
Afgjort: A Partially Synchronous Finality Layer
for Blockchains∗

Thomas Dinsdale-Young1, Bernardo Magri2, Christian Matt1,
Jesper Buus Nielsen2, and Daniel Tschudi1,2

1Concordium, Aarhus, Denmark, and Zurich, Switzerland
{ty, cm, dt}@concordium.com

2Concordium Blockchain Research Center, Aarhus University, Denmark
{magri, jbn}@cs.au.dk

November 17, 2020

Abstract
Most existing blockchains either rely on a Nakamoto-style of consensus, where the chain can fork

and produce rollbacks, or on a committee-based Byzantine fault tolerant (CBFT) consensus, where no
rollbacks are possible. While the latter ones offer better consistency, the former tolerate more corruptions.
To achieve the best of both worlds, we initiate the formal study of finality layers. Such a finality layer can
be combined with a Nakamoto-style blockchain (NSB) and periodically declare blocks as final, preventing
rollbacks beyond final blocks.

As conceptual contributions, we formalize the concept of a finality layer and identify the following
properties to be crucial for finality layers: finalized blocks form a chain (chain-forming), all parties agree
on the finalized blocks (agreement), the last finalized block does not fall too far behind the last block
in the underlying blockchain (updated), and all finalized blocks at some point have been on the chain
adopted by honest parties holding at least k units of the resource on which consensus is based, e.g., stake
or computing power (k-support).

As technical contributions, we propose two variants of a finality layer protocol we call Afgjort. The
first variant satisfies all of the aforementioned requirements when combined with an arbitrary blockchain
that satisfies the usual common-prefix, chain-growth, and chain-quality properties. The second one needs
an additional, mild assumption on the underlying blockchain, but is more efficient and has higher support.
For both variants, we prove these properties in the setting with less than 1/3 corruption among the
finalizers and a partially synchronous network.

We further show that tolerating less than 1/3 corruption is optimal for partially synchronous finality
layers. Finally, we provide data from experiments ran with an implementation of our protocol; the data
confirms that finality is reached much faster than without our finality layer.

∗This is the full version of the article published by Springer in the proceedings of the 12th Conference on Security and
Cryptography for Networks (SCN 2020), available at https://doi.org/10.1007/978-3-030-57990-6_2.

1

mailto:ty@concordium.com
mailto:cm@concordium.com
mailto:dt@concordium.com
mailto:magri@cs.au.dk
mailto:jbn@cs.au.dk
https://doi.org/10.1007/978-3-030-57990-6_2

Contents
1 Introduction 3

1.1 Our Contributions . 3
1.2 The Two-Layer Approach . 4
1.3 Our Techniques . 4
1.4 Related Work . 6
1.5 Outline . 7

2 Preliminaries 7
2.1 Model and Network Assumptions . 7
2.2 Graphs and Trees . 8

3 Abstract Model of Blockchains 8
3.1 Description of Tree Functionality . 9
3.2 Desirable Properties and Bounds . 11
3.3 Discussion on Dishonest Chain Growth . 13

4 The Finality Layer 14
4.1 Formalization . 14
4.2 On Proving UC Security . 15
4.3 Impossibility of Better Bounds for the Number of Corruptions 16

5 Afgjort Protocol 17
5.1 Computing the Next Finalization Gap . 19
5.2 Existence of Unique Justified Proposals . 20

6 Weak Multi-Valued Byzantine Agreement 22
6.1 Freeze Protocol . 24
6.2 Core Set Selection . 26
6.3 Another Binary Byzantine Agreement . 28
6.4 WMVBA Protocol . 31
6.5 Filtered WMVBA Protocol . 34

7 Security Analysis of Finalization 37

8 Committee Selection 39
8.1 External Committees . 39
8.2 Chain-Based Committees . 40

9 Experimental Results 40

2

1 Introduction
In classical blockchains such as Bitcoin [Nak09], parties that win a “lottery” are given the right to append
blocks to a growing chain. Due to network delays, the chain can fork and become a tree since parties can
append new blocks to the chain before even seeing other blocks already appended to the chain by other
parties. Such forks can also be created intentionally due to adversarial behavior. Therefore, parties need a
chain-selection rule, e.g., the longest-chain rule, determining which chain in the tree is considered valid and
where to append new blocks. The chain selected by a given party can thus change over time, causing rollbacks
and invalidating transactions on the previously selected chain. Since very long rollbacks are unlikely, the risk
can be mitigated by waiting until “sufficiently many” blocks are below a certain block before considering
it “final”. This waiting time can, however, often be longer than what is desirable for applications: Even
assuming perfect network conditions and 1/3 corruption, the adversary can win k lotteries in a row with
probability 1/3k and thereby cause a rollback of length k. This means that to limit the rollback probability
of a block to 2−80, which is a desirable security level in a cryptographic setting, one needs to wait for at
least 50 blocks appended to it. Taking Bitcoin as a general example, where a new block is generated roughly
every 10 minutes, this results in waiting for more than 8 hours for a block to be final. Considering more
sophisticated attacks and unclear network conditions, an even longer waiting time would be necessary. The
main reason for this slow finality is that the simplistic rule of looking far enough back in the chain needs to
take a worst-case approach: it is extremely unlikely that the adversary wins 49 blocks in a row, but to obtain
2−80 security against 1/3 corruption, you must assume all the time that it could just have happened.

NSB vs CBFT blockhains. As an alternative to Nakamoto-style blockchains (NSBs), committee-based
Byzantine fault tolerant (CBFT) consensus designs such as the ones employed by Tendermint [Kwo14, Buc16]
and Algorand [Mic16, GHM+17] have been proposed. Such blockchains provide immediate finality, i.e.,
every block that makes it into such a blockchain can be considered final. They have, however, one big
disadvantage when compared to NSBs: responsive CBFT protocols cannot tolerate more than t < n/3
corruptions (cf. [PS17b]), while NSBs typically tolerate up to t < n/2 corruptions.

1.1 Our Contributions
Formalization of finality layers. To facilitate the formal study of finality layers, we identify the following
properties to be crucial. (1) Chain-forming says that no forks should be in the final part of the tree, i.e.,
all finalized blocks should be on a chain. (2) Agreement further ensures that all honest parties agree on all
finalized blocks. (3) The ∆-updated property guarantees that the chains held by honest parties are at most
∆ ∈ N blocks beyond the last finalized block; in other words, finalized blocks keep up with the chain growth.
Finally, the (4) k-support property ensures that any finalized block must have been on the chain adopted by
at least k honest parties1; a minimal requirement is 1-support, as otherwise, finalized blocks are potentially
not on the path of any honest party, forcing parties to “jump” to the finalized block and resulting in bad
chain quality.

A new partially synchronous finality layer. We propose a partially synchronous2 finality layer, called
Afgjort, that can be composed with virtually any NSB (synchronous or partially synchronous) that has the
standard properties of common prefix, chain growth, and chain quality (cf. [GKL15, PSs17, DGKR18]). Our
finality layer allows a finalization committee to dynamically “checkpoint” the blockchain by using Byzantine
agreement to identify and then mark common blocks in the honest users’ chains as final. Our finality layer is

1We note that whenever we mention number of parties in this work it should be interpreted as the number of parties weighted
by the underlying resource of the blockchain, e.g., in a PoS system k parties should be read as the fraction k/n of the total stake
n in the system.

2We consider the partially synchronous network model of [DLS88], where there is an upper bound ∆net on the network delay
that is not known to the protocol designer or the honest parties. In particular, ∆net cannot be used by a partially synchronous
protocol.

3

responsive in the sense that blocks are declared as final as soon as they are in the common-prefix of honest
parties, which is typically long before the worst-case common-prefix bound.

Experiments. We have implemented our finality layer on top of a proof-of-stake blockchain and ran
experiments in different settings. In Section 9 our results show that our finality layer indeed provides finality
much faster than the 50 blocks waiting time mentioned above. In all experiments, finality is typically reached
after about 10 blocks, in favorable conditions even 3 to 4 blocks are mostly sufficient.

For a measure of comparison, consider the PoS blockchain Ouroboros Praos [DGKR18] with a 15 seconds
block time, and say we want to limit the rollback probability to 2−80 under 1/3 corruption. As discussed
before, one needs to wait for at least 50 blocks in that setting, leading to more than 12 minutes for finality.
In our experiments, finalization with Afgjort on top of Ouroboros Praos brings this time down to around
70–85 seconds on average, which is an improvement of around one order of magnitude.

1.2 The Two-Layer Approach
Using a two-layer approach with a finality layer on top of a NSB has several advantages over using a CBFT
consensus design or using only a NSB. First of all, when the corruption is below n/3, the finality layer
can declare blocks as final much faster than a pure NSB. Furthermore, when the corruption is between
n/3 < t < n/2, a two-layer design can “turn off” the finality layer and rely on the NSB, whereas pure CBFT
designs completely break in this setting. Additional features of a two-layer design include:

• A finality layer can be put on top of any NSB, yielding a modular design. This allows to optimize the
two aspects separately. In particular, our finality layer can be put on top of existing blockchains to get
responsive finality.

• A finality layer can prevent long-range attacks on proof-of-stake blockchains. In a long range attack,
an attacker can in several plausible situations grow a deeper alternative chain from far back in time
that overtakes the real one [GKR18]. To prevent this, many existing proof-of-stake protocols rely on a
complex chain-selection rule including some form of checkpointing, which prevents honest parties from
adopting such alternative chains [DGKR18, BGK+18]. A finality layer (such as Afgjort) can provide
this checkpointing, which is then not needed anymore in the underlying blockchain. Therefore, one can
use simpler chain-selection rules for these protocols, such as simply choosing the longest chain.

• In contrast to pure CBFT designs, a two-layer blockchain continuously keeps producing blocks in the
NSB and can then finalize several of them at once. Therefore, a two-layer design can provide higher
and more consistent throughput than pure CBFT designs in situations where the Byzantine agreement
is slower than the NSB.

1.3 Our Techniques
We assume the existence of a finalization committee such that up to less than 1/3 of the committee can be
corrupted. We emphasize that techniques for selecting such a committee is an orthogonal problem, and we
briefly discuss it in Section 8.

The finalization committee is responsible for finalizing the next block. The block they are to finalize
is the one at depth d, where d is some depth in the tree that they all agree on and which is deeper than
the currently last finalized block. To ensure all parties agree on the value of d, it can be deterministically
computed from the blocks in the path of the last finalized block.

Why not “off-the-shelf” Byzantine agreement? At first, it may appear that there is an easy way to
finalize a block at depth d: Simply let the committee run some existing “off-the-shelf” Byzantine agreement
protocol to agree on a block at depth d, which is then declared final. Typical Byzantine agreement protocols,
however, do not provide the guarantees we need: the usual validity property only guarantees that if all honest
parties have the same input value, they agree on this value; if honest parties start with different values, the

4

agreement can be on an arbitrary value. This means that if we use this approach and start finalization
before depth d is in the common prefix of all honest parties, any block, even ones not on the chain of any
honest party, can be declared as final. This is clearly undesirable and violates the support property we
require from finality layers. Better guarantees could be achieved by using Byzantine agreement with strong
validity introduced by Neiger [Nei94]. This requires the agreed value to be the input of an honest party. Even
this strong notion, however, only gives 1-support, while we aim for higher support. Furthermore, strong
impossibility results are known [Nei94, FG03] for this type of validity if the set of possible input values is
large, which is the case in our setting since there could be many different blocks at depth d.

Protocol description. The basic insight that allows us to overcome these limitations is that we can utilize
the common-prefix property of the underlying blockchain: If we wait long enough, all honest parties will have
the same block at depth d on their chain. In that case, they can decide on this block. If honest parties have
different blocks at depth d, they can just agree to wait longer. More concretely, our protocol proceeds as
follows.

When a committee member has a chain which reached depth d + 1, it votes on the block it sees at
depth d on its chain using a committee-based Byzantine fault tolerance consensus protocol (CBFT). This
protocol is designed such that it succeeds if all parties vote for the same block, otherwise it might fail. If the
CBFT announces success, the block that it outputs is defined to be final. This is enforced by modifying the
chain-selection rule to always prefer the chain with the most final blocks. If the CBFT reports failure, the
committee members will iteratively retry until it succeeds. In the i’th retry they wait until they are at depth
d+ 2i and vote for the block they see at depth d on their chain. Eventually 2i will be large enough that the
block at depth d is in the common-prefix, and then the CBFT will succeed. The process then repeats with
the next committee and the next depth d′ > d.

This finality layer works under the assumption that there is some non-trivial common-prefix. It does not
need to know how long it is, it only assumes that some unknown upper bound exists. Note that the length of
the common prefix generally can, among other things, depend on the network delay, which is unknown in
our partially synchronous model. This also gives responsive finality: when the number of blocks after the
common-prefix value is low, we finalize quickly. Furthermore, it makes the finality layer work as a hedge
against catastrophic events, during which there are more blocks than usual after the common prefix.

Common-prefix and uniquely justified votes. The procedure described above ensures that at some
point, the block to be finalized at depth d is in the common-prefix. Then, the common-prefix property ensures
that all honest parties vote for that block. However, it is still possible for dishonest parties to vote for another
block. We propose two protocol variants that deal with this in different ways.

The first protocol variant is a simplified version of our protocol with the caveat that it requires an
additional property of the underlying blockchain, which we call bounded dishonest chain growth. It implies
that a chain only adopted by dishonest parties grows slower than the chains of honest parties. This holds
for many blockchains (assuming honest majority of the relevant resource), but it may not hold, e.g., if the
blockchain allows parties to adaptively adjust the hardness of newly added blocks. In that case, dishonest
parties can grow long valid chains with low hardness quickly without violating the common-prefix property,
since honest parties will not adopt chains with hardness lower than their own current chain. Given this
additional property, we have that at some point, there will be only one block at depth d lying on a sufficiently
long path. When a party votes for a block at depth d, we ask the party to justify the vote by sending along
an extension of the path of length 2i. So we can ask that our CBFT has success only when all parties vote
the same, even the corrupted parties. In all other cases it is allowed to fail. Since any path can eventually
grow to any length, the property that there is a unique justified vote is temporary. We therefore start our
CBFT with a so-called Freeze protocol which in a constant number of rounds turns a temporarily uniquely
justified vote into an eternally uniquely justified vote. After that, the CBFT can be finished by running a
binary Byzantine agreement on whether Freeze succeeded.

We further present our full protocol that does not rely on bounded dishonest chain growth and consequently
works on top of any blockchain with the typical properties. We still get from the common-prefix property

5

that at some point, all honest parties will vote for the same block. We exploit this by adding an additional
step at the beginning of the protocol which tries to filter out votes that come only from dishonest parties.

Keeping up with chain growth. The updated property of the finality layer requires that the finalized
blocks do not fall behind the underlying blockchain too much. To guarantee this, the depths for which
finalization is attempted need to be chosen appropriately. Ideally, we would like the distance between two
finalized blocks to correspond to the number of blocks the chain grows during the time needed for finalization.
Since parties have to agree on the next depth to finalize beforehand, they can only use information that is in
the chain up to the last finalized block to determine the next depth.

We use the following idea to ensure the chain eventually catches up with the chain growth: When parties
add a new block, they include a pointer to the last block that has been finalized at that point. They also
include a witness for that finalization, so that others can verify this. If the chain does not grow too fast, at
the time a finalized block is added to the chain, the previously finalized block should already be known. If
the chain grows too fast, however, we keep finalizing blocks that are too high in the tree. In the latter case,
the pointer to the last finalized block in some block will be different from the actually last finalized block. If
we detect this, we can adjust how far we need to jump ahead with the following finalization.

1.4 Related Work
A closely related work is Casper the Friendly Finality Gadget [BG17], which was (to the best of our knowledge)
the first proposal of a modular finality layer that can be built on top of a Nakamoto-style blockchain. Casper
presents a finality layer for PoW blockchains where a finalization committee is established by parties that are
willing to “deposit” coins prior to joining the committee. The committee members can vote on blocks that
they wish to make final and a CBFT protocol is used to achieve agreement; if more than 2/3 of the committee
members (weighted by deposit value) vote on the same block, then the block becomes “final”. Casper also
employs a penalty mechanism known as slashing; if a committee member signs two conflicting votes, its
previously deposited coins can be slashed from the system as a penalty. However, since the authors do not
present a precise network model and a detailed protocol description and analysis, it is not clear whether the
Casper protocol guarantees liveness and/or safety in the partially synchronous model. In particular, the
authors only consider what they call “plausible liveness”, but there is no guarantee that liveness actually
holds.

Another closely related, concurrent work is GRANDPA [Ste19]. In contrast to our work and Casper FFG,
parties in the initial phase of GRANDPA vote for their whole chain instead of a block on a predetermined
depth. Parties then try to finalize the deepest block with more than 2/3 votes. This allows to finalize blocks
as deep as possible. We note, however, that our mechanism of choosing the next finalization depth (see
paragraph “keeping up with chain growth” above) also guarantees that we finalize sufficiently deep blocks. In
contrast to our paper, GRANDPA only gives an informal treatment on several aspects. In particular, they do
not consider the updated and support properties as we do, and they do not precisely specify which properties
from the underlying NSB they need. From the properties they state, one can conclude that they achieve only
1-support, while our protocol has n/3-support. Furthermore, GRANDPA relies on a leader, what could be a
problem for the liveness of the protocol if a DDoS attack is directed to the leader after his role is revealed.
We remark that our protocol does not rely on a leader. Moreover, GRANDPA also uses a fixed timeout T ; it
inevitably prevents the protocol from being responsive in the sense that it will run slower than the network
allows it when T is set too large. Our protocol does not rely on such fixed timeouts.

We stress that we are not presenting a blockchain protocol, yet it is instructive to compare our finality
layer to existing consensus protocols. The consensus protocol closest to ours is Hybrid Consensus (HC) by
Pass and Shi [PS17b], and the closely related Thunderella [PS18]. They take an underlying synchronous
blockchain and use it to elect a committee. To do so, they assume that the underlying blockchain has a known
upper bound on how long rollbacks can be. Parties then look that far back in their currently adopted chain
to elect the committee based on that blocks. Then the committee runs a CBFT protocol to get a responsive
consensus protocol, i.e., the committee is producing the blocks. Note that this does not add finality to the

6

underlying blockchain. We could cast our work in terms of theirs as follows: we can elect the next committee
in the same way as HC. But our committee would not produce blocks, instead it introspectively tries to agree
on a recent block in the underlying blockchain. We then do a binary search to look far enough back to reach
agreement. When we agree, that block is defined as final. Now we could use that final block to elect the
next committee in the same way as HC. That way, we can typically elect the next committee from a much
more recent block. Thus, we do not need to assume that recent block winners stay online for as long as HC.
Another recent example of a partially synchronous CBFT blockchain is PaLa [CPS18], where the authors
propose a blockchain with finality built-in. As other CBFT designs, it lacks any guarantees under t ≥ n/3
corruption.

1.5 Outline
In Section 2, we describe our assumptions on the network and the overall model, and recall some basic
concepts from graph theory that we use later. In Section 3, we describe how we model the underlying
blockchain and our assumptions on its properties. We formalize the goal of a finality layer in Section 4. In
Section 5, we present the Afgjort protocol, which uses a weak multi-valued Byzantine agreement that we
present in Section 6. In Section 7, we prove that the Afgjort protocol satisfies the properties of a finality
layer we introduced in Section 4. In Section 8 we finally discuss how to select finalization committees.

2 Preliminaries
2.1 Model and Network Assumptions
We assume that there is a physical time τ ∈ N that is monotonously increasing and that parties have access
to local clocks. These clocks do not have to be synchronized; we only require the clocks to run at roughly the
same speed. We need that they drift from τ by at most some known bound ∆Time. For the sake of simpler
proofs we will pretend in proofs that ∆Time = 0. All proofs can easily be adapted to the case of a known
∆Time > 0.

For simplicity, we assume that there is a fixed set of parties P with n :=
∣∣P∣∣, where we denote the parties

by Pi ∈ P. There is an adversary which can corrupt up to t ∈ N parties. We call Pi honest if it was not
corrupted by the adversary. We use Honest to denote the set of all honest parties. For simplicity, we here
assume static corruptions, i.e., the adversary needs to corrupt all parties at the beginning. The set of parties
P constitutes what we call a committee. In Section 8 we discuss how the set P can be sampled from a
blockchain.

Network. We further assume parties have access to a gossip network which allows them to exchange
messages. This models how the peer-to-peer layer distributes messages in typical blockchains. We work
in a partially synchronous model, which means that there is a hidden bound ∆net on message delays. In
contrast to synchronous networks, ∆net is not known, i.e., the protocols cannot use ∆net, they can only
assume the existence of some bound. One can think of ∆net as an unknown parameter of the assumed network
functionality, or alternatively as being chosen by the adversary at the beginning of the protocol execution
(after the protocol has been fixed). More concretely, we make the following assumptions on the network:

• When an honest party sends a message at time τ , all honest parties receive this message at some time
in [τ, τ + ∆net].

• When an honest party receives a message at time τ (possibly sent by a dishonest party), all honest
parties receive this message until time τ + ∆net.

Remark 1. The above assumptions on the network are not realistic for a real-world gossip network. We have
chosen them because they allow for a proof focusing on the important and novel aspects of our protocol. The
assumptions can be weakened significantly. A weaker network model could for instance assume that if the

7

network partitions, it is always at some future point connected again for long enough, and that there exist
an unknown bound S such that the network will not drop a message sent between two connected parties if
the same message is sent S times. In such a model we could for instance let all honest committee members
save all messages they sent in the ongoing finalization attempt. They will keep occasionally resending these
message until they see the finalization attempt terminate. That way we would only need that all honest
committee members are eventually connected to all other members for long enough. Furthermore, parties
would only have to store a finite number of messages, namely those belonging to the current finalization
event.

Signatures. We finally assume that each party has a signing key for some cryptographic signature scheme
where the verification key is publicly known (e.g., is on the blockchain). For our analysis, we assume signatures
are perfect and cannot be forged. Formally, this can be understood as parties having access to some ideal
signature functionality [Can04, BH04]. We do not model this in detail here because the involved technicalities
are not relevant for our protocols.

2.2 Graphs and Trees
We recall some basic concepts from graph theory here.

Definition 1. A graph G = (V,E) consists of a set of nodes V and a set of edges E, where every edge e ∈ E
is a 2-element subset of V . A path (also called chain) of length k− 1 in G is a sequence (v1, . . . , vk) of distinct
nodes such that {vi, vi+1} ∈ E for all i ∈ {1, . . . , k − 1}.

The graphs we are most interested in are trees. We only consider trees with a root (corresponding to the
genesis block) in this work and always mean rooted tree when saying tree.

Definition 2. A (rooted) tree T is a graph (V,E) together with a node r ∈ V , called root, such that for
every v ∈ V , there is a unique path from r to v. We denote this path by PathTo(T, v). A leaf is a node
v ∈ V \ {r} that occurs in only one edge. We further let Depth(T, v) be the length of PathTo(T, v) and
Height(T, v) be the length of the longest path from v to a leaf. When the tree is clear from context, we
may also write PathTo(v), Depth(v), and Height(v). The height of a tree equals the height of its root:
Height(T) := Height(T, r) (equivalently, the height of a tree is the depth of its deepest node).

Remark 2. Some papers in the blockchain literature use the term height for what we call depth, e.g., [BG17].
We instead use the terms depth and height as common in computer science literature, which are derived from
the understanding that tree data structures grow from top (root) to bottom (leaves).

Definition 3. Let T = ((V,E), r) be a rooted tree and let u, v ∈ V be two nodes. If u is on PathTo(T, v),
then u is an ancestor of v and v is a descendant of u.

One can define several operations on graphs. The ones we need are the union and intersection, which are
simply defined as the union and intersection of the nodes and edges, respectively.

Definition 4. For two graphs G1 = (V1, E1) and G2 = (V1, E2), we define their union as G1 ∪ G2 :=
(V1 ∪ V2, E1 ∪E2), and their intersection as G1 ∩G2 := (V1 ∩ V2, E1 ∩E2). For two rooted trees T1 = (G1, r),
T2 = (G2, r) with common root r, we define T1 ∪ T2 := (G1 ∪G2, r) and T1 ∩ T2 := (G1 ∩G2, r).

Note that T1 ∪ T2 and T1 ∩ T2 are not necessarily trees.

3 Abstract Model of Blockchains
We want to describe our finality layer independently of the underlying blockchain protocol. Therefore, we use
an abstract model that captures only the relevant properties needed for our finalization layer. The properties
are modeled via an ideal functionality FTree, to which all parties have access.

8

3.1 Description of Tree Functionality
At a high level, FTree provides each party access to their view of all existing blocks arranged in a tree with
the genesis block at its root. The adversary can grow these trees under certain constraints. Formally we
give the adversary access to commands which grow the individual trees Treei of the parties Pi. We also give
party Pi access to a GetTree command which returns the current Treei. The functionality FTree maintains
several variables that evolve over time. For a time τ and a variable X, we use Xτ to denote the value of the
variable X at time τ .

Inside FTree each Pi has an associated tree Treei. The nodes in these trees correspond to blocks and can
contain several pieces of information, which we do not further specify since this is not relevant here. We only
assume that blocks contain a field for some metadata data used by our finalization protocols. The party Pi
can read Treei but is not allowed to modify it. All trees have a common root G, called genesis, and initially,
all trees only consist of G. We let

HonestTree := ∪Pi∈HonestTreei

be the graph that consists of all blocks in the view of any honest party. The adversary can add nodes to any
tree at will, under the constraint that HonestTree remains a tree at all times.

All Pi also have a position Posi ∈ Treei. We require that Posi is a leaf of Treei and can be set at will
by the adversary. If the adversary adds a node in Treei that is a child of Posi, Posi gets updated to be the
new leaf. Recall that for a node B in Treei, PathTo(Treei, B) denotes the (unique) path from the root to B.
We define Pathi := PathTo(Treei, Posi). In a typical blockchain protocol, Pathi corresponds to the chain
currently adopted by Pi (e.g., the longest chain, or the chain with maximal total hardness).
Remark 3. New blocks are typically not added only by the adversary, but also by honest parties that are
baking. Furthermore, the positions of honest parties are not set by the adversary, but by the parties themselves
following some chain selection rule, e.g., by setting the position to the deepest leaf in the tree. We give the
adversary full control over these two aspects for two reasons: First, it allows us to abstract away details
about these mechanisms. Secondly, giving the adversary more power makes our results stronger.

Finalization friendliness. To be able to finalize, we need the blockchain to be finalization friendly. This
basically means that it needs to provide an interface for our finalization protocols. Concretely, parties need
to additionally have access to the two commands setFinal and propData. A party calls (setFinal, R)
once this party considers R to be final. More formally, each party has a variable lastFinali ∈ Treei,
initially set to the genesis block G. The command (setFinal, R) for R ∈ Treei sets lastFinali to R.
Inputs (setFinal, R) by Pi where R is not a descendant of lastFinali are ignored. The intended effect on
the blockchain is that parties will eventually set their position to be a descendant of R and maintain this
indefinitely. In our formalization, this corresponds to a restriction on how the adversary sets the positions
and is discussed in Section 3.2. In a real blockchain protocol, this can be achieved by modifying the chain
selection rule to reject all chains not containing R. For honest Pi we use FinalTreei to be the tree consisting
of all paths in Treei going through lastFinali. Note that this consists of only a single path from G to
lastFinali and then possibly a proper tree below lastFinali. We let FinalTree = ∪Pi∈HonestFinalTreei.

The command (propData, data) allows parties to propose some data ∈ {0, 1}∗ to be included in a future
block. This is different from transactions being added to blocks in that we only have weak requirements on it:
Roughly speaking, we want a constant fraction of all honest paths to contain data corresponding to the last
proposal of some honest party at the time the block was first added. This requirement is discussed in more
detail in Section 3.2; here we only assume the adversary can add arbitrary data to blocks, which is implicit in
the model since blocks are chosen by the adversary.

Figure 1 shows an example of a tree with the relevant variables. We conclude with a formal specification
of the functionality FTree.

9

Pos3 Pos4

Pos1

Pos2

lastFinal2

lastFinal1

lastFinal4

lastFinal3

Path2

Figure 1: Example of a possible HonestTree with honest parties P1, P2, P3, and P4. The block at the very
left is the genesis block. Finalized blocks are drawn in solid black, blocks corresponding to positions of honest
parties with a dashed pattern. The dashed arrows point to lastFinal of the parties having their positions at
the origins of the arrows. In this example, P3 and P4 have not yet learned about the third finalized block.
The dotted node does not belong to FinalTree because it is not on a path through lastFinal of any honest
party. Everything else is part of FinalTree. The thick blue line corresponds to Path2.

Functionality FTree

Initialization
for Pi ∈ P do

Treei :=
(
(Vi := {G}, Ei := ∅), ri := G

)
Posi := G, lastFinali := G, lastPropi := ⊥

end for

Interface for party Pi ∈ P
Input: getTree
return copy of (Treei, Posi, lastFinali)

Input: (setFinal, R)
if lastFinali ∈ PathTo(Treei, R) then

lastFinali := R
send (setFinal, Pi, R) to adversary

end if

Input: (propData, data)
lastPropi := data
send (propData, Pi, data) to adversary

Interface for adversary
Input: (addNode, Pi, B, p) // add B as child of p

in Treei
if B /∈ Vi and HonestTree remains a tree after
adding B as child of p in Treei then

Vi := Vi ∪ {B}
Ei := Ei ∪ {{p,B}}
if p = Posi then

Posi := B
end if

end if

Input: (setPosition, Pi, B) // set pos. of Pi to B
if B is a leaf of Treei then

Posi := B
end if

10

3.2 Desirable Properties and Bounds
We now state some important assumptions and properties of blockchain protocols in our model. All properties
are essentially restrictions on how the adversary can grow the trees. The definitions below involve a number
of so-called hidden bounds. These parameters are supposed to exist (possibly depending on the security
parameter), but are not made public to the parties. In particular, they cannot be used in the protocols; one
may only assume in proofs that these parameters exist. We require that the bounds are polynomial in the
security parameter.

We first define two properties that are not directly related to the security of the blockchain, but rather
follow from the assumptions on the network and how the protocols are supposed to work. Widely considered
properties of blockchain protocols include common prefix, chain growth, and chain quality, introduced
in [GKL15]. We recast the former two in our model. Since our model does not have a notion of a party
creating a block, chain quality is not directly applicable. We instead formalize two properties we need for our
protocol that are implied by chain quality and chain growth.

Tree propagation. There is a hidden bound ∆tree such that HonestTreeτ−∆tree ⊆ Treeτi for all honest
parties Pi ∈ Honest. This models the case that when a honest party sees a chain, then eventually all honest
parties will see that chain.

New root taking effect. There is a hidden parameter ∆final, that intuitively is the time that it takes for
a setFinal command to take effect. We require that R ∈ Pathi after ∆final time units since Pi gave the
command (setFinal, R). This means that the adversary must in reasonable time put Pi under the finalized
block R, and when this happens Posi will stay in a path under R forever.

Common prefix. The common-prefix property intuitively means that if any two honest parties look far
enough back in their own tree, then they will be on the same path to the root. We formally define this
property for ξ ∈ N, which determines how far parties have to look back, via the predicate Prefix(ξ):

Prefix(ξ) :≡ ∀τ1, τ2 ∈ N, τ1 ≤ τ2, ∀P1, P2 ∈ Honest
(
Pathτ1

1
)dξ � Pathτ2

2 ,

where (·)dξ denotes the operation of removing the last ξ blocks and � is the prefix relation.

Chain growth. The chain-growth property guarantees that chains of honest parties grow within time
∆growth at least at rate ρgrowth and at most at rate ρ′growth, 0 < ρgrowth ≤ ρ′growth. Note that the chain of
party Pi in our model corresponds to Pathi and its length is equal to Depth(Posi). We thus use the following
formalization:

ChainGrowth(∆growth, ρgrowth, ρ
′
growth) :≡ ∀τ ∈ N ∀Pi ∈ Honest

ρgrowth ·∆growth ≤ Depth
(
Posτ+∆growth

i

)
−Depth

(
Posτi

)
≤ ρ′growth ·∆growth.

Remark 4. Some papers, e.g., [PSs17, DGKR18] consider a stronger variant of chain growth by comparing the
lengths of chains from two different honest parties at different times. For our purposes, the simple definition
above that only considers a single party is sufficient.
Remark 5. Note that earlier formalizations of chain growth only considered a lower bound on growth. It turns
out that for several non-trivial uses of blockchains, one also needs an upper bound as introduced in [PSs17]. It
is for instance impossible to create a finalization layer which keeps being updated if the underlying blockchain
can grow by an unbounded length in one time unit. For any length L that you might want as a bound on how
far finalization can fall behind, the blockchain could grow by L+ 1 blocks faster than it takes one message
in the finalization protocol to propagate. In such a model one would get trivial impossibility of designing
updated finalization layers.

11

Bounded path growth. The chain growth property above only bounds the growth of the positions of
honest parties. That is, it does not prevent purely dishonest chains to grow faster. To prove the updated
property of our finality layer, we need the following slightly stronger property: Denote by τ(B) the first time
a block B appeared in HonestTree. Bounded path growth with parameters ∆pgrowth and ρpgrowth says that

∀τ ∈ N ∀Pi ∈ Honest ∀B1, B2 ∈ Pathτi
(
(Depth(B2) ≥ Depth(B1) + ∆pgrowth)

→ Depth(B2)−Depth(B1) ≤ ρpgrowth · (τ(B2)− τ(B1))
)
.

This means that for any two blocks with sufficient distance on the path of an honest party, the path between
these blocks cannot have grown arbitrarily fast. If we assume chain quality, this property follows from
bounded chain growth: If a certain fraction of the blocks on this path have been generated by honest parties,
the growth of this path gets bounded since honest parties are subject to chain growth. Note that we still
allow completely dishonest paths to grow arbitrarily as long as no honest party ever moves there.

Proposal quality. This property is formally unique to our finalization friendliness involving the propData
command, but it is closely related to chain quality as discussed next. Proposal quality with parameter `PQ ∈ N
means that at any time τ , for all honest Pi ∈ Honest, and for all `PQ consecutive blocks B1, . . . , B`PQ in
Pathτi , there exists a block B′ ∈ {B1, . . . , B`PQ} that was added to HonestTree at time τ ′ and an honest party
Pj ∈ Honest such that lastPropτ

′

j is contained in (the data field of) a block on PathTo
(
HonestTreeτ

′
, B′
)
.

In other words, at the time B′ is added to HonestTree, if the last proposal of some honest party is not
already contained in an ancestor of B′, that proposal is included in B′.

Note that proposal quality can be achieved by any blockchain that has chain quality: Chain quality with
parameters µ and `′ says that within any sequence of at least `′ consecutive blocks in an honest path, the
ratio of blocks generated by honest parties is at least µ. This implies that for `PQ ≥ `′ with `PQ · µ ≥ 1, at
least one block within `PQ consecutive blocks is generated by an honest party. Whenever honest parties add a
block B′, they can check whether their last proposed data is already contained in a previous block, and if
not, they include that data in B′. This yields proposal quality with parameter `PQ.

Dishonest chain growth. We here introduce a new property that is needed for the more efficient variant
of our protocol. It is concerned with how fast dishonest parties can grow chains. The usual chain growth
property bounds the growth of the positions of honest parties. We here consider a bound on the growth of
chains no honest party is positioned on, i.e., we want to bound how fast dishonest parties can grow their
chains.

Definition 5. For τ ∈ N and B ∈ FinalTreeτ , let B̂ be the deepest ancestor of B in FinalTreeτ that has
at some point been on an honest path,

B̂ := argmax
B′∈PathTo(FinalTreeτ ,B)∩

(
∪τ′≤τ∪Pi∈HonestPathτ′

i

){Depth(B′)},

and let τ̂B be the first time B̂ appeared in an honest path:

τ̂B := min
{
τ ′ ∈ N

∣∣∣∣ B̂ ∈ ⋃
Pi∈Honest

Pathτ
′

i

}
.

Let ∆growth ∈ N, and ρdisgro ≥ 0. We define the dishonest chain growth with parameters ∆growth, ρdisgro to
hold if for all B in FinalTreeτ such that τ − τ̂B ≥ ∆growth, the length of the path from B̂ to B is bounded
by ρdisgro · (τ − τ̂B), and by ρdisgro ·∆growth if τ − τ̂B < ∆growth:

DCGrowth(∆growth, ρdisgro) :≡ ∀τ ∈ N ∀B ∈ FinalTreeτ

Depth(B)−Depth
(
B̂
)
≤ ρdisgro ·max

{
∆growth, τ − τ̂B

}
.

12

Intuitively, the path from B̂ to B is grown only by dishonest parties since no honest party was ever
positioned on it, and τ − τ̂B is the time it took to grow this path. Taking the maximum over ∆growth and
τ − τ̂B allows that for periods shorter than ∆growth, the growth can temporarily be faster. Note that it is
possible that the adversary knows B̂ before it appears on an honest path or even in FinalTree. In that case,
there is actually more time to grow the chain. The definition thus implicitly excludes that dishonest parties
know blocks honest parties will have on their path far in the future.
Remark 6. A more straightforward definition of dishonest chain growth might appear to be something like the
following: The length of any path between two nodes that have never been on any honest path and appeared
in FinalTree within a time interval of length ∆growth is bounded. The problem with that definition is that
dishonest parties can grow a path just “in their heads” and then publish the whole chain at once. Hence,
dishonest chains in this sense can grow arbitrarily long within a very short time. To obtain a meaningful
notion, we need to estimate at what point in time dishonest parties have started growing their chains. This
estimate corresponds to τ̂B in the above definition.
Remark 7. Note that Definition 5 only considers blocks in FinalTree, which by definition only contains
blocks known to honest parties and considered valid by them. This in particular means that chains grown
entirely “in the head” of an adversary and not presented to honest parties cannot be used to violate bounded
dishonest chain growth; neither can blocks that honest parties currently consider invalid (e.g., blocks from
“future” slots in proof-of-stake blockchains).

3.3 Discussion on Dishonest Chain Growth
Our more efficient protocol concretely needs that dishonest chain growth is strictly slower than honest chain
growth. We next give some intuition why this is a natural assumption for many blockchains.

Typical proof-of-stake blockchains. Consider a proof-of-stake blockchain such as Ouroboros [KRDO17]
with the longest chain rule. If the honest parties hold more than 50% of the stake, they will be selected more
often to produce blocks than corrupted parties. Hence, the corrupted parties are not able to produce a chain
faster than the honest parties.

When a network model with bounded delays is assumed, such as in Ouroboros Praos [DGKR18], honest
blocks can “collide” in the sense that a new block is created before the previous block is known to the new
block producer. In that case, the honest chain will grow slower than if there were no collisions. Consequently,
the gap between honest and dishonest stake needs to be larger to ensure the dishonest chain still grows
slower for longer network delays. Note that the same analysis is required for proving the common-prefix
property [DGKR18]: Intuitively, if dishonest parties can grow a chain faster than the honest parties, they
can overtake the honest chain and create a fork. Bounded dishonest chain growth thus seems to fit nicely
into existing analyses of different blockchain protocols.

Proof-of-work blockchains. In proof-of-work blockchains with fixed difficulty, the same intuition as
above applies. Furthermore, the same reasoning about colliding honest blocks is required in that setting if
network delays are considered [PSs17]. In Bitcoin with variable difficulty [GKL17], however, parties adopt
not necessarily the longest chain, but the most difficult (or “heaviest”) one. Therefore, an adversary could
grow a very long chain with very small difficulty quickly, and thus violate bounded dishonest chain growth
without violating the common-prefix property. Hence, dishonest chain growth holds for PoW blockchains
with fixed difficulty but not necessarily when the difficulty can vary. Note however that one can still use our
extended protocol in the case of variable difficulty PoW, which in turn only requires the standard blockchain
properties.

Long-range attacks. On a proof-of-stake blockchain, a long-range attack allows an attacker, given enough
time, to grow a longer alternative chain from far back in time that overtakes the real one [GKR18]. To
prevent long-range attacks, many existing proof-of-stake protocols use some form of checkpointing, which

13

prevents honest parties from adopting such alternative chains [GKR18]. For example, Ouroboros [KRDO17]
and Ouroboros Praos [DGKR18] use a chain-selection rule that selects the longest chain that does not fork
from the current chain more than some parameter k blocks ago. The rule ensures that everything more than
k blocks ago is final and prevents long-range attacks. Hence, these blockchains technically do not use the
longest-chain rule and our intuition from above may not hold over long periods of time. This is not a problem
for us since we only need bounded dishonest chain growth while finalizing. That is, we need that the time
required to finalize the next block is shorter than the time needed to mount a successful long-range attack.
To put this into perspective, the analysis by Gaži et al. [GKR18] of a hypothetical proof-of-stake blockchain
suggests that, e.g., an attacker with 0.3 relative stake needs more than 5 years for the attack considered there.
This is way longer than the typical time to finalize (see Section 9 for our experimental data).

Note that the parameter k in the chain selection rule mentioned above needs to be chosen such that
the common-prefix property with parameter k always holds. This can be problematic in practice since a
correct bound on the common prefix needs to be known. If a finality layer such as Afgjort is added to
the blockchain, this finality provides checkpointing, which is then not needed anymore in the underlying
blockchain. Therefore, one can use simpler chain selection rules, such as choosing the longest chain.

4 The Finality Layer
4.1 Formalization
We now formalize the properties we want from a finality layer. The finality layer is a protocol that interacts
with a blockchain as described above and uses the setFinal-command. The properties correspond to
restrictions on how the setFinal-command is used.

Definition 6. Let ∆, k ∈ N. We say a protocol achieves (∆, k)-finality if it satisfies the following properties.

Chain-forming: If an honest party Pi ∈ Honest inputs (setFinal, R) at time τ , we have lastFinali ∈
PathTo

(
Treeτi , R

)
and R 6= lastFinali.

Agreement: For all l ∈ N we have that if the l-th inputs (setFinal, ·) of honest Pi and Pj are (setFinal, Ri)
and (setFinal, Rj), respectively, then Ri = Rj .

∆-Updated: At any time τ , we have

max
Pi∈Honest

Depth(Posτi)− min
Pi∈Honest

Depth
(
lastFinalτi

)
≤ ∆.

k-Support: If honest Pi ∈ Honest inputs (setFinal, R) at time τ , there are at least k honest parties Pj ∈
Honest and times τj ≤ τ such that R ∈ Pathτjj .

The chain-forming property guarantees that all finalized blocks are descendants of previously finalized
blocks. That is, the finalized blocks form a chain and in particular, there are no forks. Agreement further
guarantees that all honest parties agree on the same finalized blocks. This means that all ancestors of the
last finalized block can be trusted to never disappear from the final chain of any honest party. The updated
property ensures that the final chain grows roughly at the same speed as the underlying blockchain. This
also implies liveness of the finalization protocol if the underlying blockchain keeps growing, in the sense that
all honest parties will keep finalizing new blocks.

The property k-support finally ensures that whenever a block becomes finalized, at least k parties had
this block on their path at some point. The smaller k is, the more honest parties need to “jump” to a new
position under the next finalized block, which can cause rollbacks. We want to guarantee that at least k ≥ 1
because otherwise we finalize blocks that are not supported by any honest party, what would inevitably lead
to bad chain quality.

14

4.2 On Proving UC Security
We here discuss briefly how to model security in the UC framework and how the proof that the finality layer
has the desired properties translates into a UC proof. The reader not familiar with the UC model or not
interested in how to translate the property based proof into a UC proof can safely skip this section.

Ideal functionality. To model UC security, we introduce the ideal functionality F∆,k
FinTree with parameters

∆, k ∈ N. Roughly speaking, it is a variant of FTree making sure that finalizations respect all desired
properties of a finality layer. Compared to the functionality FTree, finalized blocks are not set by the parties,
but by the adversary. The ideal functionality then makes sure the adversary grows the tree and finalizes
blocks such that the properties corresponding to chain-forming, agreement, ∆-updated, and k-support hold.
Note that since the adversary must respect all desired properties, giving it control over finalization is not a
weakness of the functionality. More technical differences to FTree are that we drop the payload data of blocks,
which was used only for implementation purposes of the finality layer, and to enforce the agreement property,
F∆,k

FinTree internally keeps track of all previously finalized blocks. We formally define the ideal functionality as
follows.

Functionality F∆,k
FinTree

Initialization
for Pi ∈ P do

Treei :=
(
(Vi := {G}, Ei := ∅), ri := G

)
Posi := G, lastFinali := G
numFinali := 1, finalnumFinali

i := G
end for

Interface for party Pi ∈ P
Input: getTree
return copy of (Treei, Posi, lastFinali) to Pi

Interface for adversary
Input: (addNode, Pi, B, p) // add B as child of p in Treei
if B /∈ Vi and HonestTree remains tree after adding Bas child of p in Treei

and ∀Pj ∈ Honest
(
Depth(p) + 1 ≤ Depth(lastFinalj) + ∆

)
then // ∆-updated

Vi := Vi ∪ {B}
Ei := Ei ∪ {{p,B}}
if p = Posi then

Posi := B
end if

end if
Input: (setPosition, Pi, B) // set position of Pi to B
if B is a leaf of FinalTreei then

Posi := B
end if

Input: (declareFinal, Pi, R) // declare block R as final for Pi
if lastFinali ∈ PathTo(Treei, R) and R 6= lastFinali // chain-forming

and ∀Pj ∈ Honest
(
numFinalj > numFinali → R = finalnumFinali+1

j

)
// agreement

and R has been on Pathj for at least k honest parties Pj then // k-support

15

numFinali := numFinali + 1
lastFinali := finalnumFinali

i := R
end if

Network model and assumed hybrids. We want to implement F∆,k
FinTree on top of FTree, i.e., we assume

the protocol has access to FTree, which means in UC terminology that FTree is assumed as a hybrid. To
model our assumptions on the partially synchronous network, we further assume a clock functionality and a
network functionality F∆net

Net , which provides the guarantees discussed in Section 2.1, where ∆net is a parameter
polynomial in the security parameter. We then require from a UC protocol ΠFin given the required hybrids
to UC securely realize F∆,k

FinTree for all ∆net, where ∆net is not given to the protocol and ∆ and k can depend
on ∆net.

The finality layer we present in this paper further makes use of signatures and a lottery that can be
implemented by a VRF (cf. Section 6.3). It is therefore convenient to also model signatures and VRFs as
hybrid functionalities. Modeling all these hybrids involves several subtleties and is beyond the scope of this
paper. Hybrids with similar guarantees have been modeled, e.g., in [BGK+18] and we refer the reader to
that paper for more details.

Constructing a UC protocol and simulator. Given a finality layer and the hybrids discussed above, it
is straightforward to construct a protocol ΠFin implementing F∆,k

FinTree: Simply run the finality layer on top of
FTree and forward getTree request and the respective answers.

Notice that in F∆,k
FinTree there are no inputs to honest parties that are kept secret from the adversary/sim-

ulator. We can therefore construct a UC simulator by running the protocol ΠFin on the real inputs for all
parties (including the honest ones). The simulator updates the variables Treei, lastFinali, Posi in F∆,k

FinTree
to have exactly the values they have in the simulated execution of the protocol. This gives a perfect simulation
as long as F∆,k

FinTree allows the simulator to update Treei, lastFinali, Posi as needed. It can be seen that
F∆,k

FinTree allows the simulator to to do so exactly as long as the finality layer has the properties chain-forming,
agreement, ∆-updated, and k-support.

4.3 Impossibility of Better Bounds for the Number of Corruptions
We next show that our protocol is optimal in its corruption bound, and that the hope for a t ≥ n/3 partially
synchronous finality layer is void.

Theorem 1. A partially synchronous finality layer for n parties with Agreement and Updated must have
t < n/3.

Proof. Assume for contradiction that we have a partially synchronous finality layer for n parties which
tolerates that t = n/3. Assume that it has Agreement and ∆-Updated for some ∆. We divide the set of
parties into three set P1, P2, and P3, each of size t.

Let ∆Fast be some fixed bound on all eventual bounds in the model. In particular, the model will deliver
all blocks and messages before time ∆Fast.

For e = 1, 2 consider the following experiment Ee: We run only Pe ∪ P3. We deliver all blocks and
messages before time ∆Fast. We grow a tree which is just a long chain of empty blocks Be0, Be1, Be2, Be3, . . .
where Be0 is the genesis block. We add a new block every ∆Fast seconds. Since the finality layer is ∆-updated
for some ∆, it will eventually finalize some block BeFe for Fe > 0. Let T e be an upper bound such that the
protocol finalizes a block before time T e with probability at least 2/3.

Let ∆Slow = T 1 + T 2 + 1. Consider the following experiment Êe. We set all the eventuality bounds of
the model to be ∆Slow. Yet, we still deliver all messages and blocks before time ∆Fast. In Êe the protocol
finalizes a block before time T e with probability at least 2/3. This reason is that Ee and Êe are identical to

16

the protocol as in Êe we still deliver all message and blocks before ∆Slow, and in the partially synchronous
model the parties do not see the eventuality bound.

Consider the following experiment E. We set all the eventuality bounds of the model to be ∆Slow. We make
two copies of the parties in P3. Call them P 1

3 and P 2
3 . We run P1 ∪ P 1

3 together and we run P2 ∪ P 2
3 . We set

the eventuality bound to ∆Slow. We grow a tree with two branches B0, B
1
1 , B

1
2 , B

1
3 , . . . and B0, B

2
1 , B

2
2 , B

2
3 , . . .,

where B0 is genesis. We add a new block to each chain every ∆Fast seconds. During the first ∆Slow seconds
we only show B0, B

1
1 , B

1
2 , B

1
3 , . . . to P1 ∪ P 1

3 and we only show B0, B
2
1 , B

2
2 , B

2
3 , . . . to P2 ∪ P 1

3 . Furthermore,
during the first ∆Slow we propagate no messages between parties in P1 ∪ P 1

3 and parties in P2 ∪ P 1
3 . But

inside each group Pe ∪ P 1
3 we still deliver all messages and blocks before time ∆Fast. Note that Pe ∪ P 1

3 has
exactly the same view as in Êe. So by time ∆Slow the parties finalizes a block BeFe with probability at least
2/3. So with probability at least 1/3 (by a union bound), by time ∆Slow the protocol finalized two blocks
B1
F1

and B2
F2

with F1 > 0 and F2 > 0. These block are different. Since the experiment is consistent with a
run of the model with P3 being Byzantine corrupted and the eventuality bound being ∆Slow, this violated
Agreement.

5 Afgjort Protocol
In this section we describe our finality protocol. The protocol consists of a collection of algorithms that
interacts with each other making finalization possible. In the main routine FinalizationLoop, parties regularly
try to finalize new blocks by invoking the Finalization algorithm.

The goal of Finalization is to make all the honest parties agree on a common node R at depth d of their
own local trees. This finalization happens with a “delay” of γ blocks, i.e., honest parties will only start
the agreement process once their Pathi has length at least d + γ. If the honest parties successfully agree
on a block R, they will finalize it by re-rooting their own local tree for the new root R. If no agreement is
achieved the parties increase the finalization delay γ and re-run the agreement protocol with the new delay;
this process repeats until an agreement is met. The idea is that once γ is large enough, there will be only one
candidate for a final block at depth d, which will then successfully be agreed on.

Justifications. We introduce the concept of justifications. A justification J is a predicate which takes as
input a value v and the local state of a party (in particular its tree). We say that the value v is J-justified for
party Pi if the predicate evaluates to true for v and Pi’s state.

Definition 7. For a value v that can be sent or received, a justification is a predicate J which can be applied
to v and the local state of a party. Justifications are monotone with respect to time, i.e, if J is true for a
value v at party P at time τ , then J is true (at that party) any time ≥ τ .3

An example is the following justification Jd,γInTree where the value v is a block.

Definition 8. A block B is Jd,γInTree-justified for party Pi if B is at depth d of a path of length at least d+γ
in FinalTreei.

We call such justification eventual, in the sense that if a block is Jd,γInTree-justified for a honest party Pi,
then it will be eventually Jd,γInTree-justified for any other honest party. This is a direct consequence of tree
propagation.

Definition 9. A justification J is an eventual justification if for any value v and parties Pi and Pj the
following holds. If v becomes justified for party Pi at time τ and both Pi and Pj from that point in time are
live and honest, then eventually v becomes justified for party Pj .

3Our finality layer repeatedly executes finalization in the FinalizationLoop. We require monotonicity only for each iteration
separately, i.e., justified values can become unjustified in later iterations. We do not formalize this to simplify the presentation.
This can in fact happen for the justification we use since they are with respect to FinalTree and nodes get removed from
FinalTree after a successful finalization.

17

Keeping up with the tree growth. After a block at some depth d has successfully been finalized, one
needs to choose the next depth d′ for finalization. For the updated property, this new depth should ideally be
chosen such that d′ − d corresponds to how long the chain grows during one finalization round. In case this
value was set too small before, we need to temporarily increase it to catch up with the chain growth. In the
finalization protocol, parties use the subroutine NextFinalizationGap, which returns an estimate `, and set the
next depth to d′ = d+ `. We discuss this procedure in Section 5.1.

Finalization witnesses. After a successful finalization, parties use propData to add a finalization
witness W to the blockchain. A finalization witness has the property that whenever a valid witness for some R
exists, then R indeed has been finalized. In our protocols, such a witness consists of t + 1 signatures on
the outcome of the finalization. We put such witnesses on the blockchain for two reasons: First, it allows
everyone (including parties not on the finalization committee) to verify which blocks have been finalized.
Secondly, we use the witnesses for computing the next finalization gap (see Section 5.1).

Finalization. The finalization loop algorithm FinalizationLoop is used to periodically invoke the finalization
procedure to finalize blocks at increasing depths.

Protocol FinalizationLoop(sid)

Party Pi does the following:
1: Set γ := 1, d := 5, and ` := 5
2: for ctr = 1, 2, 3, . . . do
3: Set faid := (sid, ctr)
4: Run (R, W, γ′) := Finalization(faid, Jd,γInTree, d, γ)
5: Invoke (setFinal, R)
6: Invoke (propData, W)
7: Set ` := NextFinalizationGap(lastFinali, `)
8: Set d := d+ `
9: Set γ := d0.8 · γ′e
10: end for

The basic building block of our finality protocol is the algorithm Finalization which is used to agree on a
final block for depth d. The algorithm takes as inputs a unique id faid, a depth d, and an integer γ ≥ 1
corresponding to number of blocks that need to occur under the block that is attempted to be finalized.
If there is no agreement on a final block, γ is doubled and the parties try again. Once the parties have
agreed on a block R, the algorithm outputs R and the value γ. The finalization loop then again reduces γ by
multiplying it with 0.8 so that over time, a good value for γ is found. The factor 0.8 is not significant and
only used for simplicity here. In practice, one can use some heuristics to optimize efficiency.

Protocol Finalization(faid, Jd,γInTree, d, γ)

Party Pi does the following:
1: repeat
2: Set baid := (faid, γ)
3: Wait until lastFinali is on Pathi and Pathi has length ≥ d+ γ
4: Let Bd be the block at depth d on Pathi
5: Run (R, W) := WMVBA

(
baid, Jd,γInTree

)
with input Bd

6: if R = ⊥ then set γ := 2γ end if
7: until R 6= ⊥
8: Output (R, W, γ)

18

F F ′ B· · · · · ·

Figure 2: Computing the finalization gap. Finalized blocks are drawn in solid black, a dashed arrow from X
to Y indicates that X contains a finalization witness for Y . Block F ′ contains a finalization witness for F , but
no block up to block B contains a witness for F ′. Since F 6= F ′, the gap ` is increased from ` = 2 to ` = 4.

The Finalization algorithm relies on a weak multi-valued Byzantine agreement protocol, that we call
WMVBA. We discuss the general idea of the WMVBA protocol next, and we defer a more detailed treatment
to Section 6.

WMVBA. The input to the WMVBA protocol are proposals in the form of blocks; we require all proposals
in WMVBA to be Jd,γInTree justified, i.e., the block proposal must be in the tree of honest parties at depth d
and height γ. This prevents the corrupted parties from proposing arbitrary blocks. By the design of the
Finalization protocol, where γ is doubled between the calls to WMVBA it will quickly happen that all honest
parties agree on the block B at the depth where we try to finalize. Furthermore, by the assumed properties
of the underlying blockchain, it will also happen that no other block is Jd,γInTree-justified. This moment where
B is the only valid proposal is a sweet spot for agreement as we have pre-agreement. However, the sweet spot
is temporary; if enough time passes, the corrupted parties could grow a long enough alternative chain which
would make another proposal legitimate. We therefore want to quickly exploit the “sweet spot”.

For n > 3t we construct in Section 6 a WMVBA protocol which consists of two subprotocols called Freeze
and A BBA. First the subprotocol Freeze is used to boil down the agreement problem to a choice between
either at most one block B or the decision that there was no pre-agreement. The output of Freeze is a block
or ⊥ and is again justified by some justification. After Freeze terminates one of two will happen: If there was
a pre-agreement (as is in the case of the sweet spot), then all parties decided on the same block B. However,
if there was no pre-agreement, it might be the case that some parties have decided on a block B while others
have decided on ⊥. WMVBA therefore uses the binary Byzantine agreement protocol A BBA which decides
which of the two cases happened. Given the decision of A BBA, parties can then either output the agreed
block or output ⊥ to signal disagreement.

5.1 Computing the Next Finalization Gap
To measure whether the finalization falls behind, we use the following approach: When a block B is finalized,
let F be the deepest node for which a finalization witness exists in the path to B, and let F ′ be the deepest
ancestor of B that has been finalized. If the chain does not grow too fast, we should get F = F ′. However, if
finalization is falling behind the chain a lot, B has been added to the tree before F ′ was finalized, in which
case we have F 6= F ′. We use this observation to adjust the gap between finalized blocks: If F 6= F ′, we
increase it, otherwise we slightly decrease it. See Figure 2 for a visualization. Below is a formal description of
the procedure.

Protocol NextFinalizationGap(B, `)

1: Let F be the deepest node in HonestTree for which a valid finalization witness exists on
PathTo(HonestTree, B) (let F := G if this does not exist)

2: if Depth(B)−Depth(F) = ` then
3: Output d0.8 · `e
4: else
5: Output 2 · `
6: end if

19

The values 0.8 and 2 are again somewhat arbitrary and can in practice be optimized for better results.
We next show that NextFinalizationGap increases ` if and only if the depth of the next block to be

finalized is deeper than the deepest current block (plus a certain margin). This means that eventually
NextFinalizationGap will have adjusted ` such that after finalizing a block, the depth of the next block to
be finalized is set to a value close to the deepest position of an honest party. This will help us obtain the
updated property. The proof requires that the underlying blockchain has bounded path growth and some
proposal quality. Furthermore, we have to assume that the finality layer has at least 1-support, which we
prove later for our protocol.

Lemma 1. Assume the underlying blockchain satisfies bounded path growth with parameters ∆pgrowth and
ρpgrowth, and proposal quality with parameter `PQ. Further assume the finality layer has k-support for k ≥ 1.
Let B ∈ HonestTree be a block that gets finalized at time τ (i.e., τ is the first time when a party holds a
finalization witness for B), let d := Depth(B), and let ` be the result of NextFinalizationGap for B. That is, the
next finalized block B′ will be at depth d′ := d+ `. Further let B̂ be the first block in PathTo(HonestTree, B′)
that was added to HonestTree after time τ , and let d̂ be its depth. If d′ < d̂, then NextFinalizationGap(B′, `)
will output `′ = 2 · `. If d′ > d̂+ ρpgrowth ·∆net + ∆pgrowth + `PQ, then NextFinalizationGap(B′, `) will output
`′ = d0.8 · `e.

Proof. First assume d′ < d̂. In this case, no party holds a finalization witness for B when B′ or any of its
ancestors are added to the tree. Thus, the deepest node F for which a valid finalization witness exists on
PathTo(HonestTree, B′) will not be B. Hence, Depth(B′) − Depth(F) > Depth(B′) − Depth(B) = ` and
therefore NextFinalizationGap(B′, `) outputs 2 · ` in that case.

Now assume d′ > d̂+ρpgrowth ·∆net +∆pgrowth +`PQ. Let B̃ be the deepest block in PathTo(HonestTree, B′)
at time τ + ∆net. Since we assume the finality layer has 1-support, B′ was at some point on the path of an
honest party. We can therefore apply the bounded-path-growth property: If the distance between B̂ and B̃ is
at least ∆pgrowth, then

Depth
(
B̃
)
−Depth

(
B̂
)
≤ ρpgrowth ·

(
τ
(
B̃
)
− τ
(
B̂
))
≤ ρpgrowth · (τ + ∆net − τ).

Hence, Depth
(
B̃
)
≤ d̂ + ρpgrowth ·∆net + ∆pgrowth =: d0. By definition of B̃, this means that all blocks in

PathTo(HonestTree, B′) deeper than depth d0 are generated after time τ + ∆net. Since ∆net is an upper
bound on the network delay, all honest parties hold a finalization witness for B from this time on. Proposal
quality therefore implies that one of the next `PQ blocks will contain a finalization witness for B. Since B′
has depth d′ > d0 + `PQ, we can conclude that NextFinalizationGap(B′, `) outputs d0.8 · `e in that case.

5.2 Existence of Unique Justified Proposals
For our more efficient finalization protocol to succeed, we need that there will be a unique justified proposal
at some point such that all honest parties will agree on that. More precisely, we need for every depth d
we want to finalize, for all time intervals δfreeze required to run Freeze, for all times τ at which we start to
finalize a block, and for all sufficiently large γ, there is a time τ0 ≥ τ at which Freeze will succeed, i.e., in the
time interval of length δfreeze starting at τ0, there is exactly one block at depth d that has height at least γ,
and all honest parties will have that block on their path. We give a precise formalization below.

Definition 10. We say that UJP holds if there exists a polynomial γ0(d, δfreeze, τ) such that the following
conditions are satisfied for all d, τ, δfreeze ∈ N, and for all γ ≥ γ0(d, δfreeze, τ):

1. There exists a time τ0 ≥ τ such that there is an honest party Pi ∈ Honest and B ∈ Pathτ0
i with

Depth(B) = d and Height(B) ≥ γ.

2. For the smallest τ0 satisfying the first condition and for all τ ′ ∈ [τ0, τ0 + δfreeze], there is only one
B′ ∈ FinalTreeτ

′ with Depth(B′) = d and Height(B′) ≥ γ (namely B′ = B).

3. For all τ ′ ∈ [τ0, τ0 + δfreeze] and for all Pj ∈ Honest, we have B ∈ Pathτ
′

j .

20

Proving the existence of unique justified proposals. We finally show that the property from Def-
inition 10 is implied by dishonest chain growth together with standard assumptions on the underlying
blockchain.

Lemma 2. Assume Prefix(ξ) holds for some ξ > 0, and ChainGrowth(∆growth, ρgrowth, ρ
′
growth) as well as

DCGrowth(∆growth, ρdisgro) hold for some ∆growth ∈ N, ρgrowth > 0, ρ′growth, and ρdisgro < ρgrowth. Then, UJP
holds.

Proof. Let d, δfreeze, and τ ∈ N be arbitrary. Let d̄ := maxB∈FinalTreeτ Depth(B) the maximal depth of any
block at time τ . We then define

γ0 := max
{
ξ +

ρdisgro
(
ρgrowth(δfreeze + ∆growth) + ρ′growth ·∆growth

)
ρgrowth − ρdisgro

, d̄+ 1− d
}
.

Note that γ0 > d̄− d and γ0 ≥ ξ because ρdisgro < ρgrowth. Now let γ ≥ γ0 and let τ0 be the smallest time
for which there exists some Pi ∈ Honest such that Depth

(
Posτ0

i

)
≥ d + γ. Note that this exists because

we assume positive chain growth. Let B be the node on Pathi at depth d. By the choice of γ0, we have
Depth

(
Posτ0

i

)
≥ d+ γ > d̄, and thus, τ0 > τ . Hence, condition 1 of UJP holds.

We first show that all honest parties have B on their path during the time interval [τ0, τ0 + δfreeze].
Let τ ′ ∈ [τ0, τ0 + δfreeze] and Pj ∈ Honest. We have by Prefix(ξ) that

(
Pathτ0

i

)dξ � Pathτ
′

j . Since
Depth

(
Posτ0

i

)
≥ d+ γ ≥ d+ ξ, we have that B ∈

(
Pathτ0

i

)dξ and thus, B ∈ Pathτ
′

j . This proves condition 3
of UJP.

Let τ ′ ∈ [τ0, τ0 + δfreeze] and let B′ ∈ FinalTreeτ
′ be an arbitrary block that is not a descendant of B (in

particular, B′ 6= B). Let B̂′ be the deepest ancestor of B′ that has at some point (until τ ′) been on an honest
path, and let τ̂B′ be the first time B̂′ appeared on an honest path. Let d̂′ := Depth

(
B̂′
)
. We claim that

d̂′ < d+ ξ.

To prove this, note that at some time until τ ′, PathTo
(
FinalTreeτ

′
, B̂′
)
was a prefix of Pathk for some

honest Pk ∈ Honest. Hence, Prefix(ξ) implies that PathTo
(
FinalTreeτ

′
, B̂′
)dξ is a prefix of Pathτ

′

j for all
Pj ∈ Honest. As we have shown above, B ∈ Pathτ

′

j . Thus, we either have B ∈ PathTo
(
FinalTreeτ

′
, B̂′
)dξ

or PathTo
(
FinalTreeτ

′
, B̂′
)dξ is a prefix of PathTo

(
FinalTreeτ

′
, B
)
. Because B′ is a descendant of B̂′ and

we assume that B′ is not a descendant of B, the former is impossible. In the latter case, we have d̂′ < d+ ξ
as claimed.

We next want to bound τ0 − τ̂B′ . We assume this value is positive, otherwise we obtain the bound
τ0−τ̂B′ ≤ 0. At time τ̂B′ , some honest party had a position with depth at least d̂′. By definition of τ0, all honest
parties at time τ0− 1 have positions with depth less than d+ γ. Hence, ChainGrowth(∆growth, ρgrowth, ρ

′
growth)

implies that all honest parties at time τ0 have positions with depth less than d+ γ + ρ′growth ·∆growth. This
means that between times τ0 and τ̂B′ , the depth of the position of some honest party has grown by at most
d+ γ + ρ′growth ·∆growth − d̂′. Note that this value is positive since γ ≥ ξ and d̂′ < d+ ξ. The number of time
intervals of length ∆growth that fit into [τ̂B′ , τ0] equals⌊

τ0 − τ̂B′
∆growth

⌋
≥ τ0 − τ̂B′

∆growth
− 1.

Using the upper bound on chain growth, this implies

(τ0 − τ̂B′ −∆growth) · ρgrowth ≤
⌊
τ0 − τ̂B′
∆growth

⌋
·∆growth · ρgrowth ≤ d+ γ + ρ′growth ·∆growth − d̂′.

Hence, we obtain

τ0 − τ̂B′ ≤ ∆growth +
d+ γ + ρ′growth ·∆growth − d̂′

ρgrowth
.

21

We finally want to bound Depth(B′). Using DCGrowth(∆growth, ρdisgro), we obtain

Depth(B′)−Depth
(
B̂′
)
≤ ρdisgro ·max

{
∆growth, τ

′ − τ̂B′
}

≤ ρdisgro ·max
{

∆growth, τ0 + δfreeze − τ̂B′
}

≤ ρdisgro ·

(
∆growth +

d+ γ + ρ′growth ·∆growth − d̂′

ρgrowth
+ δfreeze

)
.

Thus,

Depth(B′) ≤ d̂′ ·
(

1− ρdisgro

ρgrowth

)
+ ρdisgro ·

(
∆growth +

d+ γ + ρ′growth ·∆growth

ρgrowth
+ δfreeze

)
.

Since ρdisgro < ρgrowth, we have 0 < 1− ρdisgro
ρgrowth

≤ 1. Further using d̂′ < d+ ξ, this implies

Depth(B′) < (d+ ξ) ·
(

1− ρdisgro

ρgrowth

)
+ ρdisgro ·

(
∆growth +

d+ γ + ρ′growth ·∆growth

ρgrowth
+ δfreeze

)

≤ d+ ξ + ρdisgro ·

(
∆growth +

γ + ρ′growth ·∆growth

ρgrowth
+ δfreeze

)

= d+ ξ + ρdisgro ·

(
∆growth +

ρ′growth ·∆growth

ρgrowth
+ δfreeze

)
+ γ ·

ρdisgro

ρgrowth
.

By the choice of γ0 ≤ γ, we have

ρdisgro
(
ρgrowth(δfreeze + ∆growth) + ρ′growth ·∆growth

)
≤ (γ − ξ) · (ρgrowth − ρdisgro),

which implies

ρdisgro ·

(
δfreeze + ∆growth +

ρ′growth ·∆growth

ρgrowth

)
≤ (γ − ξ) ·

(
1− ρdisgro

ρgrowth

)
.

Therefore,
Depth(B′) < d+ ξ + (γ − ξ) ·

(
1− ρdisgro

ρgrowth

)
+ γ ·

ρdisgro

ρgrowth
≤ d+ γ.

Since B′ was an arbitrary block that is not a descendant of B, we can conclude that all blocks with depth
at least d+ γ are descendants of B. This concludes the proof of condition 2 of UJP.

6 Weak Multi-Valued Byzantine Agreement
At the core of the Finalization algorithm from Section 5, parties use a Byzantine agreement protocol relative
to a justification J (here J = Jd,γInTree). Each party Pi inputs a justified proposal pi (a block) and gets a
decision di (a block or ⊥) as output. The Byzantine agreement must satisfy consistency and termination
which are defined as follows.

Consistency: If some honest parties Pi and Pj output decisions di and dj respectively, then di = dj .

Termination: If all honest parties input some justified proposal, then eventually all honest parties output a
decision.

22

For termination, Finalization requires that the agreement protocol satisfies a special form of validity. For
blockchains satisfying DCGrowth, we propose the agreement protocol WMVBA. It is inspired by classic
asynchronous BA protocol such as [CKPS01] and [Bra84]. The WMVBA protocol satisfies weak validity and
n/3-support:
Weak Validity: If during the protocol execution there exists a decision d such that no other decision d′,

where d′ 6= d is J-justified for any honest party, then no honest party Pi outputs a decision d′ with
d′ 6= d.

n/3-Support: If some honest party Pi outputs decision d with d 6= ⊥, then at least n/3 of the honest parties
had J-justified input d.

Remark 8. The n/3-support property is a strengthening of strong validity, which has been introduced by
Neiger [Nei94]. Strong validity requires the output of honest parties to be the input of some honest party, i.e.,
it roughly corresponds to 1-support (ignoring ⊥-outputs and justifications). As was shown by Neiger [Nei94]
in the information-theoretic setting, and later by Fitzi and Garay [FG03] in the computational setting, strong
validity is impossible (even in a synchronous network) if n ≤ mt, where m is the number of possible inputs.
We circumvent these impossibilities by allowing parties to output ⊥ when there are too many possible inputs
(i.e., justified proposals).

Fitzi and Garay [FG03] further introduced another related notion, δ-differential consensus: If v is the
output of honest parties and #v the number of honest parties with input v, then no other value v′ 6= v was the
input of more than #v + δ honest parties. Note that k-support implies that at most n− k honest parties can
have an input different from the agreed output (if all parties are honest). Thus, it implies (n− 2k)-differential
consensus. On the other hand, δ-differential consensus does not imply k-support for any k since if no value is
the input of more than δ honest parties, δ-differential consensus does not provide any guarantee.

As we have shown in Lemma 2, a blockchain satisfying Prefix, ChainGrowth, and DCGrowth has the
property that at some point, there is a unique justified proposal in the tree. Weak validity guarantees that
running WMVBA at that point leads to parties outputting that block.

If DCGrowth does not hold, there could always be more than one justified proposal, in which case WMVBA
can always output ⊥. To deal with this, FilteredWMVBA provides (non-weak) validity, at the expense of only
having 1-support. More precisely, FilteredWMVBA satisfies consistency, termination, and the following two
properties:
Validity: If all honest parties input the same J-justified d, then no honest party Pi outputs a decision d′

with d′ 6= d.

1-Support: If some honest party Pi outputs decision d with d 6= ⊥, then at least 1 of the honest parties had
J-justified input d.

The usual common-prefix property implies that if honest parties have more than the prefix parameter
number of blocks below the block they propose to finalize, then they all propose the same block. Hence,
validity of FilteredWMVBA ensures that in this case, they agree on this block. Note that without DCGrowth,
it is possible to have other chains of equal length in the tree (and thus no unique justified proposal), but
Prefix implies that no honest party adopts these alternative chains, i.e., only dishonest parties can input
them to FilteredWMVBA.

We first present WMVBA. FilteredWMVBA is essentially the same with an additional filtering step at
the beginning, with the goal of filtering out proposals of dishonest parties. In Section 6.5, we describe how
WMVBA needs to be modified to obtain FilteredWMVBA.

Protocol intuition. At the beginning of the WMVBA protocol all parties first run the Freeze sub-protocol.
In Freeze, parties send their proposals to all other parties and every party checks whether they received at
least n− t proposals for the same block. In that case, their output for Freeze is that block, otherwise it is ⊥.
Freeze thereby boils the decision for a finalized block down to the binary decision between ⊥ and a unique
block output by Freeze (if that exists). To this end, a binary Byzantine agreement protocol A BBA is run
after Freeze. We provide details about the sub-protocols and WMVBA in the following sections.

23

Related work. Our protocols are inspired by classic asynchronous BA protocols such as [CKPS01]
and [Bra84].

In contrast to many classical protocols, such as the one in [CKPS01], we implement a coin-flip using
a VRF-based approach instead of a distributed coin-flip protocol. Also note that our protocols are not
asynchronous; we explicitly make use of the partially synchronous network assumption. The idea of reducing
a multivalued Byzantine agreement to a binary Byzantine agreement as used in WMVBA (via Freeze and
A BBA) was first proposed by Turpin and Coan [TC84]. The idea of core-set selection as used in A BBA has
been presented, e.g., in [AW04].

The most important difference of our protocol compared to classical ones is that classical protocols provide
validity (i.e., if all honest parties have the same input v, then no honest party decides on v′ 6= v), which is
stronger than our weak validity. They do not, however, provide any support. In our setting, weak validity
is sufficient and support is an important property for a finality layer. Hence, while we use mostly known
techniques, we need different guarantees and cannot directly rely on existing protocols.

6.1 Freeze Protocol
Each honest party Pi has a J-justified input pi, called proposal. In our use case these proposals are blocks.
Each honest party Pi (eventually) outputs a decision di which is either from the space of proposals (e.g., a
block) or ⊥. The output decision di of Pi is justified by justification Jdec (see Definition 13). The Freeze
protocol satisfies the following properties.

Weak Consistency: If honest parties Pi and Pj output decisions di 6= ⊥ and dj 6= ⊥ respectively, then
di = dj .

Weak Validity: If during the protocol execution4 there exists a J-justified proposal p such that no other
proposal p′ 6= p is J-justified for any honest party, then no honest party Pj outputs p′.

n− 2t-Support: If honest party Pi outputs decision di 6= ⊥, then at least n− 2t honest parties had di as
input.

Termination: If all honest parties input some justified proposal, then eventually all honest parties output a
decision.

Next, we define the following justifications relative to the input justification J .

Definition 11. A proposal message m = (baid,proposal, p) from Pi is considered Jprop-justified for Pj if
m is signed by Pi and p is J-justified for Pj .

Definition 12. A vote message m = (baid,vote, v) from Pi is considered Jvote-justified for Pj if it is signed
by Pi and either for v 6= ⊥ Pj has collected Jprop-justified messages (baid,proposal, v) from at least n− 2t
parties or for v = ⊥ Pj has collected Jprop-justified messages (baid,proposal, p) and (baid,proposal, p′)
(from two different parties) where p′ 6= p.

Definition 13 (Jdec-justification). A decision message m = (baid, frozen, d) is Jdec-justified for Pj if Pj
collected Jvote-justified messages (baid,vote, d) from at least t+ 1 parties.

Observe that for example a proposal message (baid,proposal, p) can become Jprop-justified for Pj much
after it was received from Pi. This due to J being an eventual justification. The proposal p thus can become
J-justified after receiving a proposal message containing p.

Protocol. We describe the Freeze protocol next.

4That is until the first honest party gets an output.

24

Protocol Freeze(baid, J)

Each (honest) party P has a J-justified proposal p as input. Party P does the following:
Propose:

1. Broadcast proposal message (baid,proposal, p).

Vote:

2. Collect proposal messages (baid,proposal, pi). Once Jprop-justified proposal messages from at
least n− t parties have been collected do the following (but keep collecting proposal messages).

(a) If Jprop-justified proposal messages from at least n− t parties contain the same proposal p,
broadcast vote message (baid,vote, p).

(b) Otherwise broadcast vote message (baid,vote,⊥).

Freeze:

3. Collect vote messages (baid,vote, pi). Once Jvote-justified vote messages from at least n − t
parties have been collected and there is a value contained in at least t+ 1 vote messages do the
following (but keep collection).

(a) If Jvote-justified vote messages from at least t+ 1 parties contain the same p 6= ⊥ then output
(baid, frozen, d), where d = p.

(b) Otherwise if ⊥ is contained in vote messages from at least t + 1 parties output
(baid, frozen,⊥).

4. Keep collecting vote messages until WMVBA is terminated (i.e., until Pi gets an output in WMVBA).
Party Pi keeps track of all decisions (baid, frozen, d) which become Jdec-justified.

Lemma 3. For t < n
3 the protocol Freeze satisfies weak agreement, weak validity, n − 2t-support, and

termination. The outputs of honest parties are Jdec-justified.

Proof. We prove each individual property next.

Weak Consistency: To prove the weak agreement property, we have to show that no honest parties Pi and
Pj will ever output different decisions di and dj when di 6= ⊥ and dj 6= ⊥.
If all honest parties output ⊥ then we are done. So assume that honest party Pi outputs di. Then at
least one honest party Pk broadcast Jvote-justified message (baid,vote, di). So Pk must have collected
Jprop-justified messages (baid,proposal, di) from at least n− t parties. This implies that any other
honest party has received (baid,proposal, dj) from at most 2t parties where di 6= dj 6= ⊥. So all
honest parties will vote either for di or ⊥. Thus all honest parties will output either di or ⊥. This
implies the property.

Weak Validity: Assume that there exists a proposal p such that during the protocol execution there exist
no other p′ 6= p that is J-justified for any honest party. Thus, the only proposal message which could
be Jprop-justified for honest parties is (baid,proposal, p). This implies that the only vote message
which could be Jvote-justified for honest parties is also (baid,vote, p). Thus, (baid, frozen, d), where
d = p is the only decision that could become Jdec-justified for any honest party.

n− 2t-Support: Assume Pi outputs decision di 6= ⊥. That means that Pi received Jvote-justified vote
message (baid,vote, p) from strictly more than t parties. Out of those parties at least one must be
honest. That honest must have received Jprop-justified (baid,proposal, di) from at least n− t parties.

25

Thus at least n− 2t honest parties have sent Jprop-justified (baid,proposal, di) which they only do if
di is their input.

Termination: Note that all used justifications are eventual. So if there exists a proposal which is J-justified
for some honest party it eventually becomes J-justified for all honest parties. Thus, all honest parties
will eventually send out Jprop-justified proposal messages and all honest parties will eventually send out
Jvote-justified vote messages. As honest parties vote for at most two different values, all will eventually
receive vote messages from n− t parties where one values is contained in at least t+ 1 votes. Therefore
all honest parties will eventually output a decision.

Finally, we show that the output di of honest party Pi is Jdec-justified for Pi. If di 6= ⊥ then Pi collected
Jvote-justified messages (baid,vote, di) from at least t + 1 parties. Thus the output is Jdec-justified. If
di = ⊥ and Pi collected Jvote-justified messages (baid,vote,⊥) from at least t+ 1 parties, then the output
is also Jdec-justified.

Corollary 1. At most one decision d 6= ⊥ will ever be Jdec-justified for any honest party.

Proof. This follows from the argument of weak agreement.

Lemma 4. If an honest party Pi outputs (Jdec-justified) decision di 6= ⊥ in Freeze, then eventually all honest
parties will accept di has Jdec-justified.

Proof. Assume Pi outputs (Jdec-justified) decision di 6= ⊥. That means that Pi received Jvote-justified vote
message (baid,vote, p) from strictly more than t parties. This also means that at least one honest party
received Jprop-justified (baid,proposal, di) from at least n− t parties. This implies that di is J-justified for
that party.

The decision di will therefore be J-justified for any other honest party. Under the assumption that any
message received by an honest party will eventually be received by all other honest parties we have that any
honest party will have Jvote-justified (baid,vote, p) vote messages from strictly more than t parties. This
makes all honest parties accept di as Jdec-justified eventually.

6.2 Core Set Selection
The weak core-set selection protocol CSS is used in our binary byzantine agreement protocol A BBA (see
Section 6.3) to compute a common core-set of party-value tuples. The global inputs, i.e., the pre-agreed
parameters, are input justification Jcssin and a delay ∆CSS. Each party inputs a Jcssin-justified bit where
Jcssin is some (eventual) justification which is later defined by A BBA. Each honest party Pi (eventually)
outputs a set Corei which contains justified tuples (P, b).

The idea with the delay ∆CSS is to give honest parties more time to submit their input to the core-set.
This allows to counter the effect of de-synchronization. In particular, assume that honest parties start the
protocol within ∆st and that the network delay is at most ∆net. Then honest parties are at most ∆st + ∆net
de-synchronized. By waiting ∆CSS > ∆st + ∆net the inputs of all honest parties will be part of the core set.

The protocol has the following properties.

Common Core: The output sets of honest parties have a common core Core ⊆
⋂
i Corei which contains

tuples (P, b) from at least n− t different5 parties.

Weak Validity: If during the protocol execution of CSS for some baid there exists a Jcssin-justified b such
that no other bit b′ is Jcssin-justified for any honest party, then all tuples in the output set Corei of
honest party Pi are of the form (·, b).

Unique Honest Tuple: The output set Corei of honest party Pi contains for each honest party Pj at the
tuple (Pj , bj) where bj is the input of Pj .

5Note that Core or any Corei contain multiple tuples with the same (dishonest) party.

26

Termination: If all honest parties have Jcssin-justified input, then all honest parties will eventually terminate.

∆CSS-Waiting: If ∆CSS is larger than the de-synchronization of honest parties, then output set Corei of
honest party Pi contains tuples from all honest parties. Moreover, all honest outputs are fixed before
the first honest party gives an output.

We define the following justifications relative to justification Jcssin.

Definition 14. A tuple (Pi, bi) is Jtpl-justified for Pj if it is correctly signed by Pi and bi is Jcssin-justified
for Pj .

Definition 15. A seen message (seen, Pk, (Pi, bi)) is Jseen-justified for Pj if it is correctly signed by Pk and
(Pi, bi) is Jtpl-justified for Pj .

Definition 16. A done-reporting message (doneReporting, Pk, iSawk) is Jdone-justified for Pj if it is
correctly signed by Pk and for each tuple (Pi, bi) ∈ iSawk Pj has a Jseen-justified (seen, Pk, (Pi, bi)).

We give a formal description of the protocol next.

Protocol CSS(baid, Jcssin,∆CSS)

The protocol is described from the view point of a party Pi which has Jcssin-justified input bit bi.
Start:

• Party Pi sets flag reporti to >. It initializes sets iSawi and manySawi to ∅. Then Pi sends its
Jcssin-justified input bi signed to all parties.

Reporting Phase:

• Once Pi receives signed bj from Pj such that (Pj , bj) is Jtpl-justified, Pi adds (Pj , bj) to iSawi
and sends signed (seen, Pi, (Pj , bj)) to all parties. Party Pi does this for each party Pj at most
once.

• Once Pi received Jseen-justified (seen, Pk, (Pj , bj)) from at least n − t parties, party Pi adds
(Pj , bj) to manySawi.

• Once manySawi contains tuples (Pj , ·) for at least n − t parties, Pi waits for ∆CSS (while still
collecting tuples) and then sets reporti to ⊥.

Closing Down:

• Once Pi sets reporti to ⊥, Pi sends to all parties signed (doneReporting, Pi, iSawi).

• Once Pi received Jdone-justified (doneReporting, Pj , iSawj) from at least n− t parties, Pi sets
Corei to be the set of all currently Jtpl-justified (Pj , bj). It then waits for ∆CSS (and stops collecting
messages), and afterwards outputs Corei.

Lemma 5. For t < n
3 the protocol CSS satisfies common core, weak validity, unique honest tuples, termination,

and ∆CSS-waiting.

Proof. We prove each individual property next.

Common Core: Let Pi be the first honest that sends out (doneReporting, Pi, iSawi). At this point Pi’s
manySawi contains Jtpl-justified tuples (Pj , bj) from at least n − t parties. Additionally note that if
(Pj , bj) ∈ manySawi then at least n− 2t > t honest parties must have added (Pj , bj) to their iSaw.

27

Let Pk be an honest party with output Corek. We now argue that any tuple (Pj , bj) in manySawi must
be part of Corek. At the point where Pk computed Corek the party has seen at least n− t Jdone-justified
(doneReporting, P, iSaw). So one of them must come from an honest party which has (Pj , bj) added
to their iSaw (as n− 2t > t have added it to their iSaw). Thus Pk will consider (Pj , bj) Jtpl-justified
at this point and add it to Corek.

Weak Validity: The output set Corei contains only tuples (Pk, bk) which are Jtpl-justified for Pi. As b is
the only Jcssin-justified value, only tuples of the form (·, b) are Jtpl-justified. Thus all tuples in Corei
are of the form (·, b).

Unique Honest Tuple: An honest party Pj will only send out its signed input bit bj . Thus if a tuple
(Pj , b) is considered Jtpl-justified by Pi, we have that b = bj .

Termination: Each honest party Pi will send out its signed input bit b. Any other honest Pj will add b to
its iSawj (as Jcssin is an eventual justification) and send out (seen, Pj , (Pi, bi)). As there are at least
n− t honest parties, all honest parties will add at least n− t tuples to their manySaw. This implies that
they all will send out (doneReporting, ·, ·) messages which are justified for all other honest parties.
Thus every honest party Pi will eventually output a Corei.

∆CSS-Waiting: If ∆CSS is large enough, then any honest party Pi will have enough time to broadcast their
input bit, such that any other honest party Pj will receive it before they set reporti to ⊥. Furthermore,
waiting for ∆CSS time after fixing Corei guarantees that all honest outputs are fixed before any honest
party gives an output.

Corollary 2. The output set Corei of honest party Pi contains tuples (Pj , bj) from at least n− t different
parties.

Corollary 3. The output Corei of party Pi contains tuples (Pj , b) and (Pj , b′) with b 6= b′ for at most t
parties.

Proof. The corollary is implied by the unique-honest-tuple property.

6.3 Another Binary Byzantine Agreement
We now describe a Binary Byzantine Agreement protocol (A BBA). Parties use A BBA to decide whether they
agreed on a non-⊥ decision in Freeze (resp. FilteredFreeze). The global inputs, i.e., the pre-agreed parameters,
are input justification Jin and a delay ∆ABBA. Each party has a Jin-justified bit b ∈ {⊥,>} as input. The
output of honest parties in A BBA are Jout-justified bits (see Definition 19).

The A BBA protocol is a type of randomized graded agreement. The protocol consists of multiples phases.
In each phase parties propose their current bit. After a weak core-set agreement using CSS parties make a
choice to update their current bit. They each grade their choice from 0 to 2. The randomization comes in the
form of a leader election where the elected leader helps parties with grade 0 to select their current bit. The
protocol A BBA has the following properties.

Consistency: If some honest Pi and Pj output bits bi respectively bj , then bi = bj .

Validity: If all honest parties input the same Jin-justified bit b, then no honest Pj outputs a decision b′′ 6= b.

Termination: If all honest parties input some Jin-justified bit, then eventually all honest voters output
some bit.

We use the following justifications in A BBA.

Definition 17. A bit b is Jphase,1-justified (phase-1 justified) for Pi if it is Jin-justified.

28

Definition 18. For k > 1 a bit b is Jphase,k-justified (phase-k justified) for Pi if Pi has t+ 1 signatures on
(baid, justified, b, k − 1).

Definition 19. A bit b is Jout-justified (output) for Pi if Pi has t+ 1 signatures on (baid,WeAreDone, b).

Leader election lottery. The A BBA protocol requires a lottery which ranks parties. We need that every
party gets a “lottery ticket” such that other parties can verify the ticket and every party has the same
probability of having the highest ticket. Furthermore, we require that lottery tickets of honest parties
cannot be predicted before they sent it. This can, e.g., be implemented using a verifiable random function
(VRF) [MRV99] with unpredictability under malicious key generation [DGKR18]. Such a VRF that can
locally be evaluated by every party and verified by others using a public key. Depending on the underlying
blockchain, one can also use some other mechanism offered by the blockchain.

Protocol. We next describe the protocol.

Protocol A BBA(baid, Jin,∆ABBA)

The protocol is described from the view point of a party Pi which has Jin-justified input bi. The party
starts both the “Graded Agreement” and the “Closing Down” part of the protocol.
Graded Agreement
In each phase k = 1, 2, . . . do the following:

1. The parties jointly run CSS(baid, Jphase,k, k · ∆ABBA) where Pi inputs bi. Denote by Corei the
output of Pi.

2. Pi computes its lottery ticket ticketi and broadcasts signed (baid, justified, bi, k) along with
ticketi.

3. Pi waits for time k ·∆ABBA and then does the following:

• If all bits (of the tuples) in Corei are > let bi = > and gradei = 2.
• Else if at least n− t bits in Corei are > let bi = > and gradei = 1.
• Else if all bits in Corei are ⊥ let bi = ⊥ and gradei = 2.
• Else if at least n− t bits in Corei are ⊥ let bi = ⊥ and gradei = 1.
• Else, select a bit b which occurs > t in Corei. If this bit is not unique, verify all lottery

tickets and select the bit b where (b, P) ∈ Corei and P has the highest valid lottery ticket
for all parties in Corei. Let bi = b and gradei = 0.

4. Go to the next phase.

Closing Down Each party sends at most one (baid,WeAreDone, ·) message.

1. When Pi achieves grade 2 for the first time it sends signed (baid,WeAreDone, bi) to all parties.

2. Once having receiving at least t+ 1 signed (baid,WeAreDone, b) terminate the protocol and
output Jout-justified b.

Lemma 6. For n > 3t the protocol A BBA satisfies agreement, validity, and termination.

Proof. We first proceed to prove the following claims.

Claim 1. At the start of any phase k the current bit bi of an honest party Pi is Jphase,k-justified for Pi and
is eventually Jphase,k-justified for any other party.

29

Proof. In the first phase the bit bi is the Jin-justified input bit, thus the statement holds. So assume that the
start of phase k − 1 all honest parties have a Jphase,k−1-justified bit. In Step 2 of phase k − 1 they broadcast
n− t ≥ 2t+ 1 messages of the form (baid, justified, ·, k − 1). These messages will eventually be received
by all honest parties. Thus in phase k at least one bit must be eventually Jphase,k-justifiable for all honest
parties. By the design of A BBA honest parties will select such a bit in Step 3 of phase k − 1. So they all end
up with a Jphase,k-justified bit at the start of phase k.

Claim 2. Eventually all honest party will end up with the same bit b and grade grade = 2.

Proof. Consider the following cases:

Case 1: Assume that in some phase k in Step 1 there exists a Jphase,k-justified bit b such that all honest
parties have bi = b.
All honest parties send out signed (baid, justified, b, k) and start CSS with justified inputs. By the
termination property of CSS every honest party will eventually have an output. By the common-core
property the output sets have a common core of size at least n− t. By the unique-honest tuple property
b will occur at least t+ 1 in Pi’s output set Corei. On the other hand 1− b will occur at most t times
in Corei. Therefore, any honest party Pi will select again b in Step 3 (with a grade of 0 or more). In
the next phase k + 1 all honest parties have bi = b and no other bit is Jphase,k+1-justified. In this phase
by the weak validity property of CSS it follows that all honest parties will have bi = b and gradei = 2
after Step 3. Afterwards, the honest parties will no longer change their values nor their grades.

Case 2: Assume that in some phase k after Step 3 an honest party Pi has bi = b and gradei = 2. That
means Corei from CSS and thus the core-set only contains tuples with b. So any other honest party Pj
has b at least n− t times in its Corej . At the same time Pj cannot have at least n− t > 2t tuples with
1− b in Corej . Hence after Step 3 Pj will set bj = b with gradej ≥ 1. Thus in the next phase we are
in Case 1.

Case 3: Assume that in some phase after Step 3 there is a bit b such that any honest party Pi either has
bi = b with gradei ≥ 1 or bi arbitrary with gradei = 0.
We assume that k ·∆ABBA is larger than the network delay, which will eventually happen. Otherwise
the adversary can potentially delay messages from honest parties with high lottery tickets and we end
up in one of the cases 1-3. In case k ·∆ABBA is large enough, the lottery tickets of all honest parties
have arrived after waiting in Step 3. Furthermore, the ∆CSS-waiting property of CSS guarantees that all
Corei and the common Core contains the tuples of all honest parties.

sub-case a): Assume that there is some honest party Pi with bi = b and grade gradei = 1 after
Step 3. Then, there are at least n− t tuples of the form (·, b) in Corej . Let x ≥ n− t be the size
of the core-set. Then, there are at least x− t ≥ n− 2t > t tuples of the form (·, b) from honest
parties in the core-set. This implies that b is a justified choice for all honest parties. If the other
bit is not justified for any honest party, all honest parties choose b and we are in Case 1 in the
next phase. Otherwise, some honest parties will use the highest lottery ticket to determine their
output. We analyze this case below.

sub-case b): Assume that all honest parties have gradei = 0. Let b′ be the bit input to CSS by more
honest parties (and b′ = > if both bits are input equally often). Since the tuples of all honest
parties are in the core-set, b′ is at least t+ 1 times in the core-set, and thus in every Corei. It is
therefore a justified choice for all honest parties. Hence, either all parties will choose b′ since it is
the only justified bit, or some honest parties will choose their bit according to the highest lottery
ticket.

We finally consider the case where some honest parties make their choice according to the highest
lottery ticket. In both sub-cases, there is a bit b′′ that corresponds to at least n/3 honest lottery tickets
such that if all honest parties choose b′′, then we are in Case 1 in the next phase (in sub-case a), b′′ = b

30

and in sub-case b), b′′ = b′). Note that the ∆CSS-waiting property of CSS guarantees that all honest
outputs of CSS are fixed before the tickets are generated. Thus, the lottery tickets are independent
of b′′. Since all tickets have the same probability of being the largest one, and all honest tickets are
considered by all honest parties, the probability that the winning ticket is an honest one with bit b′′ is
at least 1

3 . Otherwise, we again end up in one of the cases 1–3.

Case 4: Assume that in some phase after Step 3 some honest party Pi has bi = b and gradei ≥ 1 while an
other honest party Pj has bj = 1 − b and gradei ≥ 1. We now show that this case can not happen.
This would imply that in Corei there are at least n− t tuples (·, b) and in Corej there are at least n− t
tuples (·, 1− b). As the sets have a common core-set of size at least n− t we have that in the core-set
there are n− 2t parties with tuples for both b and 1− b. This is a contradiction to Corollary 3.

Clearly the network is always in one of the four above case. In each possible case and in each phase, we
have that once k ·∆ABBA exceeds the de-synchronization of the parties, they end up in Case 1 in the next
phase with probability at least 1/3. This means that once k ·∆ABBA is large enough, the expected number of
phases needed to reach Case 1 is constant. Once in Case 1, they will stay there forever.

Finally, we can show the properties.

Termination: If all hones parties have a Jin-justified input, then we start in one of the Cases 1–3. Claim 2
implies that eventually we end up in Case 1 or Case 2. In particular, once the first honest party
has grade 2 for b all honest parties will decide with grade 2 on that bit. Thus all honest parties will
eventually send out signed (baid,WeAreDone, b). Therefore all honest parties eventually output b
together with n− t signatures on (baid,WeAreDone, b).
We can give a bound on the expected number of phases in ABBA can be expressed with respect to the
actual network delay ∆. As long as k ·∆ABBA < ∆, in the worst-case parties are stuck in Case 3. This is
the case for at most ∆

∆ABBA
phases. Afterwards we have a probability of at least 1

3 to transition from
Case 3 to Cases 1–2. Thus the expected number of phases is at most ∆

∆ABBA
+ c for some constant c.

Consistency: Once the first honest party sends (baid,WeAreDone, b) all honest parties will converge in
Case 1 with b. Thus they all will all send out (WeAreDone, b) as well. If an honest party outputs a
bit, it must be b. Note that this also ensures that there will no other Jout-justified bit.

Validity: Assume all honest parties input Jin-justified bit b. Then in the first phase of Freeze, the honest
parties are Case 1 of Claim 2. Thus all honest parties will decide on b with grade 2 in the first phase.
Thus they will not output any other bit b′.

Remark 9. In A BBA, there are three places (including two within CSS) where parties wait. These waiting
times are effective once they exceed the de-synchronization of the parties (and are the reason our protocol
is partially synchronous and not asynchronous): The first one in CSS ensures that all honest parties make
it into the core-set, the second one in CSS ensures that all honest outputs of CSS are fixed before honest
parties give their outputs (which in turn guarantees that these outputs do not depend on the lottery tickets
in A BBA), and the last one in A BBA ensures that all honest lottery tickets arrive in time. By reordering the
protocol and letting one instance of waiting take care of more than one property, it is possible to reduce the
overall waiting time. Since this complicates the analysis, we do not discuss this further here.

6.4 WMVBA Protocol
We can now describe the actual WMVBA protocol. Each party inputs a J-justified proposal and gets a
Jfin-justified output which is either a proposal or ⊥.

The idea of is WMVBA to first call Freeze to boil down the choice to a unique proposal or ⊥. Parties then
use A BBA which one is the case. For A BBA the parties use some globally known ∆ABBA as the initial waiting
time. We conjecture it works well in practice to set ∆ABBA equal to the expected network delivery time. Any

31

value works in principle since we increase the waiting time in each phase. In particular, a bad choice of ∆ABBA
has no influence on the properties of A BBA.

Note that it can happen that an honest party decides on ⊥ at the end of Freeze, but A BBA nevertheless
outputs >. In this case, at least one honest party had a justified non-⊥ decision as output in Freeze. This
decision is unique. So we must ensure that honest parties with ⊥ output in Freeze can somehow get their
hands on that decision. For that, parties do not terminate Freeze once they get their output, but instead
continue to collect decisions and vote-messages. By Lemma 4, this ensures that all honest parties will
eventually receive the unique non-⊥ decision.

We define the following justification. First, we look at the justification for inputs of A BBA. The idea is
that parties input ⊥ (resp. >) to A BBA if their Jdec-justified output of Freeze was (baid, frozen,⊥) (resp.
(baid, frozen, d) for d 6= ⊥).

Definition 20. A bit b is called Jin-justified (input justified) for a party Pi if Pi has a Jdec-justified tuple
(baid, frozen, d) where d 6= ⊥ if and only if b 6= ⊥.

Finally, we define the justification for outputs of WMVBA.

Definition 21. A decision d is considered justified with respect to final justification Jfin for Pi if Pi has
t+ 1 signatures on the message (baid,WeAreDone, d).

Note that a ⊥ output from A BBA is already Jfin-justified. The protocol formally works as follows:

Protocol WMVBA(baid, J)

Let ∆ABBA be a globally know estimate of the network delay. The protocol is described from the view
point of party Pi which has J-justified input pi.

1. Run Freeze(baid, J) with input pi. Denote by di the Jdec-justified output for Pi from Freeze.

2. Run A BBA(baid, Jin,∆ABBA) with input bi where bi = ⊥ if di = ⊥ and bi = > otherwise. Denote
by b′i the output of A BBA for Pi.

3. If b′i = ⊥, then terminate and output b′i (which is Jfin-justified) together with W = ⊥, otherwise
(if b′i = >) do:

• Once Pi has a Jdec-justified decision message (baid, frozen, di) with di 6= ⊥ (from Freeze) it
sends signed (baid,WeAreDone, di) to all other parties.

• Once t + 1 signed (baid,WeAreDone, d), for some d, have been received, terminate and
output (d, W), where W contains baid and t+ 1 of these signatures.

Theorem 2. For t < n
3 the protocol WMVBA satisfies consistency, weak validity, n/3-support, and termina-

tion.

Proof. We begin by showing that for A BBA validity is equivalent to 1-support. Assume validity holds. If
parties have different inputs 1-support follows directly. Otherwise if all honest parties have the same input,
then validity implies that they output this value. Assume 1-support holds and all parties input the same bit.
By 1-support they must output this bit.

Next, we prove each individual property.

Consistency: Consider two honest parties Pi, Pj with Jfin-justified outputs outputs di and dj . Assume
that they are different.

case i) Assume that without loss of generality di = ⊥ and thus dj 6= ⊥. In this case Pi had output ⊥
from A BBA and Pj had output > from A BBA. This contradicts the consistency property of A BBA.

32

case ii) Assume that both di and dj are not equal to ⊥. Then, both parties Pi and Pj got > as output
from A BBA. This implies that at least one honest party Pk had input > to A BBA due to the
1-support of A BBA. This party Pk must have had Jdec-justified output (baid, frozen, dk) from
Freeze (with dk 6= ⊥).
Let without loss of generality di 6= dk, then it must be that Pi collected at least t+1 signed messages
(baid,WeAreDone, di) of which at least one must have been broadcast by an honest party Pl.
That party Pl must consider (baid, frozen, di) to be Jdec-justified. This is a contradiction to the
weak consistency of Freeze.

Thus, the output of honest parties must be the same.

Weak Validity: Assume that there exists a d such that any d′ 6= d is not J-justified during the protocol
run.
The weak validity of Freeze implies that no (baid, frozen, d′) with d′ 6= d is output by an honest party
in Freeze. In particular, (baid, frozen,⊥) cannot become Jdec-justified. So ⊥ is not a Jin-justified
input for A BBA.
So all honest parties will input > to A BBA. Hence by the validity of A BBA it follows that ⊥ is not
a Jout-justified output for A BBA. Therefore neither ⊥ nor a decision d′ 6= d can be an Jfin-justified
output of A BBA.

n/3-Support: Assume that honest party Pi outputs di 6= ⊥.
Therefore Pi had output > from A BBA. By 1-support of A BBA at least one honest party Pj had input
> to A BBA. This party Pj must have had Jdec-justified output (baid, frozen, dj) from Freeze with
dj 6= ⊥.
We also know that Pi collected at least t+ 1 signed (baid,WeAreDone, di). So, at least one honest
party considers (baid, frozen, di) to be Jdec-justified. By Corollary 1 we must have di = dj . The
n − 2t-support property of Freeze implies that at least n − 2t honest parties had input di for Freeze.
This means that at least n

3 honest parties had input di for WMVBA.

Termination: Assume that all honest parties have a J-justified proposal as input. By the termination
property of Freeze all honest parties will have a Jdec-justified output. Thus they all have a Jin-justified
input for A BBA. By the termination property of A BBA they all have an Jout-justified output from
A BBA. Consider the following cases.

case i): Assume honest party Pi has Jout-justified output ⊥ from A BBA. Then Pi output Jfin-justified
⊥.

case ii): Assume honest party Pi has Jout-justified output > from A BBA. The 1-support of A BBA
implies that at least one honest party Pj had input > for A BBA. Thus party Pj had Jdec-
justified output (baid, frozen, dj) from Freeze with dj 6= ⊥. Lemma 4 implies that eventually all
honest parties will accept (baid, frozen, dj) as Jdec-justified. Thus Pi will eventually output a
Jdec-justified decision.

Message complexity. We observe that in WMVBA all messages are multi-cast, i.e., addressed to all parties.
In the following we thus count the number of multi-cast messages sent by (honest) parties.

Lemma 7. Let ∆ be the actual network delay. Then WMVBA has an expected message complexity of
O(∆

∆ABBA
n2).

Proof. In Freeze honest each party sends 2 messages, thus we have a message complexity of 2n. In each phase
of A BBA the parties run CSS which has a message complexity of 2n+ n2 and each send one message. Thus
one phase consists of 3n+ n2 messages. The expected number of phases is ∆

∆ABBA
+ c for some small constant c

(see proof of Lemma 6). At the end of A BBA each party sends an additional message. Thus A BBA as an

33

expected message complexity of (3n + n2)(∆
∆ABBA

+ c) + n. Finally, at the end of WMVBA an additional n
messages might be sent. So overall we have

4n+ (3n+ n2)
(

∆
∆ABBA

+ c

)
= ∆

∆ABBA
(3n+ n2) + (4 + 3c)n+ cn2.

So WMVBA has an expected message complexity of O(∆
∆ABBA

n2).

6.5 Filtered WMVBA Protocol
As described before, FilteredWMVBA is a variant of the WMVBA protocol for blockchains without the
DCGrowth property. It has a stronger validity guarantee such that we do not need a unique justified proposal
to achieve finalization. Instead, it is enough if all honest parties agree on a proposal. However, this comes at
the cost that FilteredWMVBA only offers 1-support instead of n/3-support. Technically, FilteredWMVBA is
the same as WMVBA except we use a slightly altered Freeze subprotocol called FilteredFreeze.

Filtered Freeze. FilteredFreeze is a variant of the Freeze protocol. It is essentially Freeze with an additional
step where proposals with low support are filtered out. It provides a stronger validity guarantee. This comes
at the cost of a lower support guarantee. Each party honest Pi has a J-justified input pi and the output of
Pi is justified by justification Jdec (cf. Definition 13). The protocol has the following properties.

Weak Consistency: If some honest Pi and Pj output decisions di 6= ⊥ respectively dj 6= ⊥, then di = dj .

Validity: If all honest parties input the same J-justified proposal p, then no honest Pj outputs a decision
p′′ with p′′ 6= p.

1-Support: If honest party Pi outputs decision di 6= ⊥, then at least one honest party had di as input.

Termination: If all honest parties input some justified proposal, then eventually all honest parties output
some decision.

For the new filter step we need the following justification.

Definition 22. A filtered proposal message m = (baid, filtered, p, σ) is considered Jfilt-justified for Pj if
either σ contains Jprop-justified proposal messages for p from t+1 different parties or σ contains Jprop-justified
proposal messages from n − t different parties such that no proposal is contained in more than t of those
messages.

Vote messages are now cast after the filter step and depend on filtered proposal messages. We thus
redefine the justification for vote messages as follows. The definition of Jdec (relative to the redefined Jvote)
stays the same as for Freeze.

Definition 23. A vote message m = (baid,vote, v) from Pi is considered Jvote-justified for Pj if is signed
by Pi and either for v 6= ⊥ Pj has collected Jfilt-justified filtered proposal messages from at least n − 2t
parties or for v = ⊥ Pj has collected Jfilt-justified filtered proposal messages (baid, filtered, p, σ) and
(baid, filtered, p′, σ′) (from two different parties) where p′ 6= p.

Protocol FilteredFreeze(baid, J)

Each (honest) party P has a J-justified proposal p as input. Party P does the following:
Propose:

1. Broadcast signed proposal message (baid,proposal, p).

Filter:

34

1. Collect proposal messages (baid,proposal, pi). Once Jprop-justified proposal messages from at
at least n− t parties have been collected do the following (but keep collecting proposal messages).

(a) If your input p is contained in at least t + 1 Jprop-justified proposal messages, broadcast
filtered proposal message (baid, filtered, p, σ) where σ is a set of t + 1 signed proposal
messages which all contain p.

(b) Else if there is any p′ which is contained in at least t+ 1 Jprop-justified proposal messages,
broadcast filtered proposal message (baid, filtered, p′, σ) where σ is a set of t+ 1 signed
proposal messages which all contain p. Do this for at most one proposal.

(c) Else broadcast (baid, filtered, p, σ) where σ is a set of n− t signed proposal messages such
that no proposal is contained in more than t of those proposal messages.

Vote:

2. Collect filtered proposal messages (baid, filtered, pi). Once Jfilt-justified filtered proposal
messages from at at least n− t parties have been collected do the following (but keep collecting
filtered proposal messages).

(a) If Jfilt-justified filtered proposal messages from at at least n− t parties contain the same
proposal p, broadcast vote message (baid,vote, p).

(b) Otherwise broadcast vote message (baid,vote,⊥).

Freeze:

3. Collect vote messages (baid,vote, pi) messages. Once Jvote-justified vote messages from at least
n− t parties have been collected and there is a value contained in at least t+ 1 vote messages do
the following (but keep collection).

(a) If Jvote-justified vote messages from strictly more than t parties contain the same p 6= ⊥
output (baid, frozen, p).

(b) Otherwise if Jvote-justified vote messages from strictly more than t parties contain ⊥ output
(baid, frozen,⊥).

4. Keep collecting vote messages until WMVBA is terminated (i.e., until Pi gets an output in WMVBA).
Party Pi keeps track of all decisions (baid, frozen, p) which become Jdec-justified.

Lemma 8. For t < n
3 the protocol FilteredFreeze satisfies weak consistency, validity, 1-support, and termina-

tion. The outputs of honest parties are Jdec-justified.

Proof. Weak Consistency: Assume that some honest party sends Jvote-justified (baid,vote,d) for d 6= ⊥.
It must have received Jfilt-justified filtered proposal messages for d from at least n − t different
parties. Thus at most t honest parties sent Jfilt-justified filtered proposal messages for d′ where d′ 6= d.
Therefore at most 2t < n− t parties sent Jfilt-justified filtered proposal messages for d′ where d′ 6= d.
Therefore no honest party will send a Jvote-justified vote message for d′ for d′ 6= d. Therefore, in Freeze,
if two honest parties output Jdec-justified (baid, frozen, d) and (baid, frozen, d′), then d = d′.

Validity: Assume all honest parties have J-justified input d.
So all honest parties will send out Jprop-justified proposal messages for d.
So all honest parties will receive at least t+ 1 Jprop-justified proposal messages for d and thus all send
out Jfilt-justified filtered proposal messages for d.

35

On the other hand for any d′ 6= d there are no t+ 1 Jprop-justified proposal messages for d′. Also any
set of Jprop-justified proposal messages from n− t different parties will contain at least t+ 1 proposal
messages for d. This means that no Jfilt-justified filtered proposal message for d′ can exist.
Thus all honest parties will vote for d while no other Jvote-justified can exist.
Thus all honest parties will output (baid, frozen, d) which is Jdec-justified while no other Jdec-justified
can exist.

1-Support: Assume honest party Pi outputs di 6= ⊥. Then it collected at least t+ 1 votes for di. So at least
one honest party sent out a vote for di. This party must have collected at least t+ 1 filtered proposals
for di. So at least one honest party sent out a filtered proposal message for di. This party must have
collected at least t+ 1 proposal messages for di. So at least one honest party had input di.

Termination: Note that all used justifications are eventual justifications.
Every honest party will send out a justified proposal message. Thus all honest parties will eventually
receive Jprop-justified proposal message from n− t different parties. They therefore send out all filtered
proposal messages. Thus all honest parties will eventually receive Jfilt-justified filtered proposal
messages from n− t different parties and send out vote messages. So eventually they will all collect
Jvote-justified vote messages from n− t and thus all output a decision.

Similar to Lemma 4 for Freeze we get the following lemma.

Lemma 9. Assume any message received by an honest party will eventually be received by all other honest
parties. If an honest party Pi outputs (Jdec-justified) decision di 6= ⊥ in FilteredFreeze, then eventually all
honest parties will accept di has Jdec-justified.

The proof follows along the lines of the proof for Lemma 4.

Filtered WMVBA. The protocol FilteredWMVBA is identical to WMVBA where Freeze is replaced by
FilteredFreeze.

Theorem 3. For t < n
3 the protocol FilteredWMVBA satisfies consistency, validity, 1-support, and termina-

tion.

Proof. We begin by showing that for A BBA validity is equivalent to 1-support. Assume validity holds. If
parties have different inputs 1-support follows directly. Otherwise if all honest parties have the same input,
then validity implies that they output this value. Assume 1-support holds and all parties input the same bit.
By 1-support they must output this bit.

Next, we prove each individual property.

Consistency: Consider two honest parties Pi, Pj with Jfin-justified outputs outputs di and dj . Assume
that they are different.

case i) Assume that without loss of generality di = ⊥ and thus dj 6= ⊥. In this case Pi had output ⊥ from
A BBA and Pj had output > from A BBA. This contradicts the consistency property of A BBA.

case ii) Assume that both di and dj are not equal to ⊥. Then, both parties Pi and Pj got > as output
from A BBA. This implies that at least one honest party Pk had input > to A BBA due to the
1-support of A BBA. This party Pk must have had Jdec-justified output (baid, frozen, dk) from
FilteredFreeze (with dk 6= ⊥).
Let without loss of generality di 6= dk, then it must be that Pi collected at least t+1 signed messages
(baid,WeAreDone, di) of which at least one must have been broadcast by an honest party Pl.
That party Pl must consider (baid, frozen, di) to be Jdec-justified. This is a contradiction to the
weak consistency of FilteredFreeze.

Thus, the output of honest parties must be the same.

36

Validity: Assume that all honest parties input J-justified d.
The validity of FilteredFreeze implies that no (baid, frozen, d′) with d′ 6= d is output by an honest party
in Freeze. In particular, (baid, frozen,⊥) cannot become Jdec-justified. So ⊥ is not a Jin-justified
input for A BBA.
So all honest parties will input > to A BBA. Hence by the validity of A BBA it follows that ⊥ is not
a Jout-justified output for A BBA. Therefore neither ⊥ nor a decision d′ 6= d can be an Jfin-justified
output of A BBA.

1-Support: Assume that honest party Pi outputs di 6= ⊥.
Therefore Pi had output > from A BBA. By 1-support of A BBA at least one honest party Pj had input
> to A BBA. This party Pj must have had Jdec-justified output (baid, frozen, dj) from FilteredFreeze
with dj 6= ⊥. The 1-support of FilteredFreeze implies that at least on honest party had input dj . This
party had input dj to FilteredWMVBA.

Termination: Assume that all honest parties have a J-justified proposal as input. By the termination
property of FilteredFreeze all honest parties will have a Jdec-justified output. Thus they all have a
Jin-justified input for A BBA. By the termination property of A BBA they all have an Jout-justified
output from A BBA. Consider the following cases.

case i): Assume honest party Pi has Jout-justified output ⊥ from A BBA. Then Pi output Jfin-
justified ⊥.

case ii): Assume honest party Pi has Jout-justified output > from A BBA. The 1-support of A BBA
implies that at least one honest party Pj had input > for A BBA. Thus party Pj had Jdec-justified
output (baid, frozen, dj) from FilteredFreeze with dj 6= ⊥. Lemma 9 implies that eventually all
honest parties will accept (baid, frozen, dj) as Jdec-justified. Thus Pi will eventually output a
Jdec-justified decision.

Message Complexity The message complexity of FilteredWMVBA is similar to the message complexity
of WMVBA.

Lemma 10. Let ∆ be the actual network delay. Then FilteredWMVBA has an expected message complexity
of O(∆

∆ABBA
n2).

Proof. In FilteredFreeze parties send n more messages than in Freeze. Thus the overall message complexity is
still dominated by the n2 from A BBA (see proof of Lemma 7) We get that FilteredWMVBA has an expected
message complexity of O(∆

∆ABBA
n2).

7 Security Analysis of Finalization
In this section we show that the protocol described in Section 5 is a finality protocol as defined in Section 4.

Theorem 4. For t < n
3 and a blockchain satisfying common prefix, chain quality, bounded chain growth, and

DCGrowth, there exists a ∆ such that the protocol described in Section 5 satisfies (∆, n/3)-finality.

Proof. We show each property individually.

Agreement: We proof the property by induction.
The statement is true at the beginning of the protocol (k = 0).
So assume the statement holds for k− 1. An honest party will call (setFinal, ·) for the k-th time after
getting output Ri from Finalization. The agreement property of WMVBA (cf. Theorem 2) guarantees
that all honest parties output the same Ri. Thus they will all input (setFinal, Ri).

37

Chain-forming: Consider an honest party Pi which at time τ inputs (setFinal, R). Let lastFinali be
the last finalized block of Pi. As Pi is honest R was the output of Finalization. In Finalization the
WMVBA protocol is used to agree on R. The support property of WMVBA (cf. Theorem 2) implies that
R was input by at least one honest party Pj . By the design of Finalization party Pj selected R in the
subtree of lastFinalj (at that time). By the agreement property we have lastFinali = lastFinalj
and it follows that lastFinali ∈ PathTo(Treeτi , R). As the output of NextFinalizationGap is ≥ 1 we
have that R is at greater depth than lastFinali. So R 6= lastFinali.

n/3-Support: Consider honest party Pi at time τ inputting (setFinal, R). As Pi is honest R was the
output of Finalization. In Finalization the WMVBA protocol is used to agree on R. The n/3-support
property of WMVBA (cf. Theorem 2) implies that R was input by at least n/3 honest parties. By the
design of Finalization these parties selected R as on their Path.

∆-Updated: First, we show that any invocation of Finalization eventually terminates. As the blockchain
satisfies chain growth we know that all honest parties will eventually start WMVBA in each execution of
the repeat until loop of Finalization. Note also that all honest parties have a justified input to WMVBA
so it will terminate. The parties will exit the loop if WMVBA outputs a non-⊥ decision. Let δfreeze be
an upper bound on the duration of the Freeze sub-protocol. Lemma 2 shows that our assumptions on
the underlying blockchain imply the UJP property. Hence, for the given depth d of the to-be-finalized
block and any time τ , there exists a γ0 such that for all γ ≥ γ0 we have that there is a time period of
length δfreeze where there is a unique justified proposal and all honest parties will have that proposal
on their path. This implies by the weak validity and termination property of WMVBA that eventually
Finalization will terminate with a new finalized block lastFinal at depth d.
It remains to show that the protocol achieves ∆-updated. For this we give an upper bound on the gap
between the last finalized block and the maximal depth of an honest position. Ideally, the depth d of
the last finalized block is roughly the maximal depth of an honest position. We observe that there
are two cases where the depth of the last finalized block can lag behind. In the first case, finalization
itself fell behind the tree growth. In the second case, the depth d′ of the next finalized block is set
larger than the current maximal depth of an honest position. Until some honest party reaches depth d,
no new finalized block is created. Thus, the gap to the last finalized block can grow up to d′ − d. To
achieve an upper bound on the gap, we proceed as follows. We first give a bound for the first case and
then use this to bound the gap in the second case.
We assume an upper-bound on chain-growth. This implies that within one finalization attempt the
chain-growth is bounded by some constant. Let d be the depth of the next finalized block. Then we
assume that the positions of honest parties grow at most b in depths, between the time some party
first reaches depth d (start of finalization) and the time the last honest party receives a witness for the
finalization of a block at depth d (end of finalization).
For the first case consider the following situation. A block at depth d was just finalized and the maximal
depth of an honest position is d+ x. In other words, finalization lags behind and we have a gap of x
blocks. As it lags behind, finalization will try to catch up by doubling ` (cf. Lemma 1). However, as
long as ` < b, the gap will increase. In the worst-case the initial ` is 1. After dlog2(b)e finalizations we
have ` ≥ b, and during each finalization, the gap can increase by at most b. The gap in the catch-up
phase can therefore be loosely bounded by x+ dlog2(b)e · b.
To get a bound for the first case, it remains to show that x is bounded as well. It is enough to bound x
for the case where ` after the finalization at depth d was decreased (or stayed at the minimum of ` = 1).
Otherwise, the finalization at depth d is part of a larger catch-up phase and we just consider the x′ and
d′ at the beginning of this larger phase. If d = 1, i.e., at the beginning of the protocol, we have x ≤ 1.
Otherwise, we know that at the point when d was selected as the next finalization depth, the maximal
depth of an honest position was less than d. So at the start of the finalization for depth d, the maximal
depth of an honest position was d. Thus, at the end of the finalization this depth was at most d+ b,
and thus x ≤ b. We conclude that in the first case the gap is bounded by b+ dlog2(b)e · b.

38

Finally consider the second case. Again, let d be the depth of the block which was just finalized. Assume
that the depth d′ = d+ ` of the next finalized block is set larger than the current maximal depth of
an honest position. The gap in this case is bounded by d′ − d = `. So we need to bound `. Note
that ` is maximal after it has been increased for the last time. According to Lemma 1, the value of `
gets decreased if the next finalized block is at least c := ρpgrowth ·∆net + ∆pgrowth + `PQ blocks deeper
than the positions of all honest parties. By the analysis in the first case, we are never behind more
than b + dlog2(b)e · b blocks. This means that as soon as ` reaches the value b + dlog2(b)e · b + c, it
can be double at most once more before it will be reduced. Hence, we obtain an overall gap bound of
∆ := 2(b+ dlog2(b)e · b+ c).

Finalization with Filtered Byzantine Agreement. We finally show the same for the protocol using
FilteredWMVBA without relying on DCGrowth.

Theorem 5. For t < n
3 , and a blockchain satisfying common-prefix, chain quality, and bounded chain growth,

there exists a ∆ such that the protocol described in Section 5 where calls to WMVBA replaced by calls to
FilteredWMVBA satisfies (∆, 1)-finality.

Proof. The agreement and chain-forming properties follow as in the proof of Theorem 4 as FilteredWMVBA
has 1-support. Similarly, the 1-support property follows directly from the 1-support of FilteredWMVBA.

It remains to check the ∆-updated property. First, we show that any invocation of Finalization eventually
terminates. As the blockchain satisfies chain growth we know that all honest parties will eventually start
FilteredWMVBA in each execution of the repeat until loop of Finalization. Note also that all honest parties
have a justified input to WMVBA so it will terminate. The parties will exit the loop if WMVBA outputs
a non-⊥ decision. By the common-prefix property of the underlying blockchain and the increasing γ in
Finalization, all honest parties will eventually input the same justified proposal. This implies by the validity
and termination property of FilteredWMVBA that eventually Finalization will terminate with a new finalized
block lastFinal at depth d. The actual ∆-updated property follows as in the proof of Theorem 4.

8 Committee Selection
The protocol of Section 5 is (intentionally) described in a simplified setting that abstracts away many aspects
of the underlying blockchain. We stress, however, that our goal is to present a finality layer, and not a
full-fledged blockchain. Therefore, the reason for considering a simplified setting is that by abstracting the
properties of the underlying blockchain, we end up with a protocol that is generic enough to be used in
tandem with virtually any Nakamoto-style blockchain. Hence, if the underlying blockchain has properties
such as permissionlessness and dynamic stakes then our protocol can preserve those properties.

Properly selecting a committee is a challenging task that has been extensively studied [PS17b, KJG+16,
KJG+18]. The appropriate strategy to select a finalization committee is highly tied to the specific type of
blockchain one considers. Therefore, it is out of the scope of this paper to propose a definitive answer on how
to select a committee for each particular setting.

We do however discuss some possible approaches that can be used to select the finalization committee
in a few settings. We can categorize committees into two main categories, namely external committees and
chain-based committees. We discuss both next.

8.1 External Committees
An external committee is usually selected prior to the deployment of the system, and can be dynamic or
static during the lifetime of the system. External committees are more common in permissioned blockchain
applications, where there are restrictions to parties joining the system. As an example, consider a blockchain
backed by a foundation (e.g., Ethereum); the selection of the committee to run the finality layer can be initially
chosen by the foundation, perhaps among a few nodes that are previously registered with the foundation to
perform the task. The committee can be later updated during the lifetime of the system; the only requirement

39

is that the corrupted nodes compose less than 1/3 of the total number parties. We stress that allowing a
permissioned committee for the finality layer does not make the protocol trivial or the result any weaker; in
fact, it shows that our protocol is flexible enough to allow virtually all types of blockchains to take advantage
of finality capabilities.

8.2 Chain-Based Committees
Chain-based committees are deterministically selected from the blockchain itself. To abstract the selection
procedure from the underlying blockchain we define an interface C = FC(Tree, B) for a function that takes
as input the current blocktree Tree and a block B and selects a committee C. The actual function FC is
implemented by the underlying blockchain and can select the committee in an arbitrary way, e.g., read all
the state data in the previous epoch plus any auxiliary information that might have been added via a survey
layer (e.g., live nodes information), and from this data select the committee C including each party’s stake.
It is important to note that the committee C is deterministically selected from B ∈ Tree and the path from
B to the genesis block. The committee C is selected by invoking the function FC and passing the current tree
Tree and the last finalized block B as input.

Chain-based committees in PoW. In a PoW blockchain miners employ computational power to solve a
hash puzzle to eventually get the right to append a new block to the chain. By inspecting the history of
mined blocks, one can infer the proportion of computational power each party (or public key) possess in
relation to the overall system within some time period. To select a committee in a PoW chain, one could
employ similar techniques from [PS17b, KJG+16, KJG+18] and consider a sliding time window (e.g., last
1000 blocks) that ends just before the last final block (initially one can consider a pre-selected committee in
the genesis block), where the miners within the time window would constitute the committee, with the voting
“power” of a finalizer being scaled by how many of the blocks this finalizer mined. Note that this approach
requires high chain-quality to ensure an honest majority in the committee. High chain quality can, e.g., be
achieved by an approach such as the one underlying the FruitChain protocol [PS17a]. Further note that the
previously described committee selection strategy assumes synchronicity. This, however does not imply that
Afgjort is synchronous, but rather that it supports many different strategies of committee selection.

Chain-based committees in PoS. To instantiate the function FC for PoS blockchains one could use the
data and stake distribution from the chain and run the committee selection as a VRF lottery using the
party’s stake as the “lottery tickets”, as is done in Algorand [Mic16] and Ouroboros Praos [DGKR18]; the
more stake one has the higher is the probability of being selected, and the higher the voting “power” is. A
similar approach would be to run the selection based on the party’s stake by using randomness produced by a
coin tossing protocol ran by all the online parties in the previous epoch, as is done in Ouroboros [KRDO17].

9 Experimental Results
In order to experimentally evaluate Afgjort, we ran a number of experiments using an industrially de-
veloped implementation of the protocol. As the underlying NSB, we use the PoS blockchain Ouroboros
Praos [DGKR18]. Our test network consisted of 1000 baker nodes (i.e., nodes producing blocks) distributed
in two datacenters with low-latency links (physical latency in the 1–2 ms range).

We ran six experiments varying the size of the finalization committee between 10, 100 and 1000 members,
and varying the expected block production rate of the underlying blockchain between 1 and 15 seconds per
block. In each configuration, there were 1000 baker nodes, and the finalizers where chosen randomly among
them. To provide a load, 100 transactions were submitted to the system each second. The slot time of the
underlying blockchain was fixed at 0.1 seconds; the block production rate was controlled by choosing the
difficulty parameter. In each experiment, the network was started and allowed to stabilize for 1 hour; the
sample window was the blocks that were created in the second hour of operation (according to their slot
times).

40

Table 1: Experimental results.

Finalization gap

Target block
time (s)

Time (s) # Blocks Avg. block
time (s)# Finalizers Mean SD Mean SD # Blocks # Tx

10 8.4 3.7 6.4 2.5 2776 1.3 359 990
1 100 7.3 3.1 5.6 2.1 2775 1.3 359 968

1000 19.3 6.1 10.3 3.1 1991 1.8 359 232
10 69.9 41.8 3.6 1.2 189 19.0 355 386

15 100 66.2 35.4 3.6 1.2 190 18.9 359 045
1000 84.6 44.2 3.8 1.2 168 21.4 360 955

Table 1 shows the results of these experiments. The “target block time” is the expected time it takes to
produce a new block based on the chosen slot time and difficulty. With 0.1 seconds slot time, this means,
e.g., that a target block time of 1 second corresponds to a difficulty parameter such that in each slot, the
probability that some party is eligible to create a block is 0.1. The “finalization gap” measures the “gap” in
time and in number of blocks from when a block was first inserted in the tree to when it was considered
final; the gap in time is taken to be the difference in nominal (slot) time between a block and the first block
that considers it to be finalized, and the gap in number of blocks is the difference in depth between a block
and the first block that considers it to be finalized. For both measurements we give the mean and standard
deviation (SD). “Blocks” is the total number of blocks on the finalized chain in the 1 hour sample window,
and “Average block time” is the average time between the creation of blocks on the finalized chain in that
window. Finally, “Transactions” represents the total accumulated number of transactions in the blocks on
the finalized chain inside the sample window.

Figure 3 shows histograms of the time to finalize for the 1 second and 15 seconds block times, with 10,
100, and 1000 finalizers. For example, Figure 3b shows that with 100 finalizers and 1 second target block
time, almost all blocks are finalized less than 20 seconds after being created, and most blocks are finalized
after less than 10 seconds.

Under ideal circumstances, the system should produce a chain with no branching, and we would expect
the measured average block time to be equal to the target block time. The fact that this does not happen
suggests that some branching does occur. It is also possible that a baker may fail to produce a block in a slot,
despite having the right to do so, if the responsible thread fails to wake up in time. As one can see from the
results, the average block time with 1000 finalizers is higher than with fewer finalizers. This can be explained
by a much higher load on the network, which also affects the bakers. Overall, we picked the parameters
rather aggressively to put some stress on our finality layer, since finalization in a perfect blockchain without
any branching is a trivial task.

Curiously, the configurations with 100 finalizers consistently perform better than those with 10 and 1000
finalizers, in terms of time to finalize a block. Since a larger finalization committee equates to more messages
being sent, we would tend to expect worse performance with a larger committee. One possible explanation
for 100 finalizers outperforming 10 is that in the former, finalizers have fewer network hops between them on
average. This may mean that a finalizer reaches the thresholds to progress with the finalization protocol
more quickly.

We note that the constants used in NextFinalizationGap prevent the gap between finalized blocks going
below 4. With 15 seconds expected block time, this gap was constantly 4 within the sample window. This
suggests that more frequent finalization would be feasible by adjusting these constants.

41

0 10 20
0

50

100

150

Time to finalize (s)

#
of

bl
oc
ks

(a) 1 s TBT, 10 finalizers.

0 10 20
0

50

100

150

Time to finalize (s)

#
of

bl
oc
ks

(b) 1 s TBT, 100 finalizers.

0 20 40
0

20

40

60

Time to finalize (s)

#
of

bl
oc
ks

(c) 1 s TBT, 1000 finalizers.

0 100 200
0

10

20

30

Time to finalize (s)

#
of

bl
oc
ks

(d) 15 s TBT, 10 finalizers.

0 100 200
0

10

20

30

Time to finalize (s)

#
of

bl
oc
ks

(e) 15 s TBT, 100 finalizers.

0 100 200
0

5

10

15

Time to finalize (s)

#
of

bl
oc
ks

(f) 15 s TBT, 1000 finalizers.

Figure 3: Histograms of block finalization latency in seconds with different target block times (TBT) and
finalization committee sizes.

Acknowledgements
We would like to thank Mateusz Tilewski for countless discussions during the design of the finality layer, his
deep insights into practical distributed systems were valuable in designing a system which is at the same
time efficient in practice and provably secure. We would like to thank Matias Frank Jensen and Emil Morre
Christensen; their work on generalizing the Finality layer gave valuable insights which were adapted into
the protocol presented in this paper. Finally, we thank the Concordium tech team that worked on the
implementation and ran the experiments reported in this paper.

References
[AW04] H. Attiya and J. Welch. Distributed Computing: Fundamentals, Simulations, and Advanced

Topics. Wiley Series on Parallel and Distributed Computing. Wiley, 2004.

[BG17] Vitalik Buterin and Virgil Griffith. Casper the friendly finality gadget. CoRR, abs/1710.09437,
2017.

[BGK+18] Christian Badertscher, Peter Gazi, Aggelos Kiayias, Alexander Russell, and Vassilis Zikas.
Ouroboros genesis: Composable proof-of-stake blockchains with dynamic availability. In ACM
CCS 18, pages 913–930. ACM Press, 2018.

[BH04] Michael Backes and Dennis Hofheinz. How to break and repair a universally composable signature
functionality. In Kan Zhang and Yuliang Zheng, editors, ISC 2004, volume 3225 of LNCS, pages
61–72. Springer, Heidelberg, September 2004.

42

[Bra84] Gabriel Bracha. An asynchronou [(n-1)/3]-resilient consensus protocol. In Robert L. Probert,
Nancy A. Lynch, and Nicola Santoro, editors, 3rd ACM PODC, pages 154–162. ACM, August
1984.

[Buc16] Ethan Buchman. Tendermint: Byzantine fault tolerance in the age of blockchains. Master’s
thesis, The University of Guelph, Guelph, Ontario, Canada, 6 2016.

[Can04] R. Canetti. Universally composable signature, certification, and authentication. In Proceedings.
17th IEEE Computer Security Foundations Workshop, 2004, 6 2004.

[CKPS01] Christian Cachin, Klaus Kursawe, Frank Petzold, and Victor Shoup. Secure and efficient
asynchronous broadcast protocols. In Joe Kilian, editor, CRYPTO 2001, volume 2139 of LNCS,
pages 524–541. Springer, Heidelberg, August 2001.

[CPS18] T.-H. Hubert Chan, Rafael Pass, and Elaine Shi. Pala: A simple partially synchronous blockchain.
IACR Cryptology ePrint Archive, 2018.

[DGKR18] Bernardo David, Peter Gazi, Aggelos Kiayias, and Alexander Russell. Ouroboros praos: An
adaptively-secure, semi-synchronous proof-of-stake blockchain. In Jesper Buus Nielsen and Vincent
Rijmen, editors, EUROCRYPT 2018, Part II, volume 10821 of LNCS, pages 66–98. Springer,
Heidelberg, April / May 2018.

[DLS88] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the presence of partial
synchrony. J. ACM, 35(2), April 1988.

[FG03] Matthias Fitzi and Juan A. Garay. Efficient player-optimal protocols for strong and differential
consensus. In Elizabeth Borowsky and Sergio Rajsbaum, editors, 22nd ACM PODC, pages
211–220. ACM, July 2003.

[GHM+17] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich. Algorand:
Scaling byzantine agreements for cryptocurrencies. In Proceedings of the 26th Symposium on
Operating Systems Principles, 2017.

[GKL15] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol: Analysis
and applications. In Elisabeth Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part II,
volume 9057 of LNCS, pages 281–310. Springer, Heidelberg, April 2015.

[GKL17] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol with chains
of variable difficulty. In Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017, Part I,
volume 10401 of LNCS, pages 291–323. Springer, Heidelberg, August 2017.

[GKR18] Peter Gazi, Aggelos Kiayias, and Alexander Russell. Stake-bleeding attacks on proof-of-stake
blockchains. In Crypto Valley Conference on Blockchain Technology, CVCBT, 2018.

[KJG+16] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Nicolas Gailly, Ismail Khoffi, Linus Gasser, and
Bryan Ford. Enhancing bitcoin security and performance with strong consistency via collective
signing. In 25th USENIX Security Symposium, 2016.

[KJG+18] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, Nicolas Gailly, Ewa Syta, and
Bryan Ford. OmniLedger: A secure, scale-out, decentralized ledger via sharding. In 2018 IEEE
Symposium on Security and Privacy, pages 583–598. IEEE Computer Society Press, May 2018.

[KRDO17] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. Ouroboros: A
provably secure proof-of-stake blockchain protocol. In Jonathan Katz and Hovav Shacham, editors,
CRYPTO 2017, Part I, volume 10401 of LNCS, pages 357–388. Springer, Heidelberg, August
2017.

43

[Kwo14] Jae Kwon. Tendermint: Consensus without mining. manuscript, 2014. https://tendermint.
com/static/docs/tendermint.pdf.

[Mic16] Silvio Micali. ALGORAND: the efficient and democratic ledger. CoRR, 2016.

[MRV99] Silvio Micali, Michael O. Rabin, and Salil P. Vadhan. Verifiable random functions. In 40th FOCS,
pages 120–130. IEEE Computer Society Press, October 1999.

[Nak09] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. manuscript, 2009. http:
//www.bitcoin.org/bitcoin.pdf.

[Nei94] Gil Neiger. Distributed consensus revisited. Information Processing Letters, 49(4):195 – 201,
1994.

[PS17a] Rafael Pass and Elaine Shi. FruitChains: A fair blockchain. In Elad Michael Schiller and
Alexander A. Schwarzmann, editors, 36th ACM PODC, pages 315–324. ACM, July 2017.

[PS17b] Rafael Pass and Elaine Shi. Hybrid consensus: Efficient consensus in the permissionless model.
In 31st International Symposium on Distributed Computing, DISC, 2017.

[PS18] Rafael Pass and Elaine Shi. Thunderella: Blockchains with optimistic instant confirmation. In
Jesper Buus Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018, Part II, volume 10821 of
LNCS, pages 3–33. Springer, Heidelberg, April / May 2018.

[PSs17] Rafael Pass, Lior Seeman, and abhi shelat. Analysis of the blockchain protocol in asynchronous
networks. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, EUROCRYPT 2017, Part II,
volume 10211 of LNCS, pages 643–673. Springer, Heidelberg, April / May 2017.

[Ste19] Alistair Stewart. Byzantine finality gadgets. manuscript, 2019. https://github.com/w3f/
consensus/blob/master/pdf/grandpa.pdf.

[TC84] Russell Turpin and Brian A. Coan. Extending binary byzantine agreement to multivalued
byzantine agreement. Inf. Process. Lett., 18(2), 1984.

44

https://tendermint.com/static/docs/tendermint.pdf
https://tendermint.com/static/docs/tendermint.pdf
http://www.bitcoin.org/bitcoin.pdf
http://www.bitcoin.org/bitcoin.pdf
https://github.com/w3f/consensus/blob/master/pdf/grandpa.pdf
https://github.com/w3f/consensus/blob/master/pdf/grandpa.pdf

	Introduction
	Our Contributions
	The Two-Layer Approach
	Our Techniques
	Related Work
	Outline

	Preliminaries
	Model and Network Assumptions
	Graphs and Trees

	Abstract Model of Blockchains
	Description of Tree Functionality
	Desirable Properties and Bounds
	Discussion on Dishonest Chain Growth

	The Finality Layer
	Formalization
	On Proving UC Security
	Impossibility of Better Bounds for the Number of Corruptions

	Afgjort Protocol
	Computing the Next Finalization Gap
	Existence of Unique Justified Proposals

	Weak Multi-Valued Byzantine Agreement
	Freeze Protocol
	Core Set Selection
	Another Binary Byzantine Agreement
	WMVBA Protocol
	Filtered WMVBA Protocol

	Security Analysis of Finalization
	Committee Selection
	External Committees
	Chain-Based Committees

	Experimental Results

