractional flooding
protocol.

The idea of not delivering messages to all parties was also considered in [CKMR22].?> However,
their work builds a custom consensus protocol on top of the weaker message dissemination

3In particular, the Fiyne functionality of [CKMR22, p. 7] allows a fraction of the parties to be eclipsed in which
case the delivery guarantees will not apply.
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functionality. In contrast, our work uses the weaker property as a step towards building a
flooding protocol that ensures message delivery to all parties.

Push and then pull flooding protocol. We now present our flooding protocol that works by
first making the parties push out a notification for that a message is about to arrive (the hash of
the message) and push out the actual message using a fractional flooding protocol. Afterwards,
all parties are allowed to pull for the message if they did not receive the message that they were
notified about.

—1{ Protocol PushPullFlood (HFloody I fracFiood, €, a)

The protocol takes the following parameters:

IIFi00a: a flooding protocol with (Ywe, Arieed )-delivery.

MfracFlood: @ flooding protocol with (5, Ywe, AFracFlood )-fractional delivery.
¢: A ECCS.

a: A WSCAS.

Each party p; keeps track of a set of received messages Messages, that initially is empty,
and runs an instance of the protocols Pull({, @), Hpipod, and wacFlood-
Each party accepts the following two commands:

Send: When party p; receives input (Send, m) they:

1. Send a hash of the message (#Hash, H(m)) to all parties using Igjood-
2. Send the message using IlgacFiood-

3. Add m to Messages;

4. Input (AcceptPull,m) to Pull(¢, o).

Get messages: On input (GetMessages) to p; the party returns the set of messages they
have received Messages;.

Additionally, at all times the parties do the following;:

1. Whenever a party p; receives message h in the protocol Ilgjyoq, the party notes down
the time ¢. If there is no message m’ € Messages, s.t. H(m') = h at time ¢+ ApracFlood,
then they issue (Pufl; h) to Pull(¢, ).

2. Whenever a party p; receives a message m in the protocol Ilgacriood, they add m to
Messages,; and input (AcceptPull, m) to Pull({, o).

3. Whenever a party p; receives a message m in Pull((, o), they add m to Messages;.

Below, we state and prove the security of PushPullFlood.
Theorem 3. Let 11, T, A Fioody A FracFiood € N, let 5,0 € (0,1], and let o be a WSCAS. If
1. Mpppeq ensures (Ywes Ariood)-delivery,

2. M pracFiood ensures (B, Ywe, A FracFiood) -fractional delivery,
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3. and ¢ is a (p, 7)-ECCS with

(a) p=>2-(log(n) + k) - (B vwe-0%)~" and
(b)) 7= p- (L=(1=0) B Ywo),

then PUShPu”F/OOd(HFlooda HF’racFloodv C,Oé) ensures (’.YWC7AFlOOd + AF‘racFloocl + 2. ACHANNEL)'
delivery.

Proof. Assume there are at least ywc - n honest parties and let m be a message input to some
honest party at time t. We let

o A Dbe the event that all honest parties have received m by time Apiooqd + AFracFlood + 2

ACHANNELa

o B be the event that all honest parties have received H(m) by time t + Apiooq,

e and let C' be the event that at least a 3 fraction of the honest parties have received m by
time ¢ + AFracFlood-

By the law of total probability and the assumptions on Ilpooq and Igacriood, we have that
Pr[A] > Pr[A| BNC]-Pr[BNC] > Pr[A| BNC]- (1 — negl(k)). (11)

Further, as Pr[A | BN C|] = 1 — Pr[-A | BN C], it is sufficient to prove that Pr[—A |
BN (] < negl(k). Note that C' ensures that a § fraction of the honest parties, i.e., at least
a fraction 8’ :== - ywe, has received m in the protocol Igacriood by time ¢ + AppacFlood, and
thus has input (AcceptPull, m) to Pull(¢, @) by then. Further note that B ensures that by time
t + Ariood + AFracFlood, all honest parties either have received m or have input (Pufl;H(m))
to Pull(¢,«). Finally note that we have 7 > p - (1 — (1 — §) - 8') by assumption. Hence, the
preconditions for Lemma 2 are fulfilled, which gives us that:
Pr[-A | BNC] < vyacruaL - 1 e_m <noe < negl(k). (12)
]

Communication complexity of pushing and pulling. We bound the per-party commu-
nication complexity PPCC(PushPullFlood(IIriood, HFracFiood; ¢, &) with the variables instantiated
according to Theorem 3, choosing the number of shares as small as possible while fulfilling
pw>2-(log(n) + k) - (B ywe - 0%)~L. The per-party communication complexity of PushPullFlood
will be the sum of the following:

1. The per-party communication complexity from the flooding protocol used to send the hash
of the message.

2. The per-party communication complexity from the fractional flooding protocol used to
send the message itself.

3. The per-party communication complexity induced by the pulling phase.

The former two terms depends on the sub-protocols that PushPullFlood is instantiated with
(i.e., oo and IpacFlood) and we therefore go on to analyze the size of the last term: The
per-party communication complexity of the pulling phase. In the worst-case a party will first pull
and afterwards receive the message and thereby accepts pulling requests. The communication

4This can easily be mitigated without compromising the security of the protocol by simply not allowing any
party to both pull and accept pulls.
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induced by a party pulling was already established in Equation (6) and the communication
complexity for a party to answer pull-request was established in Equation (10) given an upper
bound on how many parties evaluate the VRF. It is therefore sufficient to bound the number
of parties that evaluate the VRF for the specific message. The fractional flooding protocol
guarantees that at least 5 - ywc - 7 will not evaluate the VRF for the hash of this message
as they are honest and have timely received a message whose hash matches the notification.
Therefore, at most (1 — 5 - ywc) - n evaluate the VRF. Further, for a suitable ECCS (such as

the Reed-Solomon construction described in [LZMT24] with (.ShareSize(l) = O(ﬁ)) and
T=0(u-(1—=p- vwc)) we have

(shareSize(l) = O(l - (—p- (1 - f-we) ) =00 (- B-we) ). (13)
Specializing Equation (10) to this setting, letting u = O((log(n) + &) - (8 - ywe) ') to ensure

that the probability is overwhelming in k and combining this with the previous analysis of the
communication induced by each such request, we get

O((1 = B -ywe) - - (O(1) + ¢.ShareSize(l) + a.AccSize + a.ProofSize(u)))

=0((1—B-ywe) - (OA) +O(L- (- B-ywe) ™) + O(k) + O(k - log ((log(n) + &) - (B - ywe) ™))
= O (B-ywe) " 4 ((log(n) + &) - (B Ywe) ") - k- log ((log(n) + &) - (8- we) ™)) (14)

= O(l (B ’ch)_l + K% (B ’ch)_l)

Using the same instantiation of variables for a pulling party (i.e. (Equation (6))), we get that
the communication for a pulling party is bounded by

O(p - (k +1og(n))) = O((log(n) + k) - (B ywe) ™" - (5 + log((log(n) + &) - (B - Ywe) 1))

= O(KZ (B W’WC)_l)
We note that asymptotically this does not add more to the per-party communication complexity
than what is already induced by accepting pull. Using the above bounds on the individual

parts of per-party communication required for accepting pulls and for pushing we get that the
per-party communication complexity for the entire protocol is bounded by

(15)

PPCC(PUSh PU”F|OOd(HFlooda HFracFlooda C7 Oé), l)
< PPCC(HFlood7 K‘) + PPCC(HFracFlooda l) + O(l : (ﬁ : 'YWC)_I + “2 : (ﬁ ’ 'YWC)_I)' (16)

Hence, if the fractional flooding algorithm ensures to deliver the message to a constant fraction
of the parties, then PushPullFlood only gives an overhead compared to fractional flooding that
is asymptotically optimal in the message length for messages of length I = Q(k% - (8 - ywe) ™ 1).

Therefore, to ensure that the entire flooding protocol is an asymptotically optimal flooding
protocol, it is only left to instantiate the fractional flooding algorithm in a suitable manner.
However, as the flooding protocol presented in [LZMT24], ECFlood, was already proven to
be asymptotically optimal and any flooding protocol also is a fractional flooding protocol,
it follows immediately (by the above discussion of the communication complexity of Pull),
that PushPullFlood is an asymptotically optimal flooding protocol as well when instantiated
with ECFlood and a suitable choice flooding algorithm for the notifications such as FFlood
from [LZMT24].

4 OptimisticFlood

In this section, we present our optimistic flooding protocol OptimisticFlood that has an optimistic
path such that under certain conditions it is guaranteed to have a communication complexity
that is much lower than in worst-case scenarios.
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4.1 Protocol

Protocol intuition. Our protocol is parameterized by two flooding protocols: 1) a best-case
flooding protocol that only works if some best-case conditions are fulfilled, 2) a worst-case
flooding protocol that is ensured to work in all remaining cases. The best-case conditions will
be that at least a fraction 7 of the parties remain honest throughout the execution.

A first skeleton of an optimistic flooding protocol relying on two such existing flooding
protocols could look like the following;:

1. Run a best-case protocol to disseminate the actual message.

2. Check if the best-case protocol succeeds. If not, default to sending the entire message
using the worst-case protocol.

While the skeleton reads fairly straightforward, it is easier said than done to reliably detect
if the best-case protocol fails while still tolerating a small fraction of corrupted parties. Because
flooding protocols only ensure the delivery of the message when the initial sender is honest, a
first step towards this could be to let the initial sender ask all parties if they have received the
message. We refer to a party reporting that they have not received the message as a complaint.
Based on the answers given by the parties, a decision must be taken on whether we default back
to use the worst-case flooding protocol and use this to send the entire message. The decision
procedure and the following actions should account for the following two cases depending on the
actual fraction of parties being honest yacryar:

Ybe < YActual: In this case, the best-case protocol is guaranteed to deliver the message to all
honest parties and therefore the worst-case protocol should not be executed, independently
of the actions of the malicious parties. In particular, these up to n - (1 — v5¢) malicious
parties may complain about not having received the message even though they have.

Ywe < YActual < Ybe: In this case, we have no guarantees from the best-case flooding protocol
about how many parties have received the message and the adversary can choose this
arbitrarily (by delivering the message to specific parties). In particular, it may be that the
adversary does not deliver the message to n - (1 — o) parties.

Note that from the sender’s point of view, it will be impossible to distinguish which of the
two above cases they are in as an adversary can make the views appear exactly the same for
the sender. So how do we ensure that n - (1 — 7g¢) parties cannot force the execution of the
worst-case protocol in the first case while ensuring that all honest parties receive the message in
the second case?

To balance this we introduce a subsequent pull-phase in case we decide that the best-case
protocol “succeeded” allowing parties not having received the message to pull similar to the
pull-phase from the protocol PushPullFlood presented in Section 3. That is, instead of requiring
that no honest party complains to conclude a success, we only require that not more than a
fraction of the parties complain in order to conclude that the best-case protocol succeeded.
Concretely, we introduce a threshold T for how many complaints we will accept and still conclude
that the best-case protocol “succeeded”. We will set this threshold such that (1 — vgc) - n parties
cannot produce enough complaints to conclude that the protocol failed if it did not, but still it
should ensure that a sufficient fraction of the honest parties have received the message to ensure
that pull requests will be responded to appropriately. Thereby, we can use the protocol Pull
without prohibitively high communication.

What is left is only to combat the impracticality of letting the sender ask all parties. We do
this by letting the sender sample a subset of the parties and ask this subset of parties about
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whether or not they have received the message. This allows the sender to statistically conclude
whether or not the best-case protocol succeeded.

Protocol description. Below, we present our protocol for optimistic flooding.

— Protocol OptimisticFlood(Ils¢, Iywc, ¢, T, ¢, a)

The protocol has the following parameters:

IIpe: A flooding protocol that should work in the best-case ensuring delivery within Agc
time when at least a ¢ fraction of the parties remains honest.

IIwe: A flooding protocol that should work in the worst-case ensuring delivery within Awc
time when at least a ywc fraction of the parties remains honest.

c: The size of the subset the sender should ask for complaints.

T: A threshold that decides how many complaints are acceptable.
¢: A ECCS.

a: A WSCAS.

Each party p; keeps track of a set of received messages Messages, that initially is empty,
and runs an instance of the protocols Pull(¢, ), Hpiood, and Hpracriood-

Send: When a party s receives input (Send, m) they do the following:

1. The sender s sends (Message, m) to all parties using IIz.. We let the time that
this happens be denoted tyyr.

2. At time tyyr + Apc® the sender uniformly at random (with repetition) samples a
committee of parties C' = {p1,...,p.} C P. For each party p € C the sender sends
a direct message using an authenticated channel (Received?, H(m), tixir + Apc).

3. At time tpar+ARC+2- Acuanwes’, the sender counts how many unique complaints
they have received from valid committee members for H(m). We let the count be
denoted by k, and based on this the sender does one of following two things:

(a) If £ > T, then the sender sends the original message (Message,m) to all
parties using Ily..

(b) Otherwise if & < T, the sender initializes a pull-phase by signing and sending
(PullPhaseBegun, H(m)) to all parties using Ilyc.

Get messages: On input (GetMessages) to p;, the party returns the set of messages they
have received Messages;.

Additionally, at all times the parties do the following;:

o When party p; receives a message (Received?, h,t) over an authenticated channel from
a party s, the party checks if there is any message m € Messages, s.t. H(m) = h
which has been received before time ¢.¢ If no such message exists, then they send
(Complaint, h) to s over the authenticated channel.

o When a party p; receives (PullPhaseBegun, h) over Ily at time ¢ they do the following:
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1. If there is any message m € Messages, s.t. H(m) = h, then they input
(AcceptPull,m) to Pull(¢, a).

2. Otherwise, if no such message exists, then they input (Puf; h) to Pull(¢,«) at
time t + ch.d

e When party p; receives a message m in either the best-case protocol, the worst-case
protocol or the pulling protocol, they add it to Messages, and store the time they
received it together with the message.

“This timing ensures that the best-case protocol have had sufficient time to deliver the message.

At this time it is ensured that all honest parties’ complaints have reached the sender.

“Note that it is necessary to require that the message have been received before time t to ensure that
the number of complaints from the set of parties sampled accurately reflects the share of parties that have
actually received the message. If this condition was not enforced, an adversary could choose to deliver the
message to all the parties part of the committee once the sender sends the Received>message to them.

“The reason that the party does not immediately input the message to the pull protocol, is that it must
be ensured that sufficiently many parties have already input an accept of the message to the pulling protocol.

Note that for the provably secure protocols, we often have Apc, Awe = O(log(n) - Acuane)-
Hence, the direct communication steps that happen using a channel are comparatively “cheap”
time-wise.

It is also worth noting that instead of using just two different flooding protocols, one could
consider using three different protocols. A natural example of this would be to use one worst-case
protocol for short messages (notifications), one worst-case protocol for long-messages, and one
best-case protocol for long messages.

The described version of the protocol requires a synchrony assumption on the channels for
safety (i.e., guaranteeing message delivery) in the worst case to ensure that sufficiently many
complaints reach the sender in time. In the optimistic case, it does not require synchrony.
However, if we instead changed the protocol to require a certain number of “confirmations” from
parties having received the message instead of complaints, the protocol would achieve safety
without relying on synchrony. On the other, it would still only achieve the best-case communica-
tion complexity under synchronous conditions and require slightly more communication in the
optimistic case to send the confirmations. This allows fine-tuning the protocol for the specific
settings it is deployed in.

4.2 Correctness

In this section, we prove the correctness of the protocol OptimisticFlood under relevant conditions
.We start out by stating that if the actual fraction honest parties yacruaL is bigger than the
best-case threshold -, then for certain parameters, we achieve the delivery guarantees of the
best-case protocol.

Lemma 3 (Best-case correctness). Let ¢ € N be the size of the committee, T € N be the
complaint threshold, Iy a protocol, ¢ a ECCS, a be a WSCAS, and § € (0,1]. If

1. Mg has (Ype, Apc)-delivery
2. and T > (146)- (1 —pc) -

then OptimisticFlood(Ilpc, we, ¢, T, (, ) has (Vpe, Apc)-delivery and if yacruar = Yo and the

52.(1-vpc)-e
3 .

sender is honest, then the probability that Step 3a is activated is less than e~
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The intuition for Condition 2 is that it corresponds to requiring that under best-case
conditions, the threshold for the number of complaints is set sufficiently large such that only
dishonest parties in the committee cannot make the sender default back to using the worst-case
protocol. We now proceed with the proof.

Proof. We note that because the entire message is immediately input to Ilgq, the delivery
guarantees for I directly apply and hence OptimisticFlood(Ilsc, Iy, ¢, T, ¢, ) has (vsc, Apc)-
delivery.

We now bound the probability that Step 3a is activated for an honest sender. Let the time
that the honest sender sends a message m be denoted tyr and note that by the above, all honest
parties have received the message at time ¢y + Apc. Hence, no honest party will send back
(Complaint, H(m)) to the sender. It is therefore sufficient to show that the number of corrupted
parties in the committee is at most 1" with overwhelming probability.

To do so, we let X1, ..., X, denote indicator variables s.t. X; = 1 if and only if party p; of
the committee C' in Step 2 is corrupted and note that for the actual number of complaints k, it
holds that > j_; X; > k. Further, note that

E [Zc: Xz‘| = (1 - ’YACTUAL) c< (1 - 'YBC) -G (17)
=1

and that the variables are identically and independently distributed as the honest sender samples
the committee at random with repetition. Hence, using the Chernoff bound(Lemma 1), we

conclude that
52‘(1_’YBC)‘C

Pr lzc:XiZ(l—ké)-(l—*yBc)-c <e T 3 . (18)
i=1

62 (1—po)e

Therefore, by Condition 2, we have Pr[k > T] <e 3 . O

Next, we state that when the parameters of the protocol are instantiated carefully, then
the protocol also ensures delivery assuming just the worst-case bound on the number of honest
parties. It is worth noting that the theorem only makes assumptions about the worst-case
protocol. Hence, message delivery is ensured independently of which best-case protocol is
deployed. In particular, this allows to use protocols that based on for example heuristics about
practice.

Lemma 4 (Worst-case correctness). Let 7, u,T,c € N, let Ige be a protocol, let o be a WSCAS,
and let 01,062, € (0,1]. If

1. Ilye has (Ywe, Awe)-delivery,
T<(1-061): (ywe—B) ¢,
w22 (og(n) +5)- (8-,

>k
c= 6%'(’7%/0_6) ’

5. 72 p- (1= (1=0)-p),
6. and ¢ is a (u,7)-ECCS,

L

then OptimisticFlood(Ilpc, Mye, ¢, T, ¢, @) has (Ywe, Apc+4- A cuanne,+2- Awe)-delivery. Further,
if the sender is honest, then the probability that there are less than B - n honest parties that have
recetved the message and Step 3b is activated is negligible in k.
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The intuition for § is that it corresponds to a threshold for the fraction of parties that are
honest and must have had the message delivered in case the sender does not receive sufficiently
many complaints to default back to the worst-case protocol.

Proof. Let s be an honest sender that sends a message m at time tyr. Further, let 6 € [0, yAcruad]
be the fraction of parties that are honest and have received the message m at time tyyr + Apc.
Because we have no guarantees about how the best-case protocol performs assuming only
YAactuaL = Ywe, we have no guarantees about the value of 6. Instead, we make a case distinction
whether # > 3 or not:

0 > (B: For this case, we again make a case distinction based upon whether or not the actual
number of complaints collected by the sender k is above the threshold T

k > T: In this case the sender will enter Step 3a at time tiyr + Ac + 2 - Acuanner and
flood the entire message using the worst-case protocol Ily.. Hence, by Condition 1, it
is guaranteed that with overwhelming probability, all parties have learned the message
at the latest at time tinr + Apc + 2 - Acuanner + Awe.-

k < T: In this case the sender enters Step 3b at time ¢ty + Ac + 2 - Acuanne,. Hence,
the delivery guarantees of the worst-case flooding protocol Il ensures that with
overwhelming probability, all parties will have received (PullPhaseBegun, H(m)) before
time trar + Asc + 2 - Acuanner + Awce. Now, this implies that more than S -n parties
are honest and have input (AcceptPull, H(m)) to Pull(¢, @) by this time. Furthermore,
it is guaranteed that all remaining honest parties will have input (Pufl; H(m)) before
time tinr + ABc + 2 - Acuanne + 2 - Awe. Additionally, Conditions 5 and 6 ensure
that the final precondition for Lemma 2 is fulfilled. Hence, using Condition 3, the
probability that at time tiyr + Apc + 4 - Acuanner + 2 - Awc, there is some party
who has not received the message is less than

_3Bws _ 5w _log(m)tx
YActuaL cmc€ 2 <n-e 2z <n-e 2 <mnegl(k). (19)

0 < B: First, note (similarly to the previous case) that if for the actual number of complaints
k it holds that k > T, then the sender enters Step 3a in which case the probability
that all parties have received the message at time tiyr + Apc + 2 - Acuanner + Awe is
overwhelming in the security parameter (by Condition 1). Therefore, it is sufficient to
show that the probability that & < T is negligible in the security parameter. To show
this, let X1,..., X, be indicator variables s.t. X; indicates if the committee member 7 is
honest and has not received the message by time tiyr + Agc. Now, note that any honest
party that is part of the committee and has not received the message by time tiyr + Apc
will send (Complaint, H(m)) at latest at time tinr + Ac + Acuannen, Which means that
the sender will receive it at most Acyannen time later. Hence, we have that >°5_; X; < k.
By Condition 2, it is therefore to sufficient to show that

Pr ZXZ' < (1=961) (ywe — B) - ¢| < negl(k). (20)
i=1
Now note that for any i

Pr[Xi = 1} = Yacruar — 0 > Ywe — 0 > ywe — 5. (21)

Hence, we have E[Y_;_; X;i] > (ywc — ) - ¢. Further, because the sampling of the committee

is done with replacement, we can apply the Chernoff bound (Lemma 1), which when using
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K Ly . .
(e T we=B) (Condition 4) gives us:
c 5%(“/\*»‘0—13)‘0 "
Pr ZXi <(1=61) - (ywe—p)-¢c| <e ™ 2 <e 2 <negl(k). (22)
i=1

Hence, the total failure probability will be bounded by the three negligible probabilities from
above. Therefore, with overwhelming probability all parties will have received the message before
time e + Apc +4 - Achanser + 2 - Awc. 0

Finally, combining Lemmas 3 and 4, we can conclude that for suitable parameters the
protocol OptimisticFlood performs well in both the best-case and the worst-case.

Corollary 1. Let 7,T,c € N be the size of the committee, let T € N be the complaint threshold,
let o« be a WSCAS, and let 61,62, 3,0 € (0,1]. If

1. e has (vse, Apc)-delivery,
Iye has (Ywe, Awe)-delivery,
T>(146)-(1—p)-c
T<({1-0) (ywe—B)-c
pu>2-(log(n)+k)-(B-93)71,

>__ Kk
R £ )

T2p (1=(1-=0)-5),
8. and ¢ is a (u, 7)-ECCS,

AT

)

=~

then OptimisticFlood(Il ¢, ye, ¢, T, (, ) has both (Vge, Apc)-delivery and (ywe, Apc + 4 -
A cpannes + 2 Awe)-delivery. Additionally, when yacruar = Vse, then the probability that Step 3a

. . . 20w
s activated for an honest sender is less than e 3 .

4.3 Communication Complexity

We now show that OptimisticFlood does not only ensure fast message delivery but also incurs
only a minimal overhead in terms of per-party communication complexity compared to sending
the message using just the best-case protocol and worst-case protocol respectively.

Let OptimisticFlood(Ilgc, Iy, ¢, T, ¢, ) be instantiated with variables as stated in Corollary 1.
First, we analyze the communication complexity of the individual steps of the protocol to send
a message m of length [. We will use that hashes will be of size k, the time can be represented
using k bits, and the VRF proofs will have size O(k). We will let the parameters of Corollary 1
be instantiated to give the smallest communication complexity possible. is, we will let 4, d1,
2 be small constants, and let 8 = O(ywc). Thereby we will have u = O((log(n) + k) - Ywe),
7=0(u (1 —7wc)), and ¢ = O(k - yye). Using Reed-Solomon codes for our ECCS and a
Merkle Tree as our accumulator, we will have:

¢.ShareSize(l) =O(l- (u—7)"1) = O (- ywe) ™),
a.AccSize = k, (23)
a.ProofSize = O(k - log(p)) = O(k - log ((log(n) + k) '%_vé))
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Additionally, we will assume that 1 — 3¢ = O(7%wc). Note that this is not a very strong
assumption as it essentially states that those that the fraction parties that are being malicious
in the best case is no more than constant times the fraction of parties being honest in the worst
case. We note that this holds for what we consider realistic deployment scenarios such as when

’YWC == 1/2 and fyBC = 19/20

Communication of Step 1: The communication induced by this step is the communication
for using the best-case protocol to send the message:

PPCC(ILgc, ). (24)

Communication of Step 2: First, the sender sends a message (Received? H(m), tixir + Apc)
to ¢ parties. This message has size O(k). Similarly, each of these parties will at most
respond with the message (Complaint, H(m)) which is also bounded by O(k). The sender
being the party doing the most communication, the per-party-communication complexity
will therefore be bounded by the following:

Oc- k) = O(k” - 7). (25)

Communication of Step 3a: In this step the entire message is sent using the worst-case
protocol, which induces a per-party communication complexity of:

PPCC(ITyc, ). (26)

Communication of Step 3b: First, we note that the sender will send the hash of the message
using the worst-case protocol which induces a per-party communication complexity of
PPCC(Ilyc, k). Additionally, this will make all parties begin the pulling protocol which
per-party communication complexity are bounded by the sum of Equations (6) and (10).
We now specialize (Equation (6)), i.e., the per-party communication for a pulling party, to
this setting:

O(u - (k +log(p)))
= O((log(n) + K) - ywe - (k5 +log ((log(n) + £) - 1we))) (27)
= O(K” - o)

Let us now analyze the protocol with a case distinction on the execution based on the actual
fraction of honest parties yacruan- Note that Steps 1 and 2 are always executed with the same
bound on the communication complexity independent of the number of honest parties and it is
only the complexity of Step 3 that differs in the cases below.

Yacruan = Yec: As the probability that Step 3a is activated is negligible in the security parameter
by Corollary 1, it is sufficient to concentrate on the communication complexity of Step 3b.
Note that because yacruar = Vse, it must be that all honest parties received the message
at time tiyr + Apc (by the delivery guarantees of Il ). Further, because all honest parties
have received the message before the pull-phase begins, only dishonest parties will actually
pull and there will be at most (1 — 7g¢) - n of these.
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By Equation (10), the per-party communication complexity for answering pull requests
will be bound by

o

— Ype) -n - p-n" - (C.ShareSize(l) + a.AccSize + oe.ProofSize(u)))

((1 Ysc) - p - ((.ShareSize(l) + a.AccSize + a. Proof81ze(u) )

)
1~ me) - (( (1 fywc)—)+m+(n-1og((1og< Ywe)))
(

( )
(1 —7sc) - 7wc L+ (1= sc) - (log(n) + k) - 7wc (k- 10g ((log n)+ k) - ’ch))§28)

I
© o O © =&

[+ (log(n) + &) - (k- log ((log(n) + k) - Ywe)))
L+ K2).

(
(
(1+
O+

In then pen ultimate step of the reduction we used that 1 — v = O(ywc). For the total
per-party communication for this case we thus obtain the bound

PPCC(OptimisticFlood (TTyc, My, ¢, T, ¢, ), 1) < PPCC(IT5c, 1) +PPCC(ITye, k) +O(1+ K2 - yud)

(29)
Hence, for long messages, this implies that if yacruar = Vse, the communication complexity
of OptimisticFlood reduces to only basically sending the message using the best-case protocol
and an additional complexity that is only linear in the length of the message which is
anyway asymptotically optimal. Further, note that the additional complexity linear in the
length of the message requires the adversary to actively try to induce more communication
by sending pull requests even though all parties have received the message.

Ywe < Yacruar < Yse: In this case, we do not know whether Step 3a or Step 3b are activated.

Hence we make a case distinction between the two:

Step 3a is activated: In this case, the per-party communication complexity of will

simply be the sum of the per-party communication complexity of the individual steps:
PPCC(OptimisticFlood (I, [y, ¢, T, ¢, a), 1)

< PPCC(Mge, 1) + O(K? - yye) + PPCC(Mye, ). (30)

Step 3b is activated: By Lemma 4, it is given that the probability that less than 8- n

honest parties have received the message is negligible in the security parameter and

to compute the per-party communication complexity of this step we can thus assume

that B -n honest parties have received the message. Hence, at most (1 — () - n parties
pull for the message. Using (Equation (10)) for this setting we get

O((l — /) - - ((.ShareSize(l) + a.AccSize + a.ProofSize(u)))

= O(M (- (p ’ch)il) + 1+ (1 log ((log(n) + k) - ’7\7\/%)))) (31)
= O(l- e + (log(n) + k) - yye - (k- log ((log(n) + k) - 75¢)))
= O e + £ - ¥e)-

Summing up the communication complexity of the individual steps, and using the com-
munication complexity of a pulling party is given by Equation (27) the communication
complexity for this case will therefore be bounded

PPCC(OptimisticFlood (I, Iy, ¢, T', ¢, «), 1)
< PPCC(Ilyc, 1) 4 PPCC(Thye, 1) + O(1 - v + K7 ye) - (32)
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We note that independent of which case, for sufficiently long messages, the overhead
associated with running OptimisticFlood is only proportional to the extra cost to first try
running the best-case protocol and then a minimal additional overhead that matches the
asymptotically optimal bound by [LZMT24].

Below, we summarize these results as a theorem.

Theorem 4. Let OptimisticFlood(Ipc, e, ¢, T, (, «) be instantiated with variables as stated in
Corollary 1 while minimizing the communication complezity, let o« be a implemented by a merkle
tree, and let ¢ be a (pu, 7)-ECCS be implemented with Reed-Solomon codes.

If yacruar = Yge, then

PPCC(OptimisticFlood(Ilgc, Iy, ¢, T, ¢, @), 1)
< PPCC(Ilge, [) + PPCC(ILye, k) + O(1 + k% - 43d), (33)

Further, if yacruar = Ywe, then

PPCC(OptimisticFlood(Igc, Iy, ¢, T, ¢, @), 1)
< PPCC(Tgc, 1) + PPCC(Tye, 1) + Ol - Yy + K2 - Ywe)- (34)

For the best-case, we emphasize that there is only an asymptotic overhead compared to
running only the best-case protocol that is directly linear in the message length for messages of
length I = Q(k? - 7). Hence, as noticed in Section 1.2, this allows the protocol to shave off a
factor of ~we when instantiated with asymptotically optimal flooding protocols.

Finally, we note that this protocol is also optimistically responsive in the network delay if the
best case protocol is optimistically responsive. L.e. if there is a high fraction of honest parties,
then OptimisticFlood propagates the message with the actual delivery time of the best-case
protocol.

5 Conclusion

In this work, we presented two new protocols for message dissemination based on a push-pull
mechanism. Both are asymptotically optimal in terms of per-party communication complexity.
The protocol OptimisticFlood has an even better communication complexity in the best-case,
where the fraction of honest parties is high. Furthermore, OptimisticFlood is designed modularly
such that it remains provably secure when instantiated with a heuristically optimized best-case
protocol with high practical efficiency. This improves the state of the art in theoretical research
on message dissemination protocols and at the same time provides a protocol with practical
efficiency gains.
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