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Abstract. We introduce policy-compliant signatures (PCS). A PCS scheme can be used in a setting
where a central authority determines a global policy and distributes public and secret keys associated
with sets of attributes to the users in the system. If two users, Alice and Bob, have attribute sets
that jointly satisfy the global policy, Alice can use her secret key and Bob’s public key to sign
a message. Unforgeability ensures that a valid signature can only be produced if Alice’s secret
key is known and if the policy is satisfied. Privacy guarantees that the public keys and produced
signatures reveal nothing about the users’ attributes beyond whether they satisfy the policy or not.
PCS extend the functionality provided by existing primitives such as attribute-based signatures
and policy-based signatures, which do not consider a designated receiver and thus cannot include
the receiver’s attributes in the policies. We describe practical applications of PCS which include
controlling transactions in financial systems with strong privacy guarantees (avoiding additional
trusted entities that check compliance), as well as being a tool for trust negotiations.
We introduce an indistinguishability-based privacy notion for PCS and present a generic and modular
scheme based on standard building blocks such as signatures, non-interactive zero-knowledge proofs,
and a (predicate-only) predicate encryption scheme. We show that it can be instantiated to obtain
an efficient scheme that is provably secure under standard pairing-assumptions for a wide range of
policies.
We further model PCS in UC by describing the goal of PCS as an enhanced ideal signature
functionality which gives rise to a simulation-based privacy notion for PCS. We show that our
generic scheme achieves this composable security notion under the additional assumption that
the underlying predicate encryption scheme satisfies a stronger, fully adaptive, simulation-based
attribute-hiding notion.
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1 Introduction

Digital signatures provide authenticity to messages in the sense that everyone can verify that a
signed message was indeed signed by a specific sender, and not modified afterwards. Attribute-
based signatures [MPR11] and policy-based signatures [BF14] extend this concept by introducing
policies that the sender needs to satisfy to generate a valid signature. We take this one step
further and introduce policy-compliant signatures (PCS) with policies that take into account
attributes of both, the sender and the receiver. This is useful in settings where messages have a
designated receiver. A prevalent example of such a setting are blockchain applications, in which
a sender signs a transaction sending funds to a given receiver. If such a system is used within a
corporation and PCS are used for generating these signatures, the company can set a policy,
restricting who can send funds to whom.

In more detail, a PCS scheme allows a central authority to generate a master public key
and a master secret key for a given policy. The authority can then use the master secret key to
generate public/private key pairs associated with a set of attributes. The signer Alice then uses
her private signing key and the receiver Bob’s public key to create a signature for a message.
The signature can be publicly verified using all public keys. It is only valid if Alice’s and Bob’s
attributes together satisfy the global policy.

Security requirements. Unforgeability of ordinary signature schemes ensures that valid signatures
cannot be produced without knowledge of the secret key, and that signed messages cannot
be modified without invalidating the signature. The unforgeability notion of PCS additionally
requires that even with access to the secret key, it should not be possible for a malicious sender
to craft a valid signature if the policy is not satisfied by the sender and the receiver.

In addition to unforgeability, PCS provide privacy for the sender’s and receiver’s attributes.
Our privacy notion captures three different attack scenarios: First, outsiders only seeing the
public keys and signatures between two parties should not learn anything about the attributes
of these parties beyond the fact whether they satisfy the policy. Secondly, a (possibly malicious)
sender should not learn anything about the receiver’s attributes except whether their attributes
satisfy the policy. And finally, a (possibly malicious) receiver should not learn anything about
the sender’s attributes except whether their attributes satisfy the policy.

The core challenge to obtain PCS. Consider the following attempt to obtain the functionality of
a PCS scheme: A central authority is in charge of checking compliance of every single transaction
by ensuring that whenever a sender S with attributes x sends a message to a receiver R with
attributes x∗, the policy specified by F (x, x∗) is satisfied. While conceptually simple, it does
not satisfy our needs: One goal of PCS is to avoid a central authority assisting in the signature
generation and verification because this results in a central point of failure in the execution of
the system. Stated differently, the authority shall only be used to issue the credentials but the
(non-interactive) signature generation and verification must be possible only with the public
values associated to the receiver and the secret values of the sender.

In a second attempt, we let the authority issue ordinary signature key pairs (pk, sk) and a
certificate of the respective attributes Cx to each participant in the system. To send a message
m, a sender S signs the message m and proves, using a non-interactive zero-knowledge proof,
that the attributes associated with the certificates of the sender and the receiver satisfy the
policy F (x, x∗). This second attempt looks more appealing, but it has the drawback that the
sender must be aware of the recipient’s attributes since otherwise no proof can be generated
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about the compliance with attributes not owned by the sender—especially if the certificate Cx∗

is supposed to (computationally) hide the attributes of the receiver.1
We see that the main challenge to obtain PCS is to ensure that only valid signatures can be

generated by a sender without a trusted authority assisting in the signature generation while
the attributes of any entity in the system are hidden at any time, even from the sender. At first
sight, this appears contradictory as it excludes any solution where the sender “proves” a joint
statement including a receiver, using only public information about the receiver, which hides
the receiver’s attributes. The key idea to overcome this issue is to employ a specific form of
predicate encryption that allows every participant to only learn a single bit of information upon
generating a signature. This single leaked bit is F (x, x∗) and the process does not leak anything
beyond this evaluation. We additionally show that this specific form of predicate encryption is
in fact necessary to obtain PCS.

1.1 Applications of PCS

Applications to financial payment systems. PCS can be used in all settings in which messages
are sent to designated receivers and a global policy about the senders and receivers needs to be
publicly verifiable. This naturally occurs in financial transactions, such as paying online services
when purchasing, for example, digital content (such as movies) or services (such as online games
or lotteries) that are region-dependent or age restricted. Typically, such services require additional
authentication upon payment such as identity card information through scanning or manual input.
PCS merge the act of authentication with the basic task of signing a transaction. A policy can
be expressed as a list of requirements for say n categories of services Si. For age and/or country
restrictions, a policy might be given by (Age ≥ 18∧S1)∨ (Age ≥ 16∧Country = CH∧S2)∨ . . . .
Assume Alice obtained a key-pair from a credential management entity that is tied to her country
of residence (akin to obtaining an ID card), and each service of Bob is assigned the correct
category (identified also by a PCS public key for credential Si). Then the payment system
needs no additional check of the policy if the transactions are signed using a PCS scheme. If a
transaction is successful, (an honest) Bob can be sure that the client had access to appropriate
private credentials. Thanks to the public verifiability, the transaction can be validated by an
external auditor and the attribute hiding property of PCS ensures that signatures attest the
validity without revealing the combination of attributes of the involved public keys.

Furthermore, in blockchain systems such as Bitcoin [Nak09], a transaction transferring funds
from a sender Alice to a receiver Bob contains a signature from Alice on the transaction details.
Before adding such a transaction to a new block, the miners verify the validity of the transaction
including the signature. When the used signature scheme is replaced by a PCS scheme, such
transactions are only valid if the global policy allows Alice to send funds to Bob. This can be
useful if the blockchain is used in a corporate environment where the money flow needs to be
restricted in certain ways, e.g., defined by a legal system. Imagining a toy example, one could
define a new company-wide digital token T with address format addr = (pkpcs, . . .). A transaction
transferring tokens T from addrA to addrB can only be valid if a (publicly verifiable) signature
(produced by the PCS scheme) confirms this transaction. By issuing credentials to employees
and to facilities (such as canteens) within the company, and defining the policy to steer token
flow (e.g., employees are allowed to exchange company-tokens or consume the tokens at company
facilities), such tokens can be bound to a specific purpose at the sole cost of having to verify a
signature and the address formats. The security of PCS makes it impossible for any sender to

1 For the same reason, attempts to derive PCS in a black-box way from existing policy-based primitives fail
(cf. Section 1.3) because they would require to implement a policy only based on the public key of the receiver,
which does not allow to efficiently obtain their attributes.
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violate the company policy, both by accident or malice. This renders other compliance checks
for this policy obsolete, such as techniques that are only triggered after suspicious transactions
are observed and that often result in a complete revocation of a user’s privacy [CL01,DGK+21].
The attribute-hiding property of PCS further ensures that no information about the attributes
of the transacting entities beyond that they satisfy the policy is revealed by the signatures and
addresses (in the above toy example, we would not reveal whether it is a transaction between
employees or between an employee and a facility). Thanks to this, the pseudonymity of the used
blockchain system is preserved.

Applications to trust negotiations. Another application of PCS are trust-negotiation sys-
tems [FLA06, LDB03]. Assume Alice and Bob work for an intelligence agency and need to
exchange secret information. Further assume these agencies have a policy on who is allowed to
exchange information with whom, e.g., based on the divisions and ranks of the involved parties
as in role-based access control systems. In [LDB03], the example assumes Alice has top-level
clearance and before sending a message M , she must make sure that Bob also has top-level
clearance. In the language of [LDB03], what PCS bring to this setting is a simple implementation
of the following two-party protocol: The common input are the access-control policy F (defined
on the space of party credentials), and the agency’s public parameters ppagency (equivalent to
a company-wide public-key infrastructure). Alice’s private inputs are her message M and her
credentials credA, and Bob’s private input is his credentials credB. The output outA of Alice
and outB of Bob are defined to be

outA =
{

1, if F (credA, credB)
0, otherwise

outB =
{

M, if F (credA, credB)
⊥, otherwise

.

Assuming the agency has set up the public-key infrastructure, the above functionality is
realized as follows: Alice encrypts the message M with Bob’s (encryption) public key and
signs the corresponding ciphertext with a PCS scheme (using her secret signing key, and Bob’s
signature public key). If the resulting signature is valid, then Alice sends the packet to Bob and
otherwise does not send the message. If the policy is satisfied, then Bob learns the message.
Otherwise, Bob learns nothing. The PCS scheme itself does not leak anything beyond the
fulfillment of the policy.

1.2 Our Contributions and Organization of this Paper

PCS Notion. As a conceptual contribution, we introduce the notion of PCS (see Section 3). In
addition to the syntactical requirements, we define unforgeability (in Section 3.2). This includes
policy enforcement, i.e., unforgeability ensures that a signature that verifies with respect to the
public verification key of the sender A and the receiver B can only be produced when possessing
the secret signing key of A and if the attributes of A and B satisfy the policy.

Furthermore, we define an indistinguishability-based attribute hiding notion (in Section 3.3).
This notion intuitively guarantees that an adversary cannot distinguish public keys and signatures
generated for different sets of attributes, as long as the policy does not separate them.

Generic construction and concrete instantiation. We first provide an efficient generic construction
of PCS from standard tools using digital signatures, (predicate-only) predicate encryption, and
NIZK in Section 4. We show that relying on predicate-only PE is a tight fit for our goal in
the sense that any PCS scheme gives rise to a related PE scheme. This settles an important
feasibility question regarding constructions and efficiency for PCS in general.
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Our generic construction is not only theoretically interesting, it also admits efficient instanti-
ations (w.r.t. the indistinguishability-based attribute-hiding notion) based on standard pairing
assumptions coupled with Groth-Sahai proofs for the rich class of predicates expressible by
inner-products [KSW08]. The policies that are realizable on top of the inner-product functionality
range from CNF formulas and exact threshold clauses (with conjunctive or disjunctive clauses)
to hidden-vector-encryption which in turn opens up the field for PCS to efficiently implement
subset predicates, comparison predicates and their conjunctions as defined in [BW07].

Composable PCS and SIM-based notion. Finally, we cast PCS as an ideal, enhanced signature
functionality in the spirit of [Can03,BH04] to model the ideal composable guarantees of PCS. We
then derive a simpler simulation-based attribute hiding notion (in Section 5.1) and prove that an
unforgeable and sim-based attribute-hiding PCS scheme realizes the ideal signature functionality.
By definition of the ideal system, the sim-based notion guarantees that everything an attacker
can learn from the public keys and signatures can be efficiently produced by a simulator given
only the public information and the information for which signatures the policy is satisfied.
This allows to capture precisely which information is leaked by a PCS scheme. We show that
our generic construction achieves this notion if the underlying PE scheme satisfies a related
(fully adaptive) simulation-based notion, which is stronger than what has been considered in the
literature (e.g. in [DOT18]) so far.

1.3 Related Work

We provide an overview of cryptographic primitives which have been introduced in the context
of attribute-based and policy-dependent constructions to shed light on the role and necessity of
PCS in this space.

Attribute-based signatures and policy-based signatures. Attribute-based signatures (ABS) [MPR11]
have similar goals to PCS: In an ABS scheme, an authority can generate secret signing keys asso-
ciated to a set of attributes. The signer can then sign messages for some policy and the resulting
signature is only valid if the signer’s attributes satisfy the policy. Policy-based signatures [BF14]
generalize this concept by allowing the policies to depend not only the sender’s attributes but
also on the signed messages. A clear distinction from PCS is that they do not allow the policies to
depend on the receiver’s attributes. Thus, the notions and security guarantees are very different.

Another difference between PCS and ABS is that an ABS scheme allows the sender to choose
the policy for each message at the time of signing, whereas the policy in PCS schemes is fixed
by the authority during the setup. This gives ABS more flexibility. Note, however, that allowing
the sender to choose the policy in PCS schemes would be detrimental to our privacy guarantees:
We want to protect the receiver’s attributes even from malicious senders. Allowing the sender to
choose many different policies and then verify the resulting signatures would allow a malicious
sender to find the precise attributes of all receivers.

Finally, ABS provide an additional security guarantee that PCS do not offer, namely
unlinkability of signatures. That is, given two signatures, one cannot determine whether they
have been produced by the same signer; one only learns that somebody satisfying the policies
signed. In a PCS scheme, this is not required since it is not needed for the applications we have
in mind. For example, when used in a blockchain system providing pseudonymity, the signatures
are anyway linked to the pseudonyms of the senders and receivers of transactions. Trying to
hide the signer would thus not be useful in this context.

Designated verifier signatures. Designated verifier signatures have been introduced by Jakobsson
et al. [JSI96]. As in our setting, they consider signatures produced for a designated receiver.

6



They require that only this receiver can verify the signatures. Furthermore, the receiver should
not be able to convince others of the validity of such signatures. This is in contrast to PCS,
which can be verified publicly. The setting and security requirements are thus very different.

Matchmaking Encryption. The high-level goals of PCS and matchmaking encryption (ME)
introduced by Ateniese et al. [AFNV19] seem similar, but turn out to be quite distinctive due to
the respective applications in mind. ME captures a non-interactive variant of a secret-handshake
(with payload), that is, in addition to the functionality that PCS support. In ME, the sender
has the freedom to define the receiver’s policy and the receiver can in addition to its private key
(for the attributes), receive an additional policy decryption key that captures a policy on the
sender’s attributes under which the receiver is able to decrypt the ciphertext. These two receiver
private keys can conceptually be merged into one single attribute-policy decryption key, which
results in a seemingly simpler notion that is realizable from standard FE (capturing the policy
as a specific function). This notion is dubbed arranged ME (A-ME).

In a nutshell, our unforgeability requirements are stronger and require that even if sender
and receiver collude, they should not be able to produce a valid (publicly verifiable) signature
(authenticity of ME is a guarantee for an honest receiver not to be fooled by a ciphertext of a
sender that does not possess the required attributes). Second, the ME authenticity game does
not provide an oracle to the adversary for computations on the private key, therefore disallowing
all attacks that are based on malleable ciphertexts, which is problematic for our needs. This
aspect also influences the obtained privacy guarantees. In the ME security game, the adversary
only obtains a single value (the ciphertext) that is a function of the sender’s secret key. For ME,
this makes a lot of sense as it is used to replace a handshake with a single payload message.
We, however, need a signing oracle and hence obtain strictly stronger privacy. For the sake of
self-containment, we sketch an (A-)ME scheme which does not provide the attribute hiding
property of PCS in Appendix A.

Finally, constructions of PCS for simple policies like CNF, conjunctions of equalities or
comparisons, are in the standard model and have practical instantiations. In contrast, even for
simple equality policies where the FE and randomized FE are not needed as building blocks, the
constructions of [AFNV19] are in the random oracle model.

Access control encryption. The notion of access control encryption (ACE) [DHO16,BMM17] is a
cryptographic primitive that allows to control the information flow within a system. ACE is not
suitable to achieve the task we need. First, the system relies crucially on a third-party called
the sanitizer which is a role that does not fit into our setting. Secondly, ACE only protects the
information flow within the system (when running through a sanitizer), whereas in our system,
corrupted parties might meet offline trying to generate a valid joint signature, which must be
part of the attack model.

Predicate encryption and attribute-based encryption. Predicate encryption and attribute-based
encryption allow decryption of ciphertexts only for users with secret keys matching a certain
policy. While PCS are signatures and not encryption schemes, they are still related because of
the required privacy notion. In particular, our indistinguishability-based and simulation-based
attribute hiding properties are closely related to the respective notions for these encryption
schemes.

The notion of predicate encryption has first been considered in [BW07,KSW08]. In the work
of Boneh and Waters [BW07], the authors construct a scheme that allows for comparison, subset
and arbitrary conjunctive queries. In the succeeding work of Katz et al. [KSW08], the authors
present a scheme for the inner product functionality and the authors also observe that the
inner product functionality is sufficient for polynomial predicate evaluations as well as DNF and
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CNF formulas. We mention more regarding the common policies of these schemes below. Since
the results of Boneh and Waters [BW07] and Katz et al. [KSW08], more works for the same
functionality class have been proposed [OT12a, OT12b], as well as for the stronger notion of
partially-hiding predicate encryption [Wee17,DOT18]. Partially-hiding predicate encryption is a
generalization of predicate encryption in which the ciphertext is extended with public attributes.
The function associated with the functional key is then first applied on the public information
and the result is then used together with hidden attribute of the ciphertext.

2 Preliminaries

2.1 Notation

We denote the security parameter with λ ∈ N and use 1λ as its unary representation. We call
a randomized algorithm A probabilistic polynomial time (PPT) if there exists a polynomial
p(·) such that for every input x the running time of A(x) is bounded by p(|x|). A function
negl : N → R+ is called negligible if for every positive polynomial p(λ), there exists λ0 ∈ N
such that for all λ > λ0 : negl(λ) < 1/p(λ). If clear from the context, we sometimes omit λ
for improved readability. The set {1, . . . , n} is denoted as [n] for n ∈ N. For the equality check
of two elements, we use “=”. The assign operator is denoted with “:=”, whereas randomized
assignment is denoted with a← A, with a randomized algorithm A and where the randomness
is not explicit. If the randomness is explicit, we write a := A(x; r) where x is the input and r is
the randomness. For algorithms A and B, we write AB(·)(x) to denote that A gets x as an input
and has black-box oracle access to B, that is, the response for an oracle query q is B(q).

2.2 Digital Signatures

In this section, we recap the definition of digital signatures as well as existential unforgeability
as introduced in [GMR88].

Definition 2.1 (Digital Signatures). A digital signature scheme (DS) is a triple of PPT
algorithms DS = (Setup, Sign, Verify):

Setup(1λ): Takes as input a security parameter λ and outputs a verification key vk and a signing
key sk.

Sign(sk, m): Takes as input the signing key sk, a message m ∈M and outputs a signature σ.
Verify(vk, m, σ): Takes as input the verification key vk, a message m and a signature σ, and

outputs 0 or 1.

A scheme DS is correct if (for all λ ∈ N), for all vk in the support of Setup(1λ) and all m ∈M,
we have

Pr[Verify(vk, m, Sign(sk, m)) = 1] = 1.

Definition 2.2 (Existential Unforgeability of a Digital Signature Scheme). Let DS =
(Setup, Sign, Verify) be a DS scheme. We define the experiment EUF-CMADS in Fig. 1 with Q
being the set containing the queries of A to the signing oracle Sign(sk, ·). The advantage of an
adversary A is defined by

AdvEUF-CMA
DS,A (λ) = Pr[EUF-CMADS(1λ,A) = 1].

A Digital Signature scheme DS is called existentially unforgeable under adaptive chosen-
message attacks (EUF-CMA secure) if for any polynomial-time adversary A it holds that
AdvEUF-CMA

DS,A (λ) ≤ negl(λ) for a negligible function negl(·).
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EUF-CMADS(1λ,A)
(vk, sk)← Setup(1λ)
(m, σ)← ASign(sk,·)(vk)
Output: Verify(vk, m, σ) = 1 ∧m /∈ Q

Fig. 1: Existentially Unforgeability Game of DS.

Definition 2.3 (Strong Unforgeability of a Digital Signature Scheme). Let DS =
(Setup, Sign, Verify) be a DS scheme. We define the experiment EUF-CMADS in Fig. 1 with Q
being the set containing the queries of A to the signing oracle Sign(sk, ·) and the corresponding
answers to A. The advantage of an adversary A is defined by

AdvSUF-CMA
DS,A (λ) = Pr[SUF-CMADS(1λ,A) = 1].

A Digital Signature scheme DS is called strong unforgeable under adaptive chosen-message attacks
(SUF-CMA secure) if for any polynomial-time adversary A we have AdvSUF-CMA

DS,A (λ) ≤ negl(λ)
for a negligible function negl(·).

SUF-CMADS(1λ,A)
(vk, sk)← Setup(1λ)
(m, σ)← ASign(sk,·)(vk)
Output: Verify(vk, m, σ) = 1 ∧ (m, σ) /∈ Q

Fig. 2: Strong Unforgeability Game of DS.

2.3 Non-interactive Zero-Knowledge Proofs

Now, we recapture the definition of non-interactive zero knowledge (NIZK) proofs [GMW87,
For87,BGG+90].

Definition 2.4 (Non-Interactive Zero-Knowledge Proofs). Let R be an NP Relation and
consider the language L = {x | ∃w with (x, w) ∈ R} (where x is called a statement or instance).
A non-interactive zero-knowledge proof (NIZK) for the relation R is a triple of PPT algorithms
NIZK = (Setup, Prove, Verify):

Setup(1λ): Takes as input a security parameter λ and outputs the common reference string CRS.
Prove(CRS, x, w): Takes as input the common reference string CRS, a statement x and a witness

w, and outputs a proof π.
Verify(CRS, x, π): Takes as input the common reference string CRS, a statement x and a proof

π, and outputs 0 or 1.

A system NIZK is complete, if (for all λ ∈ N), for all CRS in the support of Setup(1λ) and all
statement-witness pairs in the relation (x, w) ∈ R,

Pr[Verify(CRS, x, Prove(CRS, x, w)) = 1] = 1.

Besides completeness, a NIZK system should also fulfill the notions of soundness and zero-
knowledge, which we introduce in the following two definitions:
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Definition 2.5 (Soundness). Given a proof system NIZK = (Setup, Prove, Verify) for a relation
R and the corresponding language L, we define the soundness advantage of an adversary A as
the probability:

AdvSound
NIZK,A(λ) := Pr[CRS← Setup(1λ); (x, π)← A(CRS) : Verify(CRS, x, π) = 1 ∧ x /∈ L].

A NIZK proof system is called perfectly sound if AdvSound
NIZK,A(λ) = 0 for all algorithms A, and

computationally sound, if AdvSound
NIZK,A(λ) ≤ negl(λ) for all PPT algorithms A.

ZKNIZK
0 (1λ,A,S)

CRS← Setup(1λ)
α← AProve(CRS,·,·)(CRS)
Output: α

ZKNIZK
1 (1λ,A,S)

(CRS, τ)← S1(1λ)
α← AS′(CRS,τ,·,·)(CRS)
Output: α

Fig. 3: Zero-knowledge property of NIZK.

Definition 2.6 (Zero-Knowledge). Let NIZK = (Setup, Prove, Verify) be a NIZK proof system
for a relation R and the corresponding language L, S = (S1,S2) a pair of algorithms (the
simulator), with S ′(CRS, τ, x, w) = S2(CRS, τ, x) for (x, w) ∈ R, and S ′(CRS, τ, x, w) = failure
for (x, w) /∈ R. For β ∈ {0, 1}, we define the experiment ZKNIZK

β (1λ,A) in Fig. 3. The associated
advantage of an adversary A is defined as

AdvZK
NIZK,A,S(λ) := |Pr[ZKNIZK

0 (1λ,A,S) = 1]− Pr[ZKNIZK
1 (1λ,A,S) = 1]|.

A NIZK proof system NIZK is called perfect zero-knowledge, with respect to a simulator S =
(S1,S2), if AdvZK

NIZK,A,S(λ) = 0 for all algorithms A, and computationally zero-knowledge, if
AdvZK

NIZK,A,S(λ) ≤ negl(λ) for all PPT algorithms A.

Besides the notion of zero-knowledge and soundness, we also introduce the notion of ex-
tractability as in [CKLM12a].

Definition 2.7 (Extractability). Let NIZK = (Setup, Prove, Verify) be a NIZK proof system
for a relation R and the corresponding language L, E = (E1, E2) a pair of algorithms (the
extractor). We define the extraction advantages of an adversary A as

AdvCRS
NIZK,A := |Pr[CRS ← Setup(1λ); 1 ← A(CRS)] − Pr[CRS ← E1(1λ); 1 ← A(CRS)]|,

and

AdvExt
NIZK,A(λ) := Pr[CRSE ← E1(1λ); (x, π)← A(CRSE) :

Verify(CRSE , x, π) = 1 ∧R(x, E2(CRSE , x, π)) = 0].

A NIZK proof system NIZK is called extractable, with respect to an extractor E = (E1, E2),
if AdvCRS

NIZK,A ≤ negl(λ) and AdvExt
NIZK,A(λ) ≤ negl(λ). Additionally, we call an extractable non-

interactive zero-knowledge proof a non-interactive zero-knowledge proof of knowledge (NIZKPoK).
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2.4 Predicate Encryption

The notion of predicate-only predicate encryption has first been introduced by Katz et al. [KSW08].
We recap the secret-key variant here. At a high level, such a scheme allows one, given the master
secret key, to generate secret keys skf for functions f in the supported function family F . Using
the master secret key, one can further “encrypt” an attribute x to obtain a ciphertext (the
“predicate-only” part in the name refers to not having a message encrypted). Decrypting the
ciphertext with skf should then yield a constant, say 1, if f(x) = 1, and another constant, say 0,
if f(x) ̸= 0. Put simply, for boolean functions with range {0, 1}, this means the output of decrypt
should be f(x) for predicate-only PE. For simplicity, we assume that all the predicate encryption
schemes that are used in this work are perfectly correct. Nevertheless, our scheme can also be
instantiated using predicate encryption schemes that are not perfectly correct but this results in
an additional negligible error. A formal definition of the syntax and correctness follows.

Definition 2.8 (Predicate-Only Predicate Encryption). Let F = {Fλ}λ∈N be a family
of sets Fλ of predicates f : Xλ → {0, 1}. A predicate-only predicate encryption (PE) scheme for
the functionality class Fλ is a tuple of four algorithms PE = (Setup, KeyGen, Enc, Dec):

Setup(1λ): Takes as input a unary representation of the security parameter λ and outputs the
master secret key msk.

KeyGen(msk, f): Takes as input the master secret key msk and a function f ∈ F , and outputs a
functional key skf .

Enc(msk, x): Takes as input the master secret key msk and an attribute x ∈ Xλ, and outputs a
ciphertext ct.

Dec(skf , ct): Takes as input a functional key skf and a ciphertext ct and outputs 0 or 1.

A predicate-only predicate encryption scheme PE is correct if for all λ ∈ N, for all msk in the
support of Setup(1λ), all functions f ∈ Fλ, all secret keys skf in the support of KeyGen(msk, f),
and for all attributes x ∈ Xλ, we have

Pr
[
Dec(skf , Enc(msk, x)) = f(x)

]
= 1.

As a security requirement, we want the ciphertexts to hide the encrypted attributes. We
define two different security notions, indistinguishability based and simulation based, below.

Security Notions for PE. In the initial work of Katz et al. [KSW08], the authors only
introduce the weaker notion of selective security, as well as a construction that achieves this
notion. The corresponding indistinguishability based adaptive security notion for predicate
encryption has been introduced in [OT12a]. While the definition in [OT12a] allows the adversary
to obtain only a single challenge ciphertext, we use a generalization of this notion that allows for
multiple challenges. A simple hybrid argument shows that our notion is implied by the secret-key
variant of the definition from [OT12a]. In Appendix C, we present this single-challenge definition
and provide the proof that it implies the multi-challenge definition used here.

Definition 2.9 (Indistinguishability-Based Attribute Hiding). Let PE = (Setup, KeyGen,
Enc, Dec) be a PE scheme for a function family F = {Fλ}λ∈N as defined above. For β ∈ {0, 1},
we define the experiment AHPE

β in Fig. 4, where the left-or-right oracle is defined as:

QEncLRβ(·, ·): On input two attribute sets x0 and x1, output ct← Enc(msk, xβ).

The advantage of an adversary A is defined as:

AdvAH
PE,A(λ) = |Pr[AHPE

0 (1λ,A) = 1]− Pr[AHPE
1 (1λ,A) = 1]|.

11



AHPE
β (1λ,A)

msk← Setup(1λ)
α← AQEncLRβ(·,·),KeyGen(msk,·)(1λ)
Output: α

Fig. 4: Attribute-Hiding game of PE.

We call an adversary valid if for all queries (x0, x1) to the oracle QEncLRβ(·, ·) and for any
function f queried to the key generation oracle KeyGen(msk, ·), we have f(x0) = f(x1) (with
probability 1 over the randomness of the adversary and the involved algorithms).

A predicate-only predicate encryption scheme PE is called attribute hiding if for any valid
polynomial-time adversary A, there exists a negligible function negl such that AdvAH

PE,A(λ) ≤
negl(λ).

The notion of semi-adaptive simulation based security has first been proposed by Wee [Wee17]
and extended to several challenges [DOT18]. We formalize here a stronger definition with full
adaptivity. We state this stronger definition for completeness and clarity: looking ahead, if one
wants to obtain a simulation-based or UC-secure (see Section 5) PCS scheme (for some policy
class), a simulation-based (predicate-only) PE scheme in this stronger sense is required (for a
related set of predicates).

Definition 2.10 (Simulation-Based AH). Let PE = (Setup, KeyGen, Enc) be a PE scheme
for a function family F = {Fλ}λ∈N. We define in Fig. 5 the experiments RealPE(1λ,A) and
IdealPE(1λ,A,S) for a PPT adversary A = (A1,A2) and a PPT simulator S = (SSetup,SEnc,SKG).
The simulator algorithms have a shared state s, which is modeled as giving them s as input,
and allowing all of them to update the state s. Furthermore, all but SSetup get as an additional
input the leakage set L. Furthermore, the ideal encryption oracle is formally implemented by the
function S ′

Enc(s,L, x) := SEnc(s,L). The set L is initially empty, and gets updated according to
the following inductive rules:

– Let nEnc be the current number of encryption queries with the corresponding values xi with
i ∈ [nEnc] and nKeyGen be the current number of key generation queries with the corresponding
values fj with j ∈ [nKeyGen]. Then the leakage set L contains the values of the following
mapping:

(i, j) 7→ fj(xi)

for all i ∈ [nEnc] and j ∈ [nKeyGen].
– On every additional encryption query xi′ (where i′ is the counter variable for encryption

queries) the values
(i′, j) 7→ fj(xi′)

for all j ∈ [nKeyGen] are added to L.
– On every additional key generation query fj′ (where j′ is the counter variable for key

generation queries) the values
(i, j′) 7→ fj′(xi)

for all i ∈ [nEnc] are added to L.

The advantage of an adversary A in distinguishing both worlds is defined as

AdvSim
PE,A,S(λ) = |Pr[RealPE(1λ,A) = 1]− Pr[IdealPE(1λ,A,S) = 1|.
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A PE scheme PE is simulation-based attribute hiding if for any PPT adversary A, there
exists a PPT simulator S, such that AdvSim

PE,A,S(λ) ≤ negl(λ), where negl(·) denotes a negligible
function.

RealPE(1λ,A)
msk← Setup(1λ)
α← AEnc(msk,·),KeyGen(msk,·)(1λ)
Output: α

IdealPE(1λ,A,S)
s← SSetup(1λ)
α← AS′

Enc(s,L,·),SKG(s,L,·)(1λ)
Output: α

Fig. 5: Simulation-Based Attribute Hiding of PE.

Many PE schemes are defined in the public-key setting which is not the main setting we
are interested in in this work. However, any public-key PE scheme can be easily turned into a
secret-key scheme by keeping both parts of the key-pair private, and hence can be of use in this
work.

3 Policy-Compliant Signatures

In this section, we introduce the notion of policy-compliant signature schemes together with the
notion of unforgeability and indistinguishability-based attribute hiding. We start by describing
the syntax of PCS schemes, which consists of four algorithms, responsible for the setup of the
parameters, the key generation and the signature generation and verification.

Definition 3.1 (Policy-Compliant Signatures). Let {Xλ}λ∈N be a family of attribute sets
and denote by Xλ the powerset of Xλ. Further let F = {Fλ}λ∈N be a family of sets Fλ of
predicates F : Xλ × Xλ → {0, 1}. Then a policy-compliant signature (PCS) scheme for the
functionality class Fλ is a tuple of four PPT algorithms PCS = (Setup, KeyGen, Sign, Verify):

Setup(1λ, F ): On input a unary representation of the security parameter λ and a policy F ∈ Fλ,
output a master public and secret key pair (mpk, msk).

KeyGen(msk, x): On input the master secret key msk and a set of attributes x ∈ Xλ, output a
public and secret key pair (pk, sk).

Sign(mpk, skS , pkR, m): On input the master public key mpk, a sender secret key skS, a receiver
public key pkR and a message m, output either a signature σ or ⊥.

Verify(mpk, pkS , pkR, m, σ): On input the master public key mpk, a sender public key pkS, a
receiver public key pkR, a message m and a signature σ, output either 0 or 1.

A Policy-Compliant Signature scheme is called correct, if for all messages m, policies F ∈ Fλ,
and sets of attributes x1, x2 ∈ Xλ, for all pairs (mpk, msk) in the support of Setup(1λ, F ), all key
pairs (pkS , skS) and (pkR, skR) in the corresponding support of KeyGen(msk, x1) and KeyGen(msk,
x2), respectively,

Pr [Verify(mpk, pkS , pkR, m, Sign(mpk, skS , pkR, m)) = F (x1, x2)] ≥ 1− negl(λ),

where the probability is over the random coins of Sign and Verify.
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3.1 Adversarial Capabilities in the Security Games

Before diving into the security properties, we briefly explain the adversarial capabilities. The
adversary can (using the oracle QKeyGen or QKeyGenLRβ) obtain public keys for chosen attributes,
which models honest parties in the system of which the public key is known; (using the oracle
QCor) obtain the secret key corresponding to a given public key, which models the adversary
corrupting a party; and (using the oracle QSign) obtain signatures relative to chosen public keys,
which models the adversary seeing signatures from honest parties.

More formally, in a context where a master secret key msk is defined (as will be the case in
our security experiments), we capture the above by defining the following stateful oracles that
maintain the initially empty sets QK, QC, and QS.

Key-Generation Oracle QKeyGen(·): On the ith input of an attribute set xi, first generate
(pki, ski)← KeyGen(msk, xi), add (i, pki, ski, xi) to QK, and return pki.

Left-or-Right Key-Generation Oracle QKeyGenLRβ(·, ·): On the ith input of a pair of at-
tribute sets xi,0 and xi,1, generate (pki, ski) ← KeyGen(msk, xi,β), add (i, pki, ski, xi,0, xi,1)
to QK, and return pki. In this case, the bit β is defined by the security game.

Corruption Oracle QCor(·): On input an index i, ifQK contains an entry (i, pki, ski, . . .) ∈ QK
for some pki, ski, then copy that entry from QK to QC and return ski. Otherwise, return ⊥. 2

Signing Oracle QSign(·, ·, ·): On input a (sender) index i, a (receiver) public key pk′, and a
message m, if QK contains an entry (i, pki, ski, . . .) ∈ QK for some pki and ski, then return
σ ← PCS.Sign(mpk, ski, pk′, m) and add (i, pki, pk′, m, σ) to QS. Otherwise, return ⊥.

3.2 Existential Unforgeability

The unforgeability notion captures that an adversary A is not able to create a valid signature
for a public key that belongs to an uncorrupted party. Additionally, the adversary should also
not be able to create a valid signature for a pair of public keys that do not fulfill the policy.
More precisely, any signature for a new message m∗ that successfully verifies, with respect to
arbitrary sender and receiver public keys, constitutes a forgery unless the adversary has obtained
the private key corresponding to the public key associated to the sender’s attribute set x, and
the receiver public key is associated to attribute set x∗ obtained via the key generation oracle,
and F (x, x∗) = 1. An interesting special case is regarding collisions of public keys. Here a forgery
is valid unless the adversary has corrupted all indexes i corresponding to that public key.3 Note
that, as a further special case, the adversary cannot create a valid signature w.r.t. public keys
that have not been output by the key generation authority (formally, the condition on the
last line in Fig. 6 is trivially true). Looking ahead, this game-based notion in fact captures all
unforgeability properties we motivated for PCS: we show in Section 5 that Definition 3.2 implies
ideal unforgeability properties when modeling PCS as an enhanced signature functionality.

We capture these requirements using an existential unforgeability game:

Definition 3.2 (Existential Unforgeability of a PCS Scheme). Let PCS = (Setup, KeyGen,
Sign, Verify) be a PCS scheme as defined in Definition 3.1. We define the experiment EUF-CMAPCS

in Fig. 6 and define the advantage of an adversary A = (A1,A2) by

AdvEUF-CMA
PCS,A (λ) = Pr[EUF-CMAPCS(1λ,A) = 1].

2 To improve readability, we use a gray color for values that appear in the lists, but are not directly relevant for
the statement.

3 This is vital to our use case of PCS: as long as a given user is not corrupted, no one is able to produce valid
signatures that could be considered valid signatures of that party.
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EUF-CMAPCS(1λ,A)
(F, st)← A1(1λ)
(mpk, msk)← Setup(1λ, F )
(pk, pk∗, m∗, σ∗)← AQKeyGen(·),QCor(·),QSign(·,·,·)

2 (st, mpk)
Output: Verify(mpk, pk, pk∗, m∗, σ∗) = 1 ∧[[

∃i, sk, x ∀j, σ (i, pk, sk, x) ∈ QK \ QC ∧ (j, pk, pk∗, m∗, σ) ̸∈ QS
]

∨
[
∀i, j, sk, sk∗, xi, x∗ (i, pk, sk, xi), (j, pk∗, sk∗, x∗) ∈ QK ⇒ F (xi, x∗) = 0

]]
Fig. 6: Unforgeability Game of PCS.

A PCS scheme PCS is called existential unforgeable under adaptive chosen message attacks or
existential unforgeable for short if for any polynomial-time adversary A = (A1,A2), there exists
a negligible function negl such that: AdvEUF-CMA

PCS,A (λ) ≤ negl(λ).

3.3 Indistinguishability-Based Attribute Hiding

We formalize the notion of attribute hiding as a security game. In this security game, the adversary
has access to a left-or-right key-generation oracle that it can query multiple times using pairs of
attribute sets (x0, x1) to obtain the key for xβ , where β is a random bit sampled in the beginning
of the game. The goal of the adversary is to guess the bit β. To achieve this, it additionally has
access to a corruption oracle with with it can obtain the secret keys corresponding to previously
obtained public keys. This is only allowed for public keys that previously have been generated
for the same attribute set, i.e. x0 = x1. Furthermore, the adversary is also allowed to query a
signing oracle to obtain signatures generated for sender and receiver key pairs of its choice.

To prevent the adversary from trivially distinguishing between the generated public keys, we
need to exclude two kinds of trivial attacks: first, if xβ is seen as the receiver attributes, then
distinguishing is trivial if the adversary possesses a secret key for the attribute set x such that
F (x, xβ) ̸= F (x, x1−β). Second, if a signing query is asked for a pair of challenge keys such that
F (xβ, x′

β) ̸= F (x1−β, x′
1−β), where xβ and x1−β are the attribute sets potentially associated with

the sender key and x′
β and x′

1−β are the attribute sets potentially associated with the receiver
key, then distinguishing is trivial. Any other interaction is deemed valid.

Definition 3.3 (IND-Based Attribute Hiding). Let PCS = (Setup, KeyGen, Sign, Verify)
be a PCS scheme as defined in Definition 3.1. For β ∈ {0, 1}, we define the experiment AHPCS

β

in Fig. 7, where all oracles are defined as in Section 3.1. The advantage of an adversary
A = (A1,A2) is defined by

AdvAH
PCS,A(λ) = |Pr[AHPCS

0 (1λ,A) = 1]− Pr[AHPCS
1 (1λ,A) = 1]|.

We call an adversary valid if all of the following hold with probability 1 over the randomness of
the adversary and all involved algorithms:

– for every (i, pki, ski, xi,0, xi,1) ∈ QC and for all (j, pkj , skj , xj,0, xj,1) ∈ QK, we have xi,0 =
xi,1 =: xi and F (xi, xj,0) = F (xi, xj,1),

– and for all (i, pki, pkj , m, σ) ∈ QS, and (i, pki, ski, xi,0, xi,1), (j, pkj , skj , xj,0, xj,1) ∈ QK, we
have F (xi,0, xj,0) = F (xi,1, xj,1).

A PCS scheme PCS is called attribute hiding if for any valid polynomial-time adversary A =
(A1,A2), there exists a negligible function negl such that: AdvAH

PCS,A(λ) ≤ negl(λ).
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AHPCS
β (1λ,A)

(F, st)← A1(1λ)
(mpk, msk)← PCS.Setup(1λ, F )
α← AQKeyGenLRβ(·,·),QCor(·),QSign(·,·,·)

2 (st, mpk)
Output: α

Fig. 7: The Attribute-Hiding game for PCS.

4 Construction of a Policy-Compliant Signature Scheme

We present in Section 4.1 our policy-compliant signature scheme, show that it is correct in Sec-
tion 4.2, proof its security in Sections 4.3 and 4.4, and show in Section 4.5 how the scheme,
which is quite generic, can be instantiated from standard assumptions.

4.1 The Scheme

The high-level idea of the scheme is to let signatures generated by the signer contain proofs that
part of the target’s public key can be decrypted. Recall that the challenge of our notion is to
publish a single public-key that hides all attributes, but where all a priori legitimate parties
can figure out the bit of information whether they jointly satisfy the policy. For this step, we
use a predicate-only predicate encryption scheme for the specific functionality class induced
by the policy. To allow for the evaluation of the global policy on the inputs of the sender and
the receiver using a predicate encryption scheme, we define a deterministic encoding function
SubPol(F, x) = (SubPol1(F, x), SubPol2(F, x)) that takes as input the global policy F and a set
of attributes x and outputs a subpolicy encoding fx (output of SubPol1) and the attribute
encoding x (output of SubPol2) for the associated PE scheme. Functionally, we have

SubPol(F, x) = (SubPol1(F, x), SubPol2(F, x)),
s.t. ∀x, x′ ∈ X : F (x, x′) = SubPol1(F, x)(SubPol2(F, x′)︸ ︷︷ ︸

=fx(x′)

). (1)

We note that the usage of PE is not a coincidence here as there is an interesting theoretical
connection between PCS and PE which we give in Appendix B. To turn the scheme into a secure
PCS scheme, we still need to protect the integrity which entails the binding of public-keys and
the proof-of-decryption, as well as binding public keys to the authority. Here, we make use of two
types of signatures, namely existentially unforgeable signatures as well as strongly unforgeable
signatures. Finally, a NIZK proof is used to establish the core relation of Fig. 9 to prove the
above binding and correct decryption.

The full scheme is given in Fig. 8. Later in Sections 4.3 and 4.4 we prove the concrete security
of the scheme. The implied succinct asymptotic security statement can be stated as follows:

Theorem 4.1 (Security of our PCS Construction (Asymptotic version)). The PCS
scheme PCS in Fig. 8 (w.r.t. policies F ∈ F) is unforgeable and attribute hiding, if the signature
schemes DSpriv and DSP are unforgeable, the signature scheme DSpub is strongly unforgeable, PE
is an attribute-hiding (predicate-only) predicate encryption scheme (for the induced predicates
from Eq. (1)), and NIZK is a secure non-interactive zero-knowledge proof of knowledge system
for the relation RZK of Fig. 9.
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Setup(1λ, F ):
CRS← NIZK.Setup(1λ)
mskPE ← PE.Setup(1λ)
(vkpub, skpub)← DSpub.Setup(1λ)
(vkpriv, skpriv)← DSpriv.Setup(1λ)
mpk := (F, CRS, vkpub, vkpriv)
msk := (mskPE, skpub, skpriv)
Return (mpk, msk)

KeyGen(msk, x):
Parse msk := (mskPE, skpub, skpriv)
(vkP, skP)← DSP.Setup(1λ)
(fx, x) = SubPol(F, x)
ct← PE.Enc(mskPE, x)
skfx ← PE.KeyGen(mskPE, fx)
σpub ← DSpub.Sign(skpub, (vkP, ct))
σpriv ← DSpriv.Sign(skpriv, (vkP, skfx))
pk := (vkP, ct, σpub)
sk := (vkP, skP, skfx , σpriv)
Return (pk, sk)

Sign(mpk, sk, pkR, m):
Parse mpk = (F, CRS, vkpub, vkpriv)

sk = (vkS , skS , skfx , σpriv)
pkR = (vkR, ctR, σpub)

If DSpub.Verify(vkpub, (vkR, ctR), σpub) = 0
Return ⊥

If PE.Dec(skfx , ctR) = 0
Return ⊥

π ← Prove(CRS, (vkpriv, vkS , ctR),
(skfx , σpriv))

where the NIZK relation is defined in Fig. 9
σ′ ← DSP.Sign(skS , (m, pkR, π))
Return σ := (π, σ′)

Verify(mpk, pkS , pkR, m, σ):
Parse mpk = (F, CRS, vkpub, vkpriv)

pkS = (vkS , ctS , σS
pub)

pkR = (vkR, ctR, σR
pub)

σ = (π, σ′)
(Return 0 if parsing fails or σ = ⊥)
Return DSpub.Verify(vkpub, (vkR, ctR), σR

pub)
∧ DSpub.Verify(vkpub, (vkS , ctS), σS

pub)
∧ NIZK.Verify(CRS, (vkpriv, vkS , ctR), π)
∧ DSP.Verify(vkS , (m, pkR, π), σ′)

Fig. 8: The Policy-Compliant Signature Scheme. It uses a NIZK proof system NIZK, a predicate
encryption scheme PE, and three digital signature schemes DSpub, DSpriv and DSP.

Relation RZK:
Instance: x = (vkpriv, vkS , ctR)
Witness: w = (skfx , σpriv)
RZK(x, w) = 1 if and only if:

DSpriv.Verify(vkpriv, (vkS , skfx), σpriv) = 1 and PE.Dec(skfx , ctR) = 1

Fig. 9: Relation used for the PCS scheme in Fig. 8.
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4.2 Correctness

The correctness of the construction described in Fig. 8 follows from the correctness of the
predicate encryption scheme, the signature schemes, and the non-interactive zero-knowledge
proof. Note that for the sake of exposition, we assume perfect correctness. However, even if
any of the underlying building blocks has negligible correctness failure, this propagates through
our scheme and would make it violate correctness only with negligible probability. Consider
any two attribute sets x, y with F (x, y) = 1 (the other case for F (x, y) = 0 is straightforward)
and let (mpk, msk)← Setup(1λ), (pkx, skx)← KeyGen(msk, x), (pky, sky)← KeyGen(msk, y) and
σ ← Sign(mpk, pky := (vky, cty, σy

pub), skx := (vkx, skDS
x , skfx , σx

priv), m) for an arbitrary message m.
We have σ ̸= ⊥ because the check during the signature generation whether PE.Dec(skfx , cty) = 1
will be satisfied for F (x, y) = 1 due to the correctness of the scheme PE and the requirement
in Eq. (1). Furthermore, the signature on the sender’s public key verifies by the correctness of the
signature scheme DSpub during the signing process. In the signature verification step, the calls
to Verify for the signatures schemes DSpub, DSpriv and DSP always return 1 by the correctness of
the signature schemes DSpub, DSpriv and DSP. Furthermore, NIZK.Verify always returns 1 by the
correctness of NIZK. This proves the correctness of the PCS scheme.

4.3 Existential Unforgeability

After showing the correctness of our construction, we prove its unforgeability.

Theorem 4.2. Let DSpub = (DSpub.Setup, DSpub.Sign, DSpub.Verify) be a SUF-CMA secure sig-
nature scheme and let DSpriv = (DSpriv.Setup, DSpriv.Sign, DSpriv.Verify) and DSP = (DSP.Setup,
DSP.Sign, DSP.Verify) be a EUF-CMA secure signature scheme and let NIZK = (NIZK.Setup,
NIZK.Prove, NIZK.Verify) be an extractable proof system, then the construction PCS = (Setup,
KeyGen, Enc, Dec), defined in Figure 8, is existentially unforgeable. Namely, for any PPT adver-
sary A, there exist PPT adversaries B1,B2,B3 and B4 and a distinguisher B′, such that

AdvEUF-CMA
PCS,A (λ) ≤ AdvSUF-CMA

DSpub,B1 (λ) + 2q · AdvEUF-CMA
DSP,B2 (λ) + AdvEUF-CMA

DSpriv,B3 (λ)

+ AdvCRS
NIZK,B′(λ) + AdvExt

NIZK,B4(λ),

where q denotes the number of queries to QKeyGen.

Proof. Consider the random experiment EUF-CMAPCS(1λ,A) for which we define the following
two events:

– Event KeyCollA: The adversary terminates and it holds that there are indices i ̸= j such that
(i, pki, ·, ·), (j, pkj , ·, ·) ∈ QK, where (pki = (vki, ·, ·), (pkj = (vkj , ·, ·), for which vki = vkj .

– Event KeyForgeA: The adversary A terminates with output (pkS , pkR, m, σ) and there exists
an entry (·, pk∗

S , pk∗
R, m∗, σ∗) ∈ QS ∪ {(pkS , pkR, m, σ)} for which the following condition

holds: Verify(mpk, pk∗
S , pk∗

R, m∗, σ∗) = 1 ∧ ((·, pk∗
S , ·, ·) /∈ QK ∨ (·, pk∗

R, ·, ·) /∈ QK).

We denote the winning condition of the experiment by the event WINA and split it into two
parts:

– Event WIN1A: The adversary generates the output (pk, pk∗, m∗, σ∗) for which it holds that
Verify(mpk, pk, pk∗, m∗, σ∗) = 1∧ ∃i, sk, x ∀j, σ (i, pk, sk, x) ∈ QK \QC ∧ (j, pk, pk∗, m∗, σ) ̸∈
QS.

– Event WIN2A: The adversary A generates the output (pk, pk∗, m∗, σ∗) for which it holds that
Verify(mpk, pk, pk∗, m∗, σ∗) = 1 ∧ ∀i, j, sk, sk∗, xi, x∗ (i, pk, sk, xi), (j, pk∗, sk∗, x∗) ∈ QK ⇒
F (xi, x∗) = 0.
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By Lemma 4.4 and Lemma 4.3, we obtain

Pr[KeyForgeA] ≤ AdvSUF-CMA
DSpub,B1 (λ) and Pr[KeyCollA] ≤ q · AdvEUF-CMA

DSP,B′
2

(λ)

for adversaries B1 and B′
2 which are constructed based on A and have roughly the same efficiency

as A.
Finally, we obtain by Lemma 4.5 and by Lemma 4.6 that

Pr[WIN1A] ≤ q · AdvEUF-CMA
DSP,B′′

2
(λ) and

Pr[WIN2A ∩ KeyCollA ∪ KeyForgeA] ≤ AdvEUF-CMA
DSpriv,B3 (λ) + AdvExt

NIZK,B4(λ) + AdvCRS
NIZK,B′ ,

where the adversaries B′′
2 , B3, B4, and distinguisher B′ are constructed based on A and have

roughly the same efficiency as A.
By definition of the events, we have

Pr[WINA] ≤ Pr[KeyCollA ∪ KeyForgeA] + Pr[WINA ∩ KeyCollA ∪ KeyForgeA]
≤ Pr[KeyCollA] + Pr[KeyForgeA] + Pr[WIN1A ∩ KeyCollA ∪ KeyForgeA]

+ Pr[WIN2A ∩ KeyCollA ∪ KeyForgeA].

Finally, adversaries B′
2 and B′′

2 can be combined into a single adversary B2 which picks B ∈
{B′

2,B′′
2} at random and running it against EUF-CMADSP . The theorem follows. ⊓⊔

Lemma 4.3. Consider the experiment EUF-CMAPCS(1λ,A) and Let KeyForgeA be defined as
above. We construct an adversary B such that Pr[KeyForgeA] ≤ AdvSUF-CMA

DSpub,B (λ).

Proof. We build an adversary B that simulates EUF-CMAPCS towards A when interacting with
the underlying strong unforgeability experiment SUF-CMADSpub and show that if A outputs
(pk, pk∗, m∗, σ∗) as described in the above event, it can be used as a forgery in the SUF-CMADSpub

experiment.
In the first step, the adversary B receives vkpub from the forgeability experiment SUF-CMADSpub

and the policy F from the adversary A. In the next step, B generates (vkpriv, skpriv)← DSpriv(1λ),
CRS← NIZK.Setup(1λ) and mskPE ← PE.Setup(1λ), sets mpk := (F, CRS, vkpub, vkpriv) and sends
mpk to the adversary A. The adversary B also initializes the lists QK = {} and QC = {} and
the counter i = 1.

Whenever A asks a query x to the key-generation oracle QKeyGen, the adversary B samples
a signature key pair (vkP, skP)← DSP.Setup(1λ), generates the subpolicy and attribute vector
(fx, x) = SubPol(F, x) of F using the attribute set x, generates an encryption of the attribute
vector x, ct ← PE.Enc(mskPE, x) and generates a secret key for the subpolicy fx, i.e. skfx ←
PE.KeyGen(mskPE, fx), and generates the signature σpriv ← DSpriv(skpriv, (vkP, skfx)). In the next
step, the adversary B submits (vkP, ct) to its signing oracle and receives σpub as a reply. Then,
B sets pk := (vkP, ct, σpub) and sk := (vkP, skP, skfx , σpriv), adds (i, pk, sk, x) to QK, increases the
counter i, i.e. i := i + 1, and sends pk to A.

For every query j to the corruption oracle QCor, B returns sk to A for (j, pk, sk, x) ∈ QK,
and returns ⊥ if no such entry exists. It then adds (j, pk, sk, x) to the list QC.

If the adversary A asks a query (j, pkR := (vkR, ctR, σR
pub), m) to the signing oracle QSign,

the adversary B executes Sign(mpk, sk, pkR, , m) with (j, ·, sk, ·) ∈ QK and sends the output as a
reply to A. If no entry (j, ·, ·, ·) ∈ QK exists, it outputs ⊥.

We observe that the simulation of B towards A is perfect since the only difference is the
generation of the verification key vkpub and the corresponding signatures, which, in this setting,
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are honestly generated by the underlying challenger, which results in the identical distribution
as in the PCS experiment.

Thus, when A terminates with output (pkS , pkR, m, σ), adversary B considers the set of
all tuples QS ∪ {(pkS , pkR, m, σ)} and searches for a tuple (pk∗

S := (vk∗
S , ct∗

S , σ∗
pub,S), pk∗

R :=
(vk∗

R, ct∗
R, σ∗

pub,R), m∗, σ∗) that fulfills the condition of the event KeyForgeA, that is, the condition
(Verify(mpk, pk∗

S , pk∗
R, m∗, σ∗) = 1∧ ((·, pk∗

S , ·, ·) /∈ QK∨ (·, pk∗
R, ·, ·)) /∈ QK) = 1. If no such tuple

exists, the adversary aborts with output ⊥. Otherwise, at least one of the two message-signature
pairs ((vk∗

S , ct∗
S), σ∗

pub,S) or ((vk∗
R, ct∗

R), σ∗
pub,R) has to be a forgery the underlying SUF-CMADSpub

experiment w.r.t. public key vkpub. Without loss of generality, let (·, pk∗
S , ·, ·) /∈ QK be the tuple

fulfilling the above condition. This is a valid forgery, since either the pair (vk∗
S , ct∗

S) has never
been queried to the signing oracle of SUF-CMADSpub by B, or, if it has been queried, the result
was not σ∗

pub,S as otherwise we would have (·, pk∗
S , ·, ·) ∈ QK. This concludes the proof. ⊓⊔

Lemma 4.4. Consider the experiment EUF-CMAPCS(1λ,A) and Let KeyCollA be defined as
above. We construct an adversary B such that Pr[KeyCollA] ≤ q · AdvEUF-CMA

DSP,B (λ).

Proof. We observe that in the the execution of EUF-CMAPCS(1λ,A) all public keys added
to the set QK are computed by calling (pki, ski) ← KeyGen(msk, ·), where (pki = (vki, ·, ·)
and (vki, ·) ← DSP.Setup(1λ). At the point when A terminates, by definition of the event,
we have two indices i, j such that in particular vki = vkj and i ≠ j. We further see that
Pr[KeyCollA] ≤

∑q
k=1 Pr[∃j : vkk = vkj ], which follows from the union bound. Since the

distribution of keys is independent of the index, denote α := Pr[∃j : vkk = vkj ] for some
arbitrarily fixed index k. We now construct an adversary B against the signature scheme DSP:
on input a verification key ṽk from its challenger, B samples q− 1 PCS public keys. This induces
the same distribution as the distribution of the vki’s in QK. Therefore, Pr[∃j : ṽk = vkj ] ≥ α.
Conditioned on this event, B can forge a signature with probability 1 since it knows the secret
key corresponding to vkj and because of the correctness of the signature scheme, we can generate
fresh signature for any message m that will successfully verify w.r.t. ṽk. ⊓⊔

Lemma 4.5. Consider the experiment EUF-CMAPCS(1λ,A) and Let WIN1A be defined as
above. We construct an adversary B such that Pr[WIN1A] ≤ q · AdvEUF-CMA

DSP,B (λ).

Proof. We define the following events E1, . . . , Eq: The event Ek is the event where the adversary
outputs a valid signature for the k’th public key output by the generation oracle QK not obtained
from the signing oracle without querying it to the corruption oracle QCor. Formally, the adversary
A outputs (pk, pk∗, m∗, σ∗) in the EUF-CMAPCS game such that Verify(mpk, pk, pk∗, m∗, σ∗) = 1,
(pk, pk∗, m∗, ·) ̸∈ QS, (k, pk, ·, ·) /∈ QC, and (k, pk, ·, ·) ∈ QK.

When q denotes the number of queries to QKeyGen, we see that WIN1A =
⋃q

k=1 Ek, since by
definition, the public key pk∗

S specified in a forgery output by an adversary A corresponds to
some index of the set QK ∪QC and at least one index must not be corrupted.

We now bound Pr[Ek]. We build an adversary Bk that simulates EUF-CMAPCS towards A
when interacting with the underlying existential unforgeability experiment EUF-CMADSP and
show that if A outputs (pk, pk∗, m∗, σ∗) as described in event Ek it can be used as a forgery in
the EUF-CMADSP experiment.

In the first step, the adversary Bk receives vkchall
P from experiment EUF-CMADSP and the

policy F from the adversary A. In the next step, Bk generates (vkpub, skpub)← DSpub.Setup(1λ),
(vkpriv, skpriv) ← DSpriv.Setup(1λ), CRS ← NIZK.Setup(1λ) and mskPE ← PE.Setup(1λ), sets
mpk := (F, CRS, vkpub, vkpriv) and sends mpk to the adversary A. The adversary Bk also initializes
the lists QK = {} and QC = {} and the counter i = 1.

For a query x to the key generation oracle QKeyGen, we distinguish between two cases. The
query is not the k’th query to the oracle, i.e. i ̸= k, and the query is the k’th query to the
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oracle, i.e. i = k. In the first case, Bk samples a signature key pair (vkP, skP)← DS.Setup(1λ),
generates the subpolicy and attribute vector (fx, x) = SubPol(F, x) of F using the attribute set
x, generates an encryption of the attribute vector x, ct ← PE.Enc(mskPE, x) and generates a
secret key for the subpolicy fx, skfx ← PE.KeyGen(mskPE, fx). In the next step, the adversary
Bk generates the signatures σpub and signature σpriv, where σpub ← Sign(skpub, (vkP, ct)) and
σpriv ← Sign(skpriv, (vkP, skfx)). Then, Bk sets pk := (vkP, ct, σpub) and sk := (vkP, skP, skfx , σpriv),
adds (i, pk, sk, x) to QK, increases the counter i, i.e. i := i + 1, and sends pk to A. If the query is
the k’th query to the key generation oracle QKeyGen, B proceeds in the same way as in the first
case, with the only difference that instead of generating a fresh signature key pair, it uses the
verification key vkchall

P . Afterwards, Bk sets pk := (vkchall
P , ct, σpub) and sk := (vkchall

P , ·, skfx , σpriv),
adds (k, pk, sk, x) to QK, increases the counter i, i.e. i := i + 1, and sends pk to A.

Whenever A asks a corruption query j to the corruption oracle QCor, the adversary Bk

checks the list QK to find (j, pk, sk, x). If no such entry exists, the adversary Bk outputs ⊥ to A,
otherwise it sends sk to A and adds (j, pk, sk, x) to QC. In the case that A asks a corruption
query for the k’th key, the adversary Bk aborts the execution (note that in this case, Ek does
not occur).

If the adversary A asks a query (j, pkR := (vkR, ctR, σpub,R), m) to the sign oracle QSign,
the adversary Bk checks that (j, ·, ·, ·) ∈ QK and returns ⊥ if this is not the case. Now, we
distinguish between two cases, first the signature is requested for the k’th public key, i.e. j = k,
and, second, the signature is not requested the k’th public key, i.e. j ≠ k. In the first case,
Bk checks that PE.Dec(skfx , ctR) = 1, computes π ← Prove(CRS, (vkpriv, vkS , ctR), (skfx , σpriv))
with (k, ·, sk := (vkS , ·, skfx , σpriv), x) ∈ QK, submits (m, pkR, π) to the signature oracle of
EUF-CMADSP and receives σ′ as a reply. Then, Bk sets σ := (π, σ′) and outputs σ to A. In the
second case, Bk executes Sign using sk with (j, ·, sk, ·) ∈ QK and sends the resulting signature σ
as a reply to A.

Finally, whenA terminates with output (pk∗
S := (vk∗

S , ct∗
S , σ∗

pub,S), pk∗
R := (vk∗

R, ct∗
R, σ∗

pub,R), m∗,
σ∗ := (π∗, σ′)) check the conditions of Ek, i.e., Verify(mpk, pk∗

S , pk∗
R, m∗, σ∗) = 1 with (pk∗

S , pk∗
R,

m∗, ·) ̸∈ QS, (k, pk∗
S , ·, ·) /∈ QC and verify that indeed (k, pk∗

S , ·, ·) ∈ QK, in which case
pk∗

S = (vkchall
P , . . . ). In this case the adversary Bk outputs ((m∗, pk∗

R, π∗), σ′) as its forgery
to the underlying EUF-CMADSP experiment.

We first observe that if Bk does not abort and the conditions of event Ek hold in this
emulation then Bk’s output is a valid forgery and thus wins in experiment EUF-CMADSP : by
definition of Ek, we must in particular have a valid signature for (m∗, pk∗

R, π∗) w.r.t. vkchall
P

specified in pk∗
S . If m∗ was never part of any query by A to the emulated singing oracle QSign

for signer index k, then the output of Bk in experiment EUF-CMADSP is a novel message. If m∗

has been asked, then it holds that Bk did not emulate a signing operation queried by A for m∗

specifically for the receiver public key pk∗
R as the combination would contradict event Ek. Hence,

the combination (m, pk∗
R) must be novel.

Second, we observe that the simulation of Bk towards A is perfect up to the point where
it aborts. The distribution of keys that A observes are |QK| independently and honestly
sampled public keys (and correctly computed signatures thereof) and the emulated oracle calls
execute the scheme as in the experiment EUF-CMAPCS(1λ,A), thus the definition of event
Ek applies directly to the emulation and the probability is the same as in an execution of
EUF-CMAPCS(1λ,A).

Therefore, the probability that Bk terminates with a valid forgery is AdvEUF-CMA
DSP,Bk

(λ) = Pr[Ek].
This concludes the analysis for Bk. We obtain the lemma statement by picking an index k = 1 . . . q
at random and executing Bk. ⊓⊔
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Lemma 4.6. Consider the experiment EUF-CMAPCS(1λ,A) and Let WIN2A be defined as
above. We can construct adversaries B1 and B2 and a distinguisher B′ such that Pr[WIN2A ∩
KeyCollA ∪ KeyForgeA] ≤ AdvCRS

NIZK,B′(λ) + AdvEUF-CMA
DSpriv,B1 (λ) + AdvExt

NIZK,B2(λ).

Proof. On a high-level, the adversary needs to prove a wrong claim which can either be done by
attacking the NIZK directly, or if the NIZK is extractable, then the attacker must attack the
underlying signature scheme in order to possess a valid witness.

We first make a first transition to a hybrid world EUF-CMAPCS
Hyb, which is identical to

EUF-CMAPCS except that we replace NIZK.Setup(1λ) by the CRS simulation algorithm E1
associated to the NIZK scheme. All above defined events are still defined in this hybrid experiment
Clearly, we can construct a distinguisher B′ such that

Pr[WIN2A ∩ KeyCollA ∪ KeyForgeA]

≤ PrHyb
[

WIN2A ∩ KeyCollA ∪ KeyForgeA

]
+ AdvCRS

NIZK,B′ ,

where PrHyb[.] makes explicit that this probability is taken w.r.t. experiment EUF-CMAPCS
Hyb.

This reduction is standard: in order to distinguish the two distributions, on input a sample
CRS, the distinguisher B′ emulates the experiment towards A. When A terminates, B′ outputs 1
if event WIN2A ∩ KeyCollA ∪ KeyForgeA occurs (which is computable by B′ that manages all
key-sets).

We build an adversary B1 that simulates EUF-CMAPCS
Hyb towards A when interacting with

the underlying EUF-CMADSpriv experiment. We show that if A outputs (pk, pk∗, m∗, σ∗) as event
WIN2 defines it can be used as a forgeability attack in the EUF-CMADSpriv experiment unless
a certain failure event Failext occurs in the reduction, which we then relate to the extraction
advantage.

In the first step, the adversary B1 receives vkpriv from the EUF-CMApriv experiment and the
policy F from the adversary A. In the next step, B1 generates CRS← E1(1λ), (vkpub, skpub)←
DSpub(1λ) and mskPE ← PE.Setup(1λ), sets mpk := (F, CRS, vkpub, vkpriv) and sends mpk to
the adversary A. The adversary B1 also initializes the lists QK = {} and QC = {} and the
counter i = 1.

For a query x to the key generation oracle QKeyGen, B1 samples a signature key pair
(vkP, skP)← DSP.Setup(1λ), generates the subpolicy and attribute vector (fx, x) = SubPol(F, x)
of F using the attribute set x, generates an encryption of the attribute vector x, ct ←
PE.Enc(mskPE, x) and generates a secret key for the subpolicy fx, skfx ← PE.KeyGen(mskPE, fx).
In the next step, the adversary B1 generates the signatures σpub ← DSpub.Sign(skpub, (vkP, ct))
and submits (vkP, skfx) to the sign oracle of the underlying EUF-CMADSpriv experiment to obtain
the signature σpriv. Then, B1 sets pk := (vkP, ct, σpub) and sk := (vkP, skP, skfx , σpriv), adds
(i, pk, sk, x) to QK, increases the counter i, i.e. i := i + 1, and sends pk to A. If at any point in
time, the conditions of event KeyCollA are fulfilled, B1 aborts.

Whenever A asks a corruption query j to the corruption oracle QCor, adversary B1 checks the
list QK to find (j, pk, sk, x). If no such entry exists, the adversary B1 outputs ⊥ to A, otherwise
it sends sk to A and adds (j, pk, sk, x) to QC.

If the adversary A asks a query (j, pkR := (vkR, ctR, σR
pub), m) to the sign oracle QSign, the

adversary B1 checks that (j, ·, ·, ·) ∈ QK and that pkR has been output by the key generation
oracle. If this is not the case the adversary B1 aborts. Otherwise, it continues with the execution
of Sign, using the key sk where (j, ·, sk, ·) ∈ QK. Finally, B1 sends the resulting signature σ,
containing π, as a reply to A.

When A terminates with (pk∗
S := (vk∗

P,S , ct∗
S , σ∗

pub,S), pk∗
R := (vk∗

P,R, ct∗
R, σ∗

pub,R), m∗, σ∗ :=
(π∗, σ′)) B1 first checks whether the conditions of event KeyForgeA hold, in which case it aborts.
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It also verifies that the conditions of event WIN2A holds and in case this is true, it first calls
(sk∗

pe,S , σ∗
priv,S)← E2(CRS, (vkpriv, vk∗

P,S , ct∗
R), π∗) and checks whether (x := (vkpriv, vk∗

P,S , ct∗
R), w :=

(sk∗
pe,S , σ∗

priv,S)) ∈ RZK (which is efficiently checkable) and if this is the case, it submits
((vk∗

P,S , sk∗
pe,S), σ∗

priv,S) as a forgery to the underlying experiment EUF-CMADSpriv . If (x, w) ̸∈ RZK
then abort with failure event Failext.

We observe that the emulation towards adversary A is perfect until the point in the execution
where B1 would abort. The only difference is the generation of the verification key vkpriv and the
corresponding signatures, which, in this setting, are all honestly generated by the underlying
challenger. Therefore, all defined events for experiment EUF-CMAPCS

Hyb are likewise defined in
this emulation and with respectively the same probabilities.

We now analyze the final forgery output of a run of B1 (which therefore does not abort). In this
case, we observe that all signature verification keys are unique and that all keys can be uniquely
associated to some attributes as all keys including the output pk∗

S and pk∗
R of A are in the key set

QK. Therefore, entry (i, pki = (vki, cti, ·), ski, xi) associates xi with vki and there are indices j, k
such that pkj = pk∗

S and pkk = pk∗
R. Let us fix these two indices. Furthermore, we can assume

that NIZK.Verify(CRS, (vkpriv, vkj , ctk), π∗) = 1 as otherwise, WIN2 would not hold. Additionally,
we know that that sk∗

pe,S is a correct witness, in particular, PE.Dec(sk∗
pe,S , ctk) = 1. However, we

know that F (xj , xk) = 0 and since the predicate-encryption scheme is perfectly correct and all
keys and ciphertexts are generated honestly by B, the entry (j, pkj , skj = (·, ·, skfxj

, σpriv,j), xj)
specifies skfxj

for which PE.Dec(skfxj
, ctk) = 0, and thus skfxj

̸= sk∗
pe,S . Since by uniqueness,

B1 has only submitted the query (vkj , skfxj
) to the signing oracle of EUF-CMADSpriv , the pair

((vk∗
P,S = vkj , sk∗

pe,S ̸= skfxj
), σ∗

priv,S) is a valid signature for a novel message and therefore, a
valid forgery. We obtain that the probability that B1 terminates with a valid forgery is therefore

AdvEUF-CMA
DSpriv,B1 = PrHyb

[
WIN2A ∩ Failext ∩ KeyCollA ∪ KeyForgeA

]
.

We obtain

PrHyb
[

WIN2A ∩ KeyCollA ∪ KeyForgeA

]
= AdvEUF-CMA

DSpriv,B1 +

PrHyb
[

WIN2A ∩ Failext ∩ KeyCollA ∪ KeyForgeA

]
︸ ︷︷ ︸

≤AdvExt
NIZK,B2

.

It is straightforward to obtain an adversary B2 (based on A) which has an advantage
AdvExt

NIZK,B2 = PrHyb
[

WIN2A ∩ Failext ∩ KeyCollA ∪ KeyForgeA

]
. In fact, the adversary B2 re-

ceives as input the CRS and executes the same instructions as B1, with the exceptions that it can
simply generate signatures for the scheme DSpriv by itself. In addition, when A terminates with
output (pk∗

S := (vk∗
P,S , ct∗

S , σ∗
pub,S), pk∗

R := (vk∗
P,R, ct∗

R, σ∗
pub,R), m∗, σ∗ := (π∗, σ′)), B2 behaves

as B1 but does not execute the final steps running the extractor, but instead just outputs
(x := (vkpriv, vk∗

P,S , ct∗
R), π∗) in case the conditions of WIN2 are satisfied (note that the extractor

is run as part of the experiment in Definition 2.7). As above, the emulation toward A is perfect
until the point B2 would abort. Therefore, the advantage is as claimed, because the event of
interest is that the extractor E2 is called precisely on the accepting proof string π∗ output by A
(which is accepting for statement x as defined above because of event WIN2) but the extraction
produces a witness w such that (x, w) ̸∈ RZK. The statement follows. ⊓⊔

4.4 Indistinguishability-Based Attribute Hiding

We next prove that our PCS scheme is attribute hiding.
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Theorem 4.7. Let PE = (PE.Setup, PE.KeyGen, PE.Enc, PE.Dec) be a predicate encryption
scheme, let NIZK = (NIZK.Setup, NIZK.Prove, NIZK.Verify) be a NIZK proof system (for the
relation RZK of Fig. 9) and let DSpub = (DSpub.Setup, DSpub.Sign, DSpub.Verify) be a strongly
unforgeable signature scheme, then the construction PCS = (Setup, KeyGen, Enc, Dec), defined
in Figure 8, is attribute hiding. Namely, for any valid PPT adversary A, there exist PPT
adversaries B,B′ and B′′, such that:

AdvAH
PCS,A(λ) ≤ 2 · AdvSUF-CMA

DSpub,B (λ) + 2 · AdvZK
NIZK,B′(λ) + AdvAH

PE,B′′(λ).

Proof. To prove this statement, we use a hybrid argument where the games are defined as
follows:

Game G0: This game is defined as AHPCS
0 (1λ,A).

Game G1: In this game, we change the behavior of the sign oracle QSign and define a modified
sign oracle QSign′. The oracle QSign′ is defined as QSign with the difference that it only
answers queries for receiver keys that have previously been output by the key generation
oracle QKeyGenLR0, i.e. for a query (i, pk′, m) with (i, ·, ·, ·, ·) /∈ QK or (·, pk′, ·, ·, ·) /∈ QK the
sign oracle QSign′ outputs ⊥. The transition from G0 to G1 is justified by the same reasoning
as we have seen in Lemma 4.3 (bounding event KeyForgeA). More precisely, in Lemma 4.8,
we exhibit a PPT adversary B0 such that:

|Pr[G0(λ,A) = 1]− Pr[G1(λ,A) = 1]| ≤ AdvSUF-CMA
DSpub,B0 (λ).

Game G2: In this game, we change from an honestly generated CRS and honestly generated
proofs to a simulated CRS and simulated proofs. That is, upon a PCS signing query (j, pkR, m),
we find the attributes xj,0 and xk,0 s.t. F (xj,0, xk,0) = 1 (xk,0 is associated with the key-
generation event that produced pkR) and then we simulate the proof using the NIZK simulator
on input the trapdoor and (vkpriv, vkj , ctR) (note that all values are defined since by definition
of this hybrid, all keys for which a signature is returned, have been generated using the
key-generation oracle. In any other case (in particular associated attributes do not satisfy
the policy), we output ⊥. The transition from G1 to G2 is justified by the zero-knowledge
property of NIZK. Namely, in Lemma 4.9, we exhibit a PPT adversary B1 such that:

|Pr[G0(λ,A) = 1]− Pr[G1(λ,A) = 1]| ≤ AdvZK
NIZK,B1(λ).

Game G3: In this game, we change the attributes used for the generation of the challenge public
keys pki from xi,0 to xi,1 for all i. Similarly, upon PCS signing, we now find the attributes
xj,1 and xk,1 s.t. F (xj,1, xk,1) = 1 before simulating the proofs as above. The transition from
G2 to G3 is justified by the attribute-hiding property of PE. Namely, in Lemma 4.10, we
exhibit a PPT adversary B2 such that:

|Pr[G2(λ,A) = 1]− Pr[G3(λ,A) = 1]| ≤ AdvAH
PE,B2(λ).

Game G4: In this game, we change back from a simulated CRS and simulated proofs π to an
honestly generated CRS and honestly generated proofs π. Symmetrical to Lemma 4.9, this
transition is justified by the zero-knowledge property of NIZK. Namely, we can exhibit a
PPT adversary B3 such that:

|Pr[G3(λ,A) = 1]− Pr[G4(λ,A) = 1]| ≤ AdvZK
NIZK,B3(λ).

Game G5: This game is the AHPCS
1 (1λ,A) game. In this game, we change the behavior of the

signing oracle back from QSign′ to QSign. As in Lemma 4.8, this transition is justified again
by the inability to forge public keys, i.e., we can exhibit a PPT adversary B4 such that:

|Pr[G4(λ,A) = 1]− Pr[G5(λ,A) = 1]| ≤ AdvSUF-CMA
DSpub,B4 (λ).
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From the definition of the games it is clear that

AdvAH
PCS,A(1λ) = |Pr[AHPCS

0 (1λ,A) = 1]− Pr[AHPCS
1 (1λ,A) = 1]|

= |Pr[G0(λ,A) = 1]− Pr[G5(λ,A) = 1]|,

and hence the theorem follows. ⊓⊔

Lemma 4.8 (Transition from G0 to G1). For any valid PPT adversary A, there exists a
PPT adversary B0 such that

|Pr[G0(λ,A) = 1]− Pr[G1(λ,A) = 1]| ≤ AdvSUF-CMA
DSpub,B0 (λ).

Proof (Sketch). As described above, the difference between the games G0 and G1 is that in the
game G0 the adversary A has access to the sign oracle QSign (defined in Section 3.1) and in the
game G1 the adversary A has access to the sign oracle QSign′, which we informally described
above and which is formally defined as:

QSign′(i, pk′, m): On input a (sender) index i, a (receiver) public key pk′, and a message m, if
QK contains an entry (i, pk, sk, x0, x1) ∈ QK and an entry (j, pk′, sk′, x′

0, x′
1) ∈ QK , then

return σ ← PCS.Sign(mpk, sk, pk′, m) and add (i, pk, pk′, m, σ) to QS. Otherwise, return ⊥.

Compared to the oracle QSign′, the signing oracle QSign does not require the receiver key
pk′ to have been previously output by the challenger, i.e. (·, pk′, ·, ·, ·) /∈ QK, to obtain as a reply
a valid signature σ ̸= ⊥. This is not possible for the oracle QSign′ where every query using a
receiver key pk′ that has not been generated by the challenger, i.e. (·, pk′, ·, ·, ·) /∈ QK, results in
an invalid signature σ = ⊥.

Therefore, to show that the games G0 and G1 are indistinguishable, it suffices to show that
the probability that the adversary queries the signing oracle QSign using a receiver key pk′ that
has not been previously generated by the challenger, i.e. (·, pk′, ·, ·, ·) /∈ QK, and that leads to a
valid signature σ ̸= ⊥ is negligible. We denote this as the event SignForgeA.

For the event SignForgeA to occur, the adversary A needs to generate a receiver key that
verifies with respect to the signature scheme DSpub, i.e., it needs to generate a key pk′ :=
(vk′, ct′, σ′

pub) such that DSpub.Verify(vkpub, (vk′, ct′), σ′
pub) = 1 (note that an honest signer issues

a signature string only if the validity of a receiver public key is successfully verified). This
means that adversary A must generate a key forgery as captured by the event KeyForgeA in
the proof of Theorem 4.2, and which can be defined and analyzed analogously here (with
just minor syntactical changes).4 Therefore, the event SignForgeA is bounded by KeyForge, i.e.
Pr[SignForgeA] ≤ Pr[KeyForgeA], and the analysis of event KeyForgeA follows the same reasoning
as in Lemma 4.3 to conclude that Pr[KeyForgeA] ≤ AdvSUF-CMA

DSpub,B0 (λ). This results in the fact that
Pr[SignForgeA] ≤ AdvSUF-CMA

DSpub,B0 (λ), which proves the lemma. ⊓⊔

Lemma 4.9 (Transition from G1 to G2). For any valid PPT adversary A, there exists a
PPT adversary B1 such that

|Pr[G1(λ,A) = 1]− Pr[G2(λ,A) = 1]| ≤ AdvZK
NIZK,B1(λ).

4 The event is essentially identical with only syntactical adjustments since the random experiment changes. The
precise definition would be that the adversary A terminates and there exists an entry (·, pk∗

S , pk∗
R, m∗, σ∗) ∈ QS

for which the following condition holds: Verify(mpk, pk∗
S , pk∗

R, m∗, σ∗) = 1∧ ((·, pk∗
S , ·, ·, ·) /∈ QK∨ (·, pk∗

R, ·, ·, ·) /∈
QK). The reduction works as in the proof of Lemma 4.3, i.e., adversary B0 emulates the game and uses the
signing oracle of DSpub when issuing PCS public keys. When adversary A terminates the above event implies a
forgery.
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Proof. We build an adversary B1 that simulates G1+β towards A when interacting with the
underlying ZKNIZK

β experiment.
In the beginning of the reduction, B1 receives F from adversary A and CRS from the

ZKNIZK
β experiment. It generates two signature key pairs (vkpub, skpub) ← DSpub.Setup(1λ)

and (vkpriv, skpriv) ← DSpriv.Setup(1λ), a predicate encryption master secret key mskPE ←
PE.Setup(1λ), sets (mpk, msk) = ((F, CRS, vkpub, vkpriv), (mskPE, skpub, skpriv)) and gives mpk to
the adversary A. The adversary B1 also initializes the lists QK = {} and QC = {} and the
counter i = 1.

For every left-or-right key generation query (x0, x1) asked by A, B1 generates (pk, sk) ←
KeyGen(msk, x0) and sends pk as a reply to A. Additionally, it adds (i, pk, sk, x0, x1) to QK and
increases the counter i, i.e. i := i + 1.

Whenever A asks a corruption query using the index j to the corruption oracle QCor, the
adversary B1 checks the list QK to find (j, pk, sk, x0, x1). If no such entry exists, the adversary
B1 outputs ⊥ to A, otherwise it sends sk to A and adds (j, pk, sk, x0, x1) to QC.5

For every sign query (j, pkR, m) to QSign′ asked by A, B1 checks the list QK to find
(j, pk, sk, x0

S , x1
S) and (·, pkR, ·, x0

R, x1
R), parses pkR = (vkR, ctR, σpub) and sk = (vkS , skP, skfx ,

σpriv). If no entry (j, pk, sk, x0
S , x1

S) or (·, pkR, ·, x0
R, x1

R) is contained in the listQK or if F (x0
S , x0

R) =
0, then the adversary B1 outputs ⊥.6 Otherwise, B1 submits ((vkpriv, vkS , ctR), (skfx , σpriv))
to the prove oracle which replies with π. The adversary B1 finally produces the signature
σ′ ← DSP.Sign(skP, (m, pkR, π)) and returns σ := (π, σ′) to A.

Finally, the adversary B1 outputs the same bit β′ returned by A. To conclude the proof, we
observe that our emulation is perfect. This follows from the fact that the only difference in the
two games is the generation of the CRS and the proofs contained in the signatures, which is
done by the underlying challenger. In the case that the challenger outputs an honestly generated
CRS and honestly generated proofs, the adversary B1 is simulating the game G1 and in the
case that the challenger simulates the CRS and the proofs, the adversary B1 is simulating the
game G2. Note that by the perfect correctness of the predicate encryption scheme, we know
that the challenger always replies, i.e., we have that PE.Dec(skfx , ctR) = F (x0

S , x0
R) (since all

PCS keys can be assumed to be honestly generated in this hybrid experiment), and thus we are
in fact submitting a valid witness and if the policy is not satisfied, returning ⊥ is the correct
behavior. This covers the simulation of the game G1+β and leads to the advantage mentioned in
the lemma. ⊓⊔

Lemma 4.10 (Transition from G2 to G3). For any valid PPT adversary A, there exists a
PPT adversary B2 such that

|Pr[G2(λ,A) = 1]− Pr[G3(λ,A) = 1]| ≤ AdvAH
PE,B2(λ).

Proof. We build an adversary B2 that simulates G1+β to A when interacting with the underlying
AHPE

β experiment.
In the beginning of the reduction, B2 receives F from the adversary A. It simulates a CRS,

i.e., (CRS, τ)← S1(1λ), generates two signature key pairs (vkpub, skpub)← DSpub.Setup(1λ) and
(vkpriv, skpriv) ← DSpriv.Setup(1λ), sets mpk := (F, CRS, vkpub, vkpriv) and sends mpk to A. The
adversary B2 also initializes the lists QK = {} and QC = {} and the counter i = 1.

For every left-or-right key generation query (x0, x1) asked by A, B2 checks that F (x′
0, x0) =

F (x′
1, x1) for all (·, ·, ·, x′

0, x′
1) ∈ QC. If this check is unsuccessful, the adversary B2 outputs a ran-

dom bit α← {0, 1} as its guess and aborts.7 If the check is successful, the adversary B2 computes
5 We note in passing that for a valid PCS adversary, it must hold that x0 = x1.
6 We again note in passing that for a valid adversary, it must hold that F (x0

S , x0
R) = F (x1

S , x1
R).

7 Looking ahead, the output of a random bit happens in cases where the adversary is not valid (cf. Definition 3.3)
and thus we do not lose any advantage.
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(fx0 , x0) = SubPol(F, x0) and (fx1 , x1) = SubPol(F, x1) and submits the left-or-right challenge
query (x0, x1) to its own oracle to receive ct as a reply. In the next step, B2 samples a digital
signature key pair (vkP, skP)← DSP.Setup(1λ), computes σpub ← DSpub.Sign(skpub, (vkP, ct)) and
outputs pk = (vkP, ct, σpub) to A. Additionally, B2 adds (i, pk, skP, x0, x1) to QK and increases
the counter i, i.e. i := i + 1.8

Whenever A asks a corruption query j, B2 checks the list QK to find (j, pk, skP, x0, x1). If
no such entry exists, the adversary B2 returns ⊥. If it holds that x0 ̸= x1 or if F (x0, x′

0) ̸=
F (x1, x′

1) for any (·, ·, ·, x′
0, x′

1) ∈ QK, then the adversary B2 outputs a random bit α← {0, 1}
as its guess and aborts (again, this only occurs for an invalid A). Otherwise, B2 computes
(fx0 , x0) = SubPol(F, x0), submits the key generation query fx0 to its challenger and receives
as a reply skfx0

. In the next step, B2 computes σpriv ← DSpriv.Sign(skpriv, (vkP, skfx0
)) and

outputs sk = (vkP, skP, skfx0
, σpriv) to A, where skP is the signature key generated during the

key generation oracle query contained in QK. Additionally, B2 adds (j, pk, sk, x0, x1) to QC.
For every sign query (j, pkR, m) to QSign′ asked by A, B2 checks the list QK to find

(j, pk, skP, x0, x1) and (·, pkR, ·, ·). If no entry (j, pk, skP, x0, x1) or (·, pkR, ·, ·) is contained in
the list QK, then the adversary B2 outputs ⊥. Otherwise, B2 checks, in the next step, that
the attributes associated with the public keys pkS and pkR fulfill the policy, i.e. it checks that
F (x0

S , x0
R) = 1 and F (x1

S , x1
R) = 1, with (j, ·, ·, x0

S , x1
S) ∈ QK and (·, pkR, ·, x0

R, x1
R) ∈ QK. If this

is the case, the adversary B2 simulates the proof π for the language L (defined in Fig. 9),9
generates the signature σ′ ← DSP.Sign(skP, (m, pkR, π)) and outputs σ = (π, σ′) to A. If the
attributes associated with the public keys pkS and pkR do not fulfill the policy, i.e. F (x0

S , x0
R) = 0

or F (x1
S , x1

R) = 0, the adversary B2 outputs ⊥ to A. In the case that the policy evaluations differ,
i.e. it holds that either F (x0

S , x0
R) = 0 and F (x1

S , x1
R) = 1 or F (x0

S , x0
R) = 1 and F (x1

S , x1
R) = 0,

B2 aborts and outputting a random bit α← {0, 1} as its guess to the underlying challenger (the
adversary A is invalid).

As the last step, B2 outputs the same bit β′ returned by A.
We need to argue that the adversary B2 is a valid adversary with respect to the AHPE

β

experiment if the adversary A fulfills all the checks described above, i.e. is a valid adversary in
the G2+β (AHPCS

β ) game. One of the validity requirements above (and in Definition 3.3) that
A needs to fulfill is that for every x where x := x0 = x1 with (·, ·, ·, x0, x1) ∈ QC it needs to
hold that F (x, x0) = F (x, x1) for all the challenge queries (x0, x1). This results in the fact
that fx(x0) = fx(x1) with (fx, ·) = SubPol(F, x) for all x and with (·, xb) = SubPol(F, xb)
for b ∈ {0, 1}, where (x0, x1) are all the challenge queries. This matches exactly the validity
requirements asked for B2 in the AHPE

β experiment. Therefore, it follows that the adversary B2
is a valid adversary with respect to the AHPE

β experiment and does not abort if the adversary A
is a valid adversary in the game G2+β (AHPCS

β ).
To conclude the proof, we observe that the difference in the two games is the generation

of the challenge public keys pk, which either consists of a ciphertext encrypting the attribute
set x0 or the attribute set x1. The computation of the ciphertexts is done by the underlying
challenger of the attribute-hiding game. Together with the analysis above, it follows that, for
a valid adversary A, the game G2+β is simulated towards A when the challenger encrypts the
attribute set xβ for β ∈ {0, 1}. This concludes the simulation of the game G2+β and the lemma
follows. ⊓⊔

8 Note that it is vital not to obtain the PE functional keys of honest parties. Since we simulate proofs, we also do
not need them. The only information we need to remember in this step is the key skP to sign the final message.

9 The check regarding the associated policies together with the correctness of the PE scheme ensure that the
statement for which we simulate the proof is in the language L (and thus, we do not need to rely on additional
properties of the NIZK such as simulation soundness).
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4.5 Efficient Instantiations based on Inner-Product PE

In this section, we show that our generic PCS scheme can be instantiated efficiently for certain
policies such as the ones mentioned in the introduction. Since the most efficient predicate-
only PE schemes are known for the inner-product functionality class in the standard model,
we focus on this instantiation and briefly recall the associated realizable policies established
in [KSW08,BW07]. The two functionality classes we recall are:

Inner-Product Functionality. The functionality class is defined as F IP
N,k = {F IP

N,k : Zk
N × Zk

N →
{0, 1}} by the equation

F IP
N,k(x, y) =

{
1 if ⟨x, y⟩ = 0 mod N,

0 if ⟨x, y⟩ ≠ 0 mod N.

Hidden-Vector Functionality. Define Σ∗ = Σ ∪ {∗} with Σ = {0, 1}. The functionality class is
defined as FHV

k = {F HV
k : Σk

∗ ×Σk → {0, 1}} by the equation

F HV
k (x, y) =

{
1 if ∀i ∈ [k] (xi = yi or xi = ∗),
0 otherwise.

In the following, we call a predicate encryption scheme that implements the IP functionality
inner-product encryption (IPE) and refer to a predicate encryption scheme that implements the
HV functionality as hidden-vector encryption (HVE). Note that the predicates in the associated
PE schemes correspond to the functions F IP

N,k(x, ·) and F HV
k (x, ·) parameterized by the vector x

corresponding to the first argument of the above functions, respectively. As shown in [KSW08],
HVE with dimension ℓ can be realized generically based on IPE of dimension 2ℓ.

Instantiating the generic scheme. The elements of our generic construction are digital
signatures, predicate encryption, and NIZK. For inner-product predicates there exist efficient
PE schemes for the assumed indistinguishability-based security [OT12b, OT12a] (and also
for a certain type of simulation-based security [DOT18]). For the signature scheme used by
the authority to generate σpub and the signature scheme used by the client, we can use BLS
signatures [BLS01] (or BB signatures [BB04] to avoid switching to an idealized model). For the
signature scheme used by the authority to generate σpriv, we however have to pay attention,
as it is used as part of the witness in a NIZK computation. The only source of practical
inefficiency comes from the additional usage of the NIZK proof for the relation RZK(x, w)↔
DSpriv.Verify(vkpriv, (vkS , skfx), σpriv) ∧ Dec(skfx , ctR) = 1, as it combines a generic signature
verification with a proof of decryption of the PE scheme. Note that there are two signature
schemes involved: the signature scheme with which the authority produces σpriv is the crucial
one in this section. For the “inner signature” (the one used by a party to sign the final message)
it will only be convenient to assume that vkS is encoded as a group element of some cyclic group
(which is the case for the variants discussed above). Note that the NIZK relation does not involve
signatures of the inner scheme, just the representation of the public key as part of the statement.

To avoid the potential source of inefficiency from the NIZK we can use predicate encryption
and signature schemes that align well with the use of the Groth-Sahai framework [GS08,EG14]
to verify the relation RZK. We achieve such a combination by using the (pairing-based) structure-
preserving signature (SPS) scheme from Kiltz et al. [KPW15] in combination with the (pairing-
based) inner-product PE scheme from Okamoto et al. [OT12a] that yields pairing product
equations to verify relation RZK.
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In a nutshell, pairing groups are represented as a tuple (G1,G2,GT , q, g1, g2, e) where
G1,G2,GT are cyclic groups of prime order q, g1 and g2 are generators of G1 and G2, re-
spectively. Finally, e : G1 ×G2 7→ GT is an efficiently computable non-degenerate bilinear map
and gT := e(g1, g2) is a generator of the target group. Groth-Sahai proofs implement a NIZK for
a collection of pairing product equations of the form

s∏
i=1

e(xi, Ai) ·
s′∏

i=1
e(Bi, yi) ·

s′∏
i=1

s∏
j=1

e(xi, yi)γi,j = tT

where Ai ∈ G1, Bi ∈ G2, tT ∈ GT and γi,j ∈ Zq are constants (and part of the statement to
be proven), and xi ∈ G1 as well as yi ∈ G2 are the private witness variables (and s, s′ are
integers). A priori, GS proofs for pairing product equations are only witness-indistinguishable
unless certain additional constraints are met [GS08]. But even if those conditions are not met,
efficient transformations can turn GS NIWI into full NIZK proofs (with extractability for group
elements) with low overhead as shown in [CKLM12a] by creating an OR-Proof system (allowing a
simulator to always find a witness) and using the controlled malleability of the GS proof systems.
We refer to [CKLM12b, Theorem 3.2 and Appendix B] for the full details. As mentioned above,
we instantiate the paring-based primitives from [OT12a] (encryption) and [KPW15] (signature):

– In the PE scheme of [OT12a], ciphertexts are represented as pairs ct = (c1, c2), where c2 ∈ GT

is the blinded plaintext m and has the form c2 = m · gζ (for a random ζ chosen during
encryption) and c1 is an N -vector c1 = (A1, . . . AN ) with Ai ∈ G1 (for an integer parameter
N of the scheme). The decryption key for functionality fx is represented by an N -vector
skfx = (k1, . . . , kN ) with ki ∈ G2. The decryption operation is m′ ← c2/

∏N
i=1 e(Ai, ki). Note

that to turn the scheme into a predicate-only PE scheme, we can fix m = IGT
and do not

need the extra blinding of the ciphertext (fixing ζ := 1) and hence the decryption operation
satisfies the equation c2 = gT = e(g1, g2) =

∏N
i=1 e(Ai, ki).

– In the SPS scheme of [KPW15], a signature string is a tuple σ = (s1, s2, s3, s4) with s4 ∈ G2,
and si ∈ G1×(k+1)

1 , i ∈ {1, 2, 3} for an integer parameter k. The public key of this system
consists of four matrices Mi, where M1, M2 ∈ Gk+1×k

2 , M3 ∈ Gn+1×k
2 , and M4 ∈ Gk+1×k

2
(where n is the parameter specifying the message length). Verifying a signature σ with respect
to this public key amounts to the following collection of 2k + 1 pairing product equations,
where a message x ∈ Gn

1 is encoded as m := (g1, x1, . . . , xn): For each j ∈ [k] we check that

k+1∏
i=1

e((s1)i, (M4)j,i) =
k+1∏
i=1

e((m)i, (M3)j,i) ·
k+1∏
i=1

e((s2)i, (M1)j,i) ·
k+1∏
i=1

e((s3)i, (M2)j,i)

holds, as well as e((s2)j , s4) = e((s3)j , g2) is satisfied for each j ∈ [k + 1].

Therefore, the relation in Fig. 9 can be expressed as proving a satisfying assignment of the
above pairing product equations, where the (private) decryption key and the private signature
are the private witness variables of the above equations, whereas the ciphertext and public keys
can be treated as the constants (and hence part of the statement).

Instantiating logical formulas. By applying the techniques of [KSW08] in our setting, we
can implement various policies expressed as logical formulas. While all previous techniques
are applicable to our setting, we only dive into simple reductions for completeness, as the
core principle is the same for any technique mapping a logical formula to inner-products or
hidden-vector functionalities.
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IPE and threshold clauses. Assume a finite list of variables Pi, i = 1 . . . q, where each variable can
take on values pi from a finite set P . Assume a policy F is expressed as a combination of sender
and receiver properties. We assume that the policy is expressed as a list of requirements, each
requirement being a clause, and where one requires that exactly d out of k of the requirements
(clauses) must be satisfied (e.g., d = 1 as in our introductory example).

That is, we have a set of clauses {Ki}i∈[k], each with ni sender properties and mi receiver
properties of the form

Ki = (P (s)
idx(i,1) = pi,1∧· · ·∧P

(s)
idx(i,ni) = pi,ni∧P

(r)
idx(i,ni+1) = pi,ni+1∧· · ·∧P

(r)
idx(i,ni+mi) = pi,ni+mi),

which we call a conjunctive clause. Here, P
(s)
idx(i,j) resp. P

(r)
idx(i,j) denote variables Ph indexed

via an indexing function h = idx(i, j) (which is induced by such a finite policy). Note that the
variables constrain the sender (superscript (s)) and the receiver (superscript (r)).

Our goal is to map the policy F to the functionality class F IP
k+1. In particular, we must

show how the authority performs the mapping (fx, x)← SubPol(F, (x1, . . . , xn)) in the scheme
of Fig. 8, where x1, . . . , xn is the assignment of attributes to each Pi of a user Alice (note that
we omit treating null values for simplicity). The authority performs the following computation:

1. The authority precomputes which clauses Alice cannot satisfy anymore, and which ones she
potentially can satisfy with a matching receiver. The authority defines for all i ∈ [k]:

Xi :=


1 if

ni∧
j=1

(xidx(i,j) = pi,j) = 1,

0 otherwise.

The first part of the output of the subpolicy algorithm SubPol is fx(·) := F IP
N,k+1((X1, . . . , Xk, 1), ·),

where we assume N > k.
2. The authority precomputes which clauses Alice cannot satisfy if she is the receiver, and

which ones she potentially can satisfy with a matching sender. The authority defines:

Yi :=


1 if

mi∧
j=1

(xidx(i,ni+j) = pi,ni+j) = 1,

0 otherwise,

for all i ∈ [k]. The second part of the output of the subpolicy algorithm SubPol is x :=
(Y1, . . . , Yk,−d).

We observe that if a sender obtains a secret key generated based on the vector (X1, . . . , Xk, 1)
and signs (as shown in Fig. 8) a message for a receiver public key that contains the ciphertext
generated based on vector (Y1, . . . , Yk,−d) as shown above, we have

⟨(X1, . . . , Xk, 1), (Y1, . . . , Yk,−d)⟩ = 0 ⇐⇒ ⟨(X1, . . . , Xk), (Y1, . . . Yk)⟩ = d

because N > k (which is assumed to avoid wraparound complications). Since each of the products
Xi · Yi signals the joint fulfillment of the original clause Ki (thanks to the precomputation step),
this means that exactly d clauses are jointly satisfied, which corresponds to the policy F .

We note that if the policy F has disjunctive clauses instead, that is for each i ∈ [k]

Ki = (P (s)
idx(i,1) = pi,1∨· · ·∨P

(s)
idx(i,ni) = pi,ni∨P

(r)
idx(i,ni+1) = pi,ni+1∨· · ·∨P

(r)
idx(i,ni+mi) = pi,ni+mi),
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(where for d = k we obtain CNF formulas) an analogous reasoning yields that the reduction to
inner products for dimension 2k + 1 can be achieved by having the authority follow the above
steps but define for all i ∈ [k], X2i−1 := 1 and

X2i :=


1 if

ni∨
j=1

(xidx(i,j) = pi,j) = 1,

0 otherwise,

as well as for all i ∈ [k]

Y2i−1 :=


1, if

mi∨
j=1

(xidx(i,ni+j) = pi,ni+j) = 1

0, otherwise
, Y2i :=


0, if

mi∨
j=1

(xidx(i,ni+j) = pi,ni+j)

1, otherwise.
.

The authority finally computes fx(·) := F IP
N,2k+1((X1, . . . , X2k, 1), ·) and x := (Y1, . . . , Y2k,−d)

(and generates the associated keys and ciphertext as prescribed in Fig. 8). The above is seen to
represent the policy F by observing that each clause i is represented by two variables such that
the sum X2i−1 · Y2i−1 + X2i · Y2i equals 0 if no party satisfies the clause, and 1 in any other case.

HVE and CNF formulas. HVE opens up the space for many policies and is itself realizable from
the inner product functionality [KSW08,BW07]. For example, for CNF formulas, i.e., as above
with d = k, where k is the number of disjunctive clauses, the reduction to HVE for dimension k
is straightforward: The authority defines

Xi =


∗ if

ni∨
j=1

(xidx(i,j) = pi,j) = 1,

1 otherwise.

and

Yi =


1 if

mi∨
j=1

(xidx(i,ni+j) = pi,ni+j) = 1,

0 otherwise.

The the authority computes fx(·) := F HV
k ((X1, . . . , Xk), ·) and x := (Y1, . . . , Yk) and generates

the associated keys and ciphertext as prescribed in Fig. 8.
This accurately represents the CNF policy F : A sender can only decrypt the ciphertext in

the public key of a receiver if for each clause i, either the sender already satisfies that clause
and thus the resulting vector has the wildcard symbol ∗ at this position, or the receiver has
a satisfying assignment and hence its vector must be equal to 1 at this position to match the
sender’s value.

5 Universal Composability and SIM-Based PCS

Simulation-based security has the advantage that, instead of arguing and excluding trivial
attacks, we follow the real/ideal world paradigm, where in the ideal-world, the leakage to the
simulator and the unforgeability properties are captured in an explicit fashion.

The ideal PCS functionality. In this section, we cast policy compliant signature as an enhanced
signature functionality following [Can03,BH04] that incorporates all of our declared goals for this
primitive. The difference to a standard signature functionality are at a high-level the following:
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– There is a distinct trusted party, denoted M that is responsible for the setup. M is responsible
to generate the signing keys for parties with respect to the attributes they possess. Note
that at this level of abstraction, we do not discuss how the authority decides to assign an
attribute to a party. This will be managed by the higher-level protocols. The attributes of
honest parties do not leak to the adversary, which captures that the obtained public key
does not leak any attributes. However, the adversary learns by definition of the signature
algorithm, whether the corrupted parties are allowed to send messages to the new honest
parties.

– On signing operations, only valid signatures are recorded. That is, if party Pi with attributes
xPi signs a message m for party Pj with attributes xPj , then the record (m, σ, vM , vPi , vPj , 1)
is only stored if F (xPi , xPj ) = 1, where vM denotes the public parameter and vPi , vPj are
the unique public keys associated with parties Pi and Pj , respectively.

– On verification queries of the form (verify, sid, m, σ, v′
M , v′

A, v′
B), the functionality ensures

aside of completeness and unforgeability w.r.t. honest signers also that no valid signature
can be generated for any combination of v′

A, v′
B (and with respect to public parameter vM )

unless the public keys are associated to attributes x′
A and x′

B such that F (x′
A, x′

B) = 1.
– On top of unforgeability, privacy guarantees that the adversary learns at most the policy

evaluation F (xi, xj) (associated with the respective keys) for every signing query. For
corrupted parties, the adversary learns their attributes x̃ (since it learns all inputs and
outputs by that party upon corruption by default) as well as all evaluations F (x̃, xj).

The functionality is specified below:

Functionality FuncM,F
PolSig

The functionality is parameterized by the distinct identity M of the credential manager and the class of
supported policies F . The functionality interacts with M , party set P = {P1, . . . , Pn} (where M ̸∈ P), and
the adversary S.
Initialize F ← ⊥, xPi , vPi ← ⊥ for all Pi ∈ P \ {M} and vM ← ⊥. The functionality maintains the party set
I := {Pi ∈ P | vPi ̸= ⊥} of initialized parties (and we omit the explicit inclusion of parties for simplicity).
Policy Initialization. Upon input (policy-gen, sid, F ) from party M do the following: if vM ̸= ⊥ or F ̸∈ F ,
ignore the request; otherwise, provide (policy-gen, sid, F ) to S. Upon receiving (policy-gen, sid, v) from S,
verify that no entry (·, ·, v, ·, ·, 1) is recorded and ignore the reply if there is such an entry. Else, set vM ← v
and output (policy-gen, sid, v) to M .
Key Generation. Upon input (key-gen, sid, P, x) from party M , where P ∈ P \ I, do the following: ignore
the request if vM = ⊥; otherwise define xP ← x and compute:

1. Provide the leakage information {(P̂ , P ) 7→ F (xP̂ , xP ) | for all corrupted P̂ ∈ I}} to S.
2. Provide (key-gen, sid, P ) to S. Upon receiving (verification-key, sid, P, v) from S, verify that for all

Pj ∈ I vPj ̸= v, and if this is the case, set vP ← v and output (verification-key, sid, x, v) to P . If v is
not unique, ignore the reply from S.

Signing. On input (sign, sid, m, v) from party P ∈ I:

– If v = vPj for some Pj ∈ I and F (xP , xPj ) = 1 then provide (sign, sid, m, P, v, 1) to S. Upon receiv-
ing (signature, sid, m, P, v, σ) from S, verify that no entry (m, σ, vM , vP , vPj , 0) is stored and ignore
the reply if there is such an entry. Else, output (signature, sid, m, v, σ) to P , and store the entry
(m, σ, vM , vP , vPj , 1).

– In any other case, provide (sign, sid, m, P, v, 0) to S and when receiving (signature, sid, m, s) from S,
output (signature, sid, m, v, s) to P . (This case guarantees that such messages are not considered as
signed.)

Verification. Upon input (verify, sid, m, σ, v′
M , v′

A, v′
B) from any party P , hand

(verify, sid, m, σ, v′
M , v′

A, v′
B) to S. Upon receiving (verified, sid, m, v′

M , v′
A, v′

B , ϕ) from S do:
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1. If v′
M = vM , v′

A = vPi , v′
B = vPj for some Pi, Pj ∈ I and the entry (m, σ, vM , vPi , vPj , 1) is recorded,

then set f = 1. (Condition 1 guarantees completeness: If the verification keys are the registered ones and
σ is a legitimately generated signature for m, then the verification succeeds.)

2. Else, if v′
M = vM , v′

A = vPi , v′
B = vPj for some Pi, Pj ∈ I and Pi is not corrupted and no entry

(m, σ′, vM , vPi , vPj , 1) for any σ′ is recorded, then set f = 0 and record the entry (m, σ, vM , vPi , vPj , 0).
(Condition 2 guarantees unforgeability: For any combination of generated public keys, the signer is not
corrupted, and never signed m, then the verification fails.)

3. Else, if v′
M = vM , v′

A = vPi , v′
B = vPj for some Pi, Pj ∈ I, then set f = 0 in case F (xPi , xPj ) = 0, and

otherwise set f ← ϕ. Record the entry (m, σ, vM , vPi , vPj , f). (Condition 3 guarantees policy compliance
of dishonest signers: For any combination of generated public keys, even if everyone is corrupted the
verification must fail if the policy is not satisfied.)

4. Else, if v′
M = vM but we have that ∀Pi ∈ I : v′

A ≠ vPi or ∀Pi ∈ I : v′
B ̸= vPi , then set f ← 0 and record

the entry (m, σ, vM , v′
A, v′

B , 0). (Condition 4 ensures that no valid signatures can exist w.r.t. public keys
not issued by the credential manager.)

5. Else, if there is an entry (m, σ, v′
M , v′

A, v′
B , f ′) stored, then let f = f ′ . (Condition 5 guarantees consistency:

All verification requests with identical parameters will result in the same answer.)
6. Else, let f = ϕ and record the entry (m, σ, v′

M , v′
A, v′

B , ϕ). (If no condition applies, then let the adversary
decide.)

7. Finally, output (verified, sid, m, f) to P .

Corruption Mode. The party M is not corruptible. For all other parties Pi, the functionality supports the
standard corruption mode [Can20], that is, upon input (corrupt, Pi) on the backdoor tape, send all previous
inputs to S and hand over the control of Pi’s input and output tapes to S and providing the adversary all
capabilities that an honest party has. Additionally, whenever a party Pi gets corrupted, provide the leakage
information {(Pi, Pj) 7→ F (xPi , xPj ) |Pj ∈ I}.

Blueprint usage of the scheme in UC. As with signatures [Can03, BH04], a PCS scheme
PCS = (Setup, KeyGen, Sign, Verify) can be mapped in a straightforward way to a UC protocol
tailored to realize the low-level functionality FuncM,F

PolSig (low level in the sense that it exports the
interface without much abstraction). The main difference to an ordinary signature scheme is
the presence of a trusted party assisting in the key generation step. That is, we have a trusted
(credential) manager M incorruptible by definition10, where we assume secure point-to-point
channels between M and each Pi. The protocol πPCS

M can be specified as follows:

– Party M :
• On input (policy-gen, sid, F ), run Setup(1λ, F ) and generate the output (policy-gen,

sid, mpk). Store (mpk, msk) internally.
• On input (key-gen, sid, P, x), run KeyGen(msk, x) and send the message (x, mpk, (pk, sk))

to party P over a secure channel.
– Party Pi:
• Upon receiving (for the first time) the message (x, mpk, (pk, sk)) from M on the secure

channel, store it internally and output (verification-key, sid, x, pk). If the party has
initialized its public key already, messages from M are ignored.
• On input (sign, sid, m, v), if this party has already a secret key sk, then execute σ ←

Sign(mpk, sk, v, m) and return (signature, sid, m, v, σ).
• On input (verify, sid, m, σ, v′

M , v′
A, v′

B), return the output (verified, sid, m, Verify(v′
M ,

v′
A, v′

B, m, σ)).

With this composable understanding in mind, we now set out to establish a concise and
simpler SIM-based PCS notion in the spirit of [BSW11,KLM+18,MM15] that implies the UC
10 Formally, the property of such trusted third parties to be incorruptible is modeled by instructing its protocol

machine to ignore the corruption request on the backdoor tape.
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realization of the ideal PCS functionality, which we show formally in Theorem 5.2. Looking
ahead, the proof of Theorem 5.2 reveals that all the ideal unforgeability properties (Conditions 2,
3, and 4) of FuncM,F

PolSig follow from the game-based unforgeability notion defined in Definition 3.2,
which is thereby validated to capture what we intended to model.

5.1 Simulation-Based Attribute Hiding

Our starting point is the already established game-based notion, where the adversary gets access
to a variety of oracles, as defined in Section 3.1. Following [BSW11,KLM+18,MM15], we consider
a simulator S = (SSetup,SKG,SCor,SSgn), where SSetup simulates Setup and SKG, SCor, and SSgn
simulate the oracles QKeyGen, QCor, and QSign, respectively. These simulator algorithms have
a shared state and in addition to the inputs to the oracles, get a leakage set L. The set L is
initially empty and gets augmented during the experiment analogous to how the simulator in
the UC functionality obtains information.

Definition 5.1 (SIM-Based AH). Let PCS = (Setup, KeyGen, Sign, Verify) be a PCS scheme
as defined in Definition 3.1. We define the experiments RealPCS(1λ,A) and IdealPCS(1λ,A,S)
for a PPT adversary A and a PPT simulator S = (SSetup,SKG,SCor,SSgn) in Fig. 10. In the
real world, the adversary has access to oracles as defined in Section 3.1. The simulator algorithms
have a shared state s, which is modelled as giving them s as input, and allowing all of them to
update the state s. In the ideal experiment, the initially empty sets IQK and IQC are maintained.
Furthermore, all but SSetup get as an additional input the leakage set L. Furthermore, the ideal
key-generation oracle is formally implemented by the function S ′

KG(s,L, x) := SKG(s,L). The
leakage set is initially empty. The sets are updated according to the following rules:

– When A makes the jth query to the key generation oracle using xj, the following gets added
to L (before SKG is invoked):

{(i, j) 7→ F (xi, xj) | (i, pki, xi) ∈ IQC, (j, pkj , xj) ∈ IQK}.

After the simulator SKG has been invoked, (j, pkj , xj) is added to IQK, where pkj is the
output of SKG.

– When A makes a corruption query i with (i, pki, xi) ∈ IQK, then the following gets added
to L (before SCor is invoked):(

i, xi, {(i, j) 7→ F (xi, xj) | (j, pkj , xj) ∈ IQK}
)
.

Additionally, (i, pki, xi) ∈ IQK is also added to IQC.
– When A makes a signing query (i, pkR, m), the following gets added to L:

{(i, j) 7→ F (xi, xj) | (i, pki, xi), (j, pkR, xj) ∈ IQK}.

This models that adversaries learn whether a pair of keys satisfy the policy by observing a
signature for these keys.

The advantage of a PPT adversary A in the experiment is defined as:

AdvSim
PCS,A,S(λ) = |Pr[RealPCS(1λ,A) = 1]− Pr[IdealPCS(1λ,A,S) = 1]|.

A PCS scheme PCS is simulation attribute hiding, if for any PPT adversary A there exists
a PPT simulator S, such that AdvSim

PCS,A,S(λ) ≤ negl(λ), where negl(·) is a negligible function.
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RealPCS(1λ,A)
(F, τ)← A1(1λ)
(mpk, msk)← Setup(1λ, F )
α← AQKeyGen(·),QCor(·),QSign(·,·,·)(τ, mpk)
Output: α

IdealPCS(1λ,A,S)
(F, τ)← A1(1λ)
(mpk, s)← SSetup(1λ, F )
α← AS′

KG(s,L,·),SCor(s,L,·),SSgn(s,L,·,·,·)(τ, mpk)
Output: α

Fig. 10: Real and ideal experiments for the simulation-based attribute hiding definition for the
scheme PCS. Both experiments interact with an adversary A. The ideal experiment interacts
with a simulator S = (SSetup,SKG,SCor,SSgn). The simulator gets the initially empty leakage
set L, which grows during the experiment as described in Definition 5.1 to answer the oracle
queries.

We conclude with the following theorem:

Theorem 5.2. Protocol πPCS
M securely realizes FuncM,F

PolSig if PCS is existentially unforgeable
(Definition 3.2) and simulation-based attribute hiding (Definition 5.1).

Proof. We prove the theorem in two main steps. First we assume a hybrid world with a
functionality like FuncM,F

PolSig but which does not protect the privacy of any party’s attributes, but
only enforces the ideal unforgeability guarantees. We show that there is a UC simulator Suc

that can simulate the real-world perfectly unless the environment (together with the dummy
adversary) provoke an event that implies a forgery of the PCS scheme as captured by game
EUF-CMAPCS in Fig. 6. The second step of the proof is to switch to the true ideal world with
FuncM,F

PolSig. We re-design the previous simulator to obtain S ′
uc that uses the assumed simulator

Spcs = (SSetup,SKG,SCor,SSgn) required by Definition 5.1. Any environment that notices this
switch to S ′

uc can be used to distinguish RealPCS and IdealPCS.
In more detail, we have the following hybrid worlds:

Hybrid H0: This is the real-world process with protocol πPCS
M .

Hybrid H1: Here we assume an “ideal functionality” Funchyb that acts like FuncM,F
PolSig but with

the following difference:
· On input (key-gen, sid, P, x), behave as FuncM,F

PolSig does but additionally output x to the
adversary.

Designing a simulator for this world follows the pattern of the signature simulator of [Can03]
with additional setup, that is. We define the simulator Suc:
- On input (policy-gen, sid, F ) from Funchyb, execute Setup(1λ, F ) and then return to the

functionality (policy-gen, sid, mpk). Store msk for future use.
- On input (key-gen, sid, Pi) alongside the leakage set {(P̂ , Pi) 7→ F (xP̂ , xPi) | for all corrupted

P̂ ∈ I}}, and the additional leakage information x specific to Funchyb, the simulator
executes KeyGen(msk, x), stores the obtained key-pair (pk, sk) as (Pi, pk, sk) for future
use. Provide (verification-key, sid, Pi, pk) to the functionality.

- On input (sign, sid, m, P, v, b) from Funchyb, obtain the record (P, pk, sk) and execute
σ ← Sign(v, sk, m) (give up activation if this party has not yet obtained its key). Return
to the functionality (signature, sid, m, P, v, σ).

- On input (verify, sid, m, σ, v′
M , v′

A, v′
B) from Funchyb, let ϕ← Verify(v′

M , v′
A, v′

B, m, σ) and
return (verified, sid, m, v′

M , v′
A, v′

B, ϕ) to the functionality.
- On a corruption request for party Pi, Suc corrupts Pi in the ideal functionality (and formally

also obtains leakage set {(Pi, Pj) 7→ F (xPi , xPj ) |Pj ∈ I} that is not needed here since
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the simulator has full knowledge of attributes), checks for a previously stored record
(Pi, pk, sk) and if such a record exists returns sk. (And from now onward, the simulator
acts as relay between environment and functionality.)

Claim 5.3. No UC environment Z can distinguish an execution of πPCS
M (w.r.t. the dummy

adversary) and an execution of the ideal protocol for functionality Funchyb w.r.t. ideal adver-
sary Suc.

Proof. We define events on the UC execution to help establish the claim. In the following, we
say a party Pi is initialized in the real execution if either (1) it at some point in time at which
Pi is not corrupted, it produced output (verification-key, sid, Pi, ., .), or (2) at some point
in time at which Pi is corrupted, M received the input (key-gen, sid, P, .) . Clearly, when a
party is considered initialized in the real world then by definition of the simulator, Pi ∈ I
holds in the ideal world (w.r.t simulator Suc).
– Let B0 be the event that upon the initialization of an honest party Pi, the computed

key pair (pk, sk) (either real or simulated) is such that there exists a different party P ′

associated to key pair (pk′, sk′) with pk = pk′.
– Let B1 be the event that at some point in time at which a signing party Pi is not

corrupted, Z requests any party to verify a valid signature σ of a message m w.r.t. Pi’s
public key and any receiver public key, where m has not been signed before by an explicit
request of Pi.

– Let B2 be the event that at some point in time Z requests any party to verify a valid
signature σ of a message m w.r.t. the public key of some initialized sender party Pi and
the public key of the initialized receiver Pj , but where F (xi, xj) = 0.

– Let B3 be the event that at some point in time Z requests any party to verify a valid
signature σ of a message m w.r.t. some public key vS and some initialized receiver party
Pj (corrupted or not), where vS is not the result of an initialization for any party in this
session.

– Let B4 be the event that at some point in time Z requests any party to verify a valid
signature σ of a message m w.r.t. the public key of some initialized sender party Pi

(corrupted or not) and some public key vR that is not the result of an initialization for
any party in this session.

– Let B5 be the event that the initialization of M results in a key vM but there has been a
previous evaluation 1← Verify(v′

M , v′
A, v′

B, m, σ).
We argue that the real world and the ideal world with the above simulator do not differ
until event B :=

∨5
i=0 Bi occurs. We observe that Suc simulates the real world perfectly and

is only restricted by Conditions 1 to 5 upon verification within Funchyb, by the uniqueness
requirement of parties’ public keys upon key generation, and by the requirement that the
key of the credential manager be initialized to a value w.r.t- which no successful evaluations
exist yet. By definition and the correctness of the PCS scheme, Conditions 1 and 5 are
satisfied. Events B0 and B5 can only occur with at most negligible probability: for B0
this is straightforward as collisions of public keys upon key generation imply forgeries
(cf. Section 3.2 and the general argument in the proof of Lemma 4.4). For B5 it is obvious
that the two conditions in Fig. 6 are not restricting, since no party has been initialized yet. It
remains that the reason for an observable difference occurs in case a verification answer ϕ in
(verified, sid, m, v′

M , v′
A, v′

B, ϕ) from Suc to Funchyb is changed to f ̸= ϕ due to Conditions 2,
3, or 4. However, Condition 2 is captured by event B1, Condition 3 is captured by event B2,
and Condition 4 is captured by event B3 ∨ B4. The distinguishing advantage can thus be
bounded by the probability of provoking B. In the remainder of this proof, we show how to
obtain a PCS forger from any environment provoking each of the events Bi. Hence let Z be
a UC environment and let us construct the respective forger Gi against EUF-CMAPCS.
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Case B1: G1 runs a simulation of Z. When Z invokes the setup with policy F , G1 outputs
F to its challenger, and returns the obtained mpk. When Z request a key generation for
party Pi, it generates the corresponding key via oracle QKeyGen. When Z asks G1 to sign
a message m in the name of Pi for public key v, it generates the signature using oracle
QSign. When Z corrupts a party Pi, obtain the private key via oracle QCor. When Z
lets party P verify a signature σ for message m and w.r.t. master public key mpk, public
(sender) key pki (from an uncorrupted and initialized party Pi) and some public (receiver)
key pkj (from an initialized party Pj), compute f ← Verify(mpk, pki, pkj , m, σ). If f = 1
and m was not requested to be signed for pkR before by party Pi by the simulated Z,
then exit with forgery (pki, pkj , m, σ). Otherwise, answer the verification request with
decision f . For any other verification request (for different master public keys), G1 simply
evaluates the algorithm Verify and returns the respective result.
The forgery output by G1 is valid since m was never signed, Pi is honest and hence
(pki, ·, ·) ̸∈ QC. Therefore, the forgery accepts and is not trivial11 according to experiment
EUF-CMAPCS.

Case B2: For this reduction the forger G2 again internally runs a simulation of Z and uses
its oracles to generate the public parameters. Different to above, after any key generation
request by Z for some party Pi, G2 obtains the private key ski via a corruption request to
QCor. When Z asks G2 to sign a message m in the name of some party Pi for public key
v, G2 generates the signature by evaluating σ ← Sign(v, ski, m). The remaining steps in
simulating the interaction with Z are done as above and G2 behaves as follows when Z lets
some party P verify a signature σ for message m and w.r.t. master public key mpk, public
(sender) key pki and public (receiver) key pkj : compute f ← Verify(mpk, pki, pkj , m, σ).
If f = 1 and f(xi, xj) = 0 (note that since the parties are initialized, the associated
attributes are known) then exit with forgery (m, σ). (As above, other verification requests
are answered by just evaluating the request using Verify.)
The obtained forgery is valid, since (pki, pkj , m, σ) verifies and is not trivial, because
G2 does not use its signing oracle, and because F (xi, xj) = 0. Hence, the non-triviality
conditions of EUF-CMAPCS are met.

Case B3: The forger G3 simulates Z as above for G1 above and behaves as follows when Z lets
some party P verify a signature σ for message m and w.r.t. master public key mpk, public
(sender) key pk and public (receiver) key pkj : compute f ← Verify(mpk, pk, pkj , m, σ). If
f = 1 and pk is not a public key simulated towards Z as part of an initialization, then
exit with forgery (pk, pkj , m, σ). (As above, other verification requests are answered by
just evaluating the request using Verify.)
The obtained forgery is valid, since (pk, pkj , m, σ) verifies; it further cannot have been
obtained from a signing oracle request because (pki, ·, ·) ̸∈ QK by definition of event
B3, and consequently, (pki, ·, ·) ̸∈ QC must hold. Hence, each part of the non-triviality
condition of EUF-CMAPCS is fulfilled.

Case B4: For this case, the forger G4 is defined as G2 in terms of emulating the interaction
with Z, and G4 behaves as follows when Z lets some party P verify a signature σ for
message m and w.r.t. master public key mpk, public (sender) key pki and public (receiver)
key pk: compute f ← Verify(mpk, pki, pk, m, σ). If f = 1 and pk is not a public key
simulated towards Z as part of an initialization, then exit with forgery (pki, pkj , m, σ).
(As above, other verification requests are answered by just evaluating the request using
Verify.)

11 Recall that the forgery game is won if the following condition is satisfied: Verify(mpk, pk, pk∗, m∗, σ∗) =
1 ∧ (pk, pk∗, m∗, ·) ̸∈ QS∧ ∀x, x∗ : (pk, ·, x) ∈ QC ∧ (pk∗, ·, x∗) ∈ QK ⇒ F (x, x∗) = 0.
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The obtained forgery is valid, since (pki, pk, m, σ) verifies and is not trivial, since G4
does not use its signing oracle, and because (pk, ·, ·) ̸∈ QK (because pk cannot have been
obtained from the key generation oracle).

We obtain a uniform forger G by choosing at random i ∈ [4] and running Gi. This proves
the claim. ⊓⊔

Hybrid H2: This hybrid is the ideal functionality (i.e., the ideal protocol for) FuncM,F
PolSig together

with simulator S ′
uc. We define S ′

uc by stating what the difference is compared to Suc. This
will be handy when arguing about the indistinguishability of this and the previous hybrid.
- On input (policy-gen, sid, F ) from FuncM,F

PolSig, simulator S ′
uc executes (mpk, s)← SSetup(1λ,

F ) (instead of Setup) and stores s for future use (instead of msk). Initialize the leakage
set L ← ∅. The interaction with the functionality is just like Suc.

- On input (key-gen, sid, Pi) alongside the leakage set L = {(P̂ , Pi) 7→ F (xP̂ , xPi) |
for all corrupted P̂ ∈ I}}—but without the additional leakage x from above–from FuncM,F

PolSig,
S ′

uc computes L ← L ∪ L and executes SKG(s,L) to obtain pk and an updated state
s. The simulator stores the tuple (Pi, pk,⊥) (no secret key is stored). The remaining
interaction with the functionality is identical to Suc.

- On input (sign, sid, m, P, v, b) from FuncM,F
PolSig, the simulator updates the leakage set L

only if there is an entry (P ′, v, ·) by adding the tuple (P, P ′, b). Next, retrieve a previously
stored record (P, pk,⊥) and generate the signature σ ← SSgn(s,L, P, v, m) (which also
updates the state s). The interaction between the simulator and the functionality is the
same as in Suc.

- On input (verify, sid, m, σ, v′
M , v′

A, v′
B) from FuncM,F

PolSig, the simulator behaves identically
to Suc.

- On a corruption request for party Pi, S ′
uc corrupts Pi in FuncM,F

PolSig, and includes the
additional leakage information L = {(Pi, xPi)} ∪ {(Pi, Pj) 7→ F (xPi , xPj ) |Pj ∈ I} by
computing L ← L ∪ L. Next, it retrieves the record (Pi, pk, ·) and if such a record exists
returns sk← SCor(s,L, Pi) (which also updates s) and returns sk. (And from now, the
simulator acts as relay between environment and functionality.)

Claim 5.4. No UC environment Z can distinguish an execution of the ideal protocol for
Funchyb w.r.t. ideal adversary Suc and an execution of the ideal protocol for functionality
FuncM,F

PolSig w.r.t. ideal adversary S ′
uc.

Proof (Sketch). Without loss of generality, we can assume an encoding of party identifiers
(of the UC treatment) as integers (the identifiers in the simulation-based AH experiment).
Then note that the leakage set maintained by S ′

uc is exactly how the experiment IdealPCS

maintains the leakage sets for its simulators. We further observe that in the second hybrid
world, adversary Suc can be equivalently implemented using the oracles QKeyGen(·), QCor(·),
and QSign(·, ·, ·) to implement the key-generation, signing and corruption queries, and that S ′

uc

is structurally identical but implements those “oracle queries” for key-generation, signing, and
corruption by calling the respective simulators SKG, SCor, and SSgn using the same interface.
That is, the systems H1 and H2 can be re-written as systems S[Setup, QKeyGen, QCor, QSign]
and S[SSetup,SKG,SCor,SSgn], respectively, where S[R1, R2, R3, R4] is a black box algorithm
with respect to invocations of its subroutines Ri. Therefore, any environment Z with non-
negligible advantage in distinguishing H1 and H2 contradicts the assumption that systems
RealPCS and IdealPCS are indistinguishable: the reduction A is obtained by internally
emulating an instance of Z and running algorithm S which is served with subroutine inputs
from the corresponding functions in experiments RealPCS or IdealPCS, respectively. Finally,
A outputs whatever Z outputs. This leads to a distinguisher A with the same distinguishing
advantage as Z has when distinguishing H1 and H2. ⊓⊔
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Combining both claims yields that for any UC environment (and without loss of generality in the
dummy adversary model, see [Can01]) the (real) protocol execution of πPCS

M is indistinguishable
from the ideal protocol execution with functionality FuncM,F

PolSig and ideal adversary (i.e., simulator)
S ′

uc. The theorem follows. ⊓⊔

5.2 On the SIM-Based Security of our Generic Scheme

If we assume that the underlying predicate-only predicate encryption scheme of our construction
in Fig. 8 satisfies the strong simulation-based PE security notion as defined in Definition 2.10,
then the generic scheme achieves the simulation-based and therefore the composable notion of
PCS. We note that the requirement in Definition 2.10 is the adaptive (and thus stronger) version
of what is proven so far in the literature, such as in [DOT18,OT12a]. We leave it as an interesting
open problem to realize PE schemes that fulfill the stronger (adaptive) simulation-based security
notion based on reasonable assumptions. We note that such schemes require idealized models
such as proofs in the bilinear generic group model [KLM+18] or the random oracle model.

Theorem 5.5. Let PE = (PE.Setup, PE.KeyGen, PE.Enc, PE.Dec) be a simulation secure predi-
cate encryption scheme, let further NIZK = (NIZK.Setup, NIZK.Prove, NIZK.Verify) be a NIZK
proof system and let DSpub = (DSpub.Setup, DSpub.Sign, DSpub.Verify) be a strong unforgeable sig-
nature scheme, then there exists a simulator S such that the construction PCS = (Setup, KeyGen,
Enc, Dec), defined in Figure 8, is simulation private. Namely, for any PPT adversary A there
exist PPT adversaries B,B′ and B′′, such that:

AdvSim
PCS,A,S(λ) ≤ AdvSUF-CMA

DSpub,B (λ) + AdvZK
NIZK,B′(λ) + AdvSim

PE,B′′,S′(λ).

Proof. The simulator S for the proof of this theorem is described in Fig. 11. Informally, the
simulator S uses the simulator SEnc of the predicate encryption scheme to generate the ciphertexts
that are part of the public keys and the simulator SKG of the predicate encryption scheme to
generate the functional keys that are part of the secret keys. To be able to do this, the simulator
S learns, in every key generation query, the policy evaluation of all the corrupted keys acting
as senders with the attribute set of the queried key, and, in the case of a corruption query, the
simulator S learns the attribute set of the requested key as well as all the policy evaluations
where this key acts as a sender. To answer signature queries, the simulator S additionally receives
the policy evaluation of the associated attributes of the keys that are used for the signature
query. Since S knows if the statement is part of the language of the NIZK system, it can use
the NIZK simulator to generate a valid proof for the statement relying on the zero-knowledge
property of the NIZK system.

As in the proof of Theorem 4.7, we will make use of the fact that the adversary A only
queries the signing oracle using public keys that previously have been output by one of the key
oracles or has been a reply to the challenge query as otherwise, we obtain a forgery for DSpub.

To show that the ideal world with the simulator S is indistinguishable from the real world,
we use a hybrid argument that we describe below.

Hybrid H0: This hybrid is defined as the real PCS experiment RealPCS(1λ,A).
Hybrid H1: In this hybrid, we change the behavior of the sign oracle QSign and define a modified

sign oracle QSign′ (similar to the transition in the IND-based case). The oracle QSign′ is
defined as QSign with the difference that it only answers queries for receiver keys that have
previously been output by the key generation oracle QKeyGen, i.e. for a query (i, pk′, m) with
(i, ·, ·) /∈ QK or (·, pk′, ·) /∈ QK the sign oracle QSign′ outputs ⊥. The transition from H0 to
H1 is justified by bounding the key-forgery event KeyForgeA as in in Lemma 4.8, thus

|Pr[G0(λ,A) = 1]− Pr[G1(λ,A) = 1]| ≤ AdvSUF-CMA
DSpub,B0 (λ).
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Hybrid H2: In this hybrid, we change from an honestly generated CRS and honestly generated
proofs to a simulated CRS and simulated proofs. That is, we (again) modify the signing
oracle, and additionally, on input (j, pkR, m), first obtain attributes xR to pkR for which
F (xj , xR) = 1. If no entry is found, we return ⊥, and otherwise the proof is simulated
using the trapdoor, the master public key, the signer verification key, and the receiver PE
ciphertext.12 We further perform a syntactical change: upon PCS-key generation, we do not
generate the secret keys of honest parties (as we do not need them for signing any more); we
only generate a secret keys upon corruption queries. The transition from H1 to H2 is justified
by the zero-knowledge property of NIZK. Namely, in Lemma 5.6, we exhibit a PPT adversary
B1 such that:

|Pr[H1(λ,A) = 1]− Pr[H2(λ,A) = 1]| ≤ AdvZK
NIZK,B1(λ).

Hybrid H3: In this hybrid, we change from honestly generated keys to simulated keys, that is,
whenever we generate PE ciphertexts (as part of PCS key generation for attributes x), or
PE functional keys (upon corruption queries), we maintain the leakage LPE by recording all
the mappings

(i, j) 7→ fj(xi) = F (xj , xi)

for all indices j for which a corruption query has been issued, and indices i for which a public
key has been generated using attributes xi. Upon every additional (say, the kth) PCS key-
generation query with attributes xk, the mappings (k, j) 7→ fj(xk) = F (xj , xk) are added (for
all indices j in the corruption set). Upon every additional corruption query specifying index
ℓ the mappings (i, ℓ) 7→ fℓ(xi) = F (xℓ, xi) are added, where xℓ is the attribute corresponding
to the ℓth PCS key-generation query. With this leakage set, the respective simulators SEnc
and SKG are invoked, where S ′ = (SSetup,SEnc,SKG) is the assumed PE simulator. Clearly,
we also simulate the PE master secret key using SSetup in H3. The transition from H2 to H3
is justified by the simulation-based AH property of PE and we prove in Lemma 5.7 that

|Pr[H2(λ,A) = 1]− Pr[H3(λ,A) = 1]| ≤ AdvSim
PE,B2,S′(λ).

Hybrid H4: This is the ideal PCS experiment IdealPCS(1λ,A,S) for the simulator defined
in Fig. 11. We show that

Pr[H3(λ,A) = 1] = Pr[IdealPCS(1λ,A,S) = 1].

This is straightforward to see since in both systems, H3 and IdealPCS(1λ,A,S), the keys
(master public key, public keys and secret keys) as well as the signatures are completely
simulated using the simulators of the underlying NIZK and PE scheme. To conclude the
proof, we need to argue that the leakage provided to the PE simulator can be obtained from
the leakage set L that the PCS simulator receives. Furthermore, when simulating NIZK
proofs, another policy evaluation takes place and we need to show that also this can be
implemented based on L. To do that, we take a more detailed look at the leakage:

L :={(i, j) 7→ F (xi, xj) | (i, pki, xi) ∈ IQC, (j, pkj , xj) ∈ IQK}
∪

(
i, xi, {(i, j) 7→ F (xi, xj) | (j, pkj , xj) ∈ IQK} | (i, pki, xi) ∈ IQC

)
∪{(i, j) 7→ F (xi, xj) | (i, pki, xi), (j, pkR, xj) ∈ IQK with (i, pkR, ·) asked to QSign}.

From the description of the set, it becomes clear that (i, j) 7→ F (xi, xj) is exactly the
information the simulator of the NIZK needs to simulate the proof that is part of the

12 Note that by the first game hop, we can assume that we find the key, as otherwise the signing oracle immediately
outputs ⊥.
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signature for the query (i, pkR, ·). The leakage set LPE that is required by the simulator
of the PE scheme to generate the ciphertexts, which are part of the public key, and the
functional keys, which are part of the secret key, can be constructed in the following way:

{(i, j) 7→ F (xi, xj) | (i, pki, xi) ∈ IQC, (j, pkj , xj) ∈ IQK}
={(i, j) 7→ fi(xj) | (i, pki, xi) ∈ IQC, (j, pkj , xj) ∈ IQK}

(i,j) 7→(i′,j′)⇒ {(i′, j′) 7→ fi′(xj′) | i′ ∈ [nKeyGen], j′ ∈ [nEnc]} =: LPE,

where j′ is defined as j but i′ is defined based on the order when (party) index i is corrupted.
In more detail, if the k’th corruption query, asked by the adversary, corresponds to the l’th
key, then it holds that i′ = k and i = l. This matches the description of LPE presented
in Definition 2.10 and concludes our argument.

This shows the indistinguishability of the real and ideal PCS experiments. ⊓⊔

SSetup(1λ, F ):
(CRS, s′)← NIZK.S1(1λ)
s′′ ← PE.SSetup(1λ)
(vkpub, skpub)← DSpub.Setup(1λ)
(vkpriv, skpriv)← DSpriv.Setup(1λ)
mpk := (F, CRS, vkpub, vkpriv)
QK = {}
QC = {}
i := 1
s := (s′, s′′,QK,QC, skpub, vkpriv, skpriv)
Return (mpk, s)

SCor(s,L, j):
Parse s := (s′, s′′,QK,QC, skpub, vkpriv, skpriv)
If (j, ·, ·) /∈ QK:

Return ⊥
Derive LPE from L as described above
(fx, xj) = SubPol(F, xj)
skfx ← PE.SKG(s′′,LPE, fx)
σpriv ← DSpriv.Sign(skpriv, (vkP, skfx))
sk := (vkP, skP, skfx , σpriv)
Add (j, pk, sk, xj) to QC
Return sk

SKG(s,L):
Parse s := (s′, s′′,QK,QC, skpub, vkpriv, skpriv)
(vkP, skP)← DSP.Setup(1λ)
Derive LPE from L as described above
ct← PE.SEnc(s′′,LPE)
σpub ← DSpub.Sign(skpub, (vkP, ct))
pk := (vkP, ct, σpub)
Add (i, pk, skP) to QK
Set i := i + 1
Return pk

SSgn(s,L, j, pkR, m):
Parse pkR := (vkR, ctR, σR

pub),
s := (s′, s′′,QK,QC, skpub, vkpriv, skpriv)

If (j, ·, ·) ∈ QK ∧ ∃k : (k, pkR, ·) ∈ QK
∧{(j, k) 7→ 1} ∈ L:

Parse the entry (j, pkS := (vkS , ·, ·), ·) ∈ QK
π ← NIZK.S2(s′, (vkpriv, vkS , ctR))
σ′ ← DSP.Sign(skP, (m, pkR, π)), with

(j, ·, skP) ∈ QK
Return σ := (π, σ′)

Else
Return ⊥

Fig. 11: Description of the simulators SSetup,SKG,SCor,SSgn for the simulation-based attribute-
hiding security proof of our PCS scheme.
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Lemma 5.6 (Transition from H1 to H2). For any PPT adversary A, there exists a PPT
adversary B1 such that

|Pr[H1(λ,A) = 1]− Pr[H2(λ,A) = 1]| ≤ AdvZK
NIZK,B1(λ).

Proof. We build an adversary B1 that simulates H1+β towards A when interacting with the
underlying ZKNIZK

β experiment. In the beginning of the reduction, B1 receives F from adversary
A and CRS from the ZKNIZK

β experiment.
For the setup generation, the adversary B1 generates two signature key pairs (vkpub, skpub)←

DSpub.Setup(1λ) and (vkpriv, skpriv) ← DSpriv.Setup(1λ), a PE master secret key mskPE ←
PE.Setup(1λ), sets (mpk, s) = ((F, CRS, vkpub, vkpriv), (mskPE, skpub, skpriv)) and gives mpk to
the adversary A. The adversary B1 also initializes the lists QK = {} and QC = {} and a counter
i := 1.

For every query x to the key generation oracle, submitted by A, B1 generates (pk, sk) ←
KeyGen(s, x) and sends pk as a reply to A. Additionally, B1 adds (i, pk, sk, x) to QK and increases
the counter, i.e. i := i + 1. For every query j to the corruption oracle, asked by A, B1 searches
(j, pk, sk, x) in QK and outputs sk. Additionally, B1 adds (j, pk, sk, x) to QC. If pk is not contained
in QK, B1 outputs ⊥.

For every query (j, pkR, m) submitted to the signing oracle QSign′ by A, B1 parses pkR =
(vkR, ctR, σR

pub) and s = (mskPE,QK,QC, skpub, skpriv) and checks that (j, pkS , skS := ((vkS , skS
P,

skfx , σpriv), xS) ∈ QK. If it holds that (j, ·, ·, ·) /∈ QK or (·, pkR, ·, xR) ̸∈ QK for any xR, then
output ⊥. Afterwards, the adversary B1 verifies the signature of pkR, i.e. DSpub.Verify(vkpub,
(vkR, ctR), σR

pub) and if F (xS , xR) = 1 (for some xR associated with pkR), it submits the query
((vkpriv, vkS , vkR, ctR), (skfx , σpriv)) to the prove oracle of its challenger and receives π as a reply.
If the signature σR

pub does not verify or the decryption outputs 0, then B1 outputs ⊥. The
adversary B1 then computes σ′ ← DSP.Sign(skS

P, (m, pkR, π)) and returns σ := (π, σ′) to A.
Finally, B1 outputs the same bit β′ returned by A.

To conclude the proof, we observe that our emulation is perfect. This follows from the
fact that the only difference in the two hybrids is the generation of the CRS and the proofs
contained in the signatures, which is done by the underlying challenger. In the case that the
challenger outputs an honestly generated CRS and genuinely generated proofs, the adversary
B1 is simulating the hybrid H1 and in the case that the challenger simulates the CRS and the
proofs, the adversary B1 is simulating the hybrid H2. Note that the challenger always replies: the
perfect correctness of the predicate encryption scheme nd the fact that the signing oracle QSign′

is only queried using previously generated keys, we have that PE.Dec(skfx , ctR) = F (xS , xR)
with (·, pkR, ·, xR) ∈ QK and therefore it is guaranteed that the decryption corresponds to the
correct policy evaluation and thus the witness is valid. This covers the simulation of the hybrids
H1+β and leads to the advantage mentioned in the lemma. ⊓⊔

Lemma 5.7 (Transition from H2 to H3). For any PPT adversary A, there exist PPT
adversaries B2, such that

|Pr[H2(λ,A) = 1]− Pr[H3(λ,A) = 1]| ≤ AdvSim
PE,B2,S′(λ).

Proof. We build an adversary B2 that simulates H2+β to A when interacting with the underlying
SimPE experiment.

In the beginning of the reduction, B2 receives F from the adversary A. It then executes the
following steps: It simulates a CRS, i.e. (CRS, s′)← NIZK.S1(1λ), generates two signature key
pairs (vkpub, skpub) ← DSpub.Setup(1λ) and (vkpriv, skpriv) ← DSpriv.Setup(1λ), sets (mpk, s) :=
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((F, CRS, vkpub, vkpriv), (s′, skpub, skpriv)) and sends mpk to A. The adversary B2 also initializes
the lists QK = {} and QC = {} and the counter i := 1.13

Whenever A asks the i’th query x to the key generation oracle, B2 generates a signature
key pair (vkP, skP)← DSP.Setup(1λ), computes (fx, x) = SubPol(F, x) and submits x to its PE
encryption oracle to receive ct. In the next step, it computes σpub ← DS.Sign(skpub, (vkP, ct))
and outputs pk = (vkP, ct, σpub), which is then sent to A. Additionally, (i, pk, skP) is added to
QK and we set i := i + 1.

For every query j to the corruption oracle, asked byA, B2 checks that (j, ·, ·) ∈ QK. If (j, ·, ·) /∈
QK it does nothing. Otherwise, the reduction retrieves xj from the jth key-generation query and
computes (fx, x) = SubPol(F, xj) and submits fx as a key query to the PE key-generation oracle,
which replies with skfx . The simulator then computes σpriv ← DSpriv.Sign(skpriv, (vkP, skfx)) with
(pk = (vkP, ct, σpub), skP, ·) ∈ QK, sets sk := (vkP, skP, skfx , σpriv), adds (j, pk, sk, xj) to QC and
outputs sk to A.

For every query (j, pkR, m) asked byA to the signing oracle QSign′, B checks that (j, ·, ·) ∈ QK.
If (j, ·, ·) /∈ QK it does nothing, otherwise it searches for (j, pkS = (vkS , ctS , σS

pub), skP) ∈ QK and
parses pkR = (vkR, ctR, σR

pub). If it cannot find (j, ·, ·) ∈ QK it outputs ⊥, otherwise it verifies the
signature of pkR, i.e. DSpub.Verify(vkpub, (vkR, ctR), σR

pub) and if F (xS , xR) = 1 (where xS are the
attributes of the key associated with j and xR are the attributes of the key associated with pkR)
it generates π ← NIZK.S2(s′′, (vkpriv, vkS , vkR, ctR)). If the signature σR

pub does not verify or if
F (xS , xR) = 0, it outputs ⊥ to A. The simulator then computes σ′ ← DS.Sign(skP, (m, pkR, π))
and returns σ := (π, σ′) to A.

Finally, B2 outputs the same bit β′ returned by A.
To conclude the proof, we observe that our simulation is perfect. This follows from the fact

that the only difference in the two hybrid is the generation of the public keys pk and secret
keys sk, which either consist of honestly generated ciphertexts or functional keys or simulated
ciphertexts or functional keys. The generation of the ciphertexts and functional keys is done by
the underlying challenger of the simulation-based attribute hiding notion. In the case that the
challenger generates an honest encryption and honest keys, the adversary B2 is simulating the
hybrid H1 and in the case that the challenger simulates ciphertexts and keys, the adversary B2
is simulating the hybrid H2. ⊓⊔
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A Further Details on Related Work

Further details on matchmaking encryption. As described in the main body of this paper, it
seems that PCS are a special case of both ME and A-ME, however this is not true for several
reasons. Here, we show how one could try to match the requirements and then why this has to
fail in general.

PCS treat the sender and receiver as symmetric, i.e., only having one key-generation procedure
to produce the private keys for attributes. Furthermore, the policy is public and hence, when
fixing sender and receiver attributes, the additional power to specify arbitrary policies does not
have to be exercised to its full generality: Given a public policy (that specifies the policy sender
and receiver must jointly fulfill), one can set the policy during encryption to be trivially satisfied,
and have the decryption key to encode the specific sub-policy that results on evaluating the
public policy on the receivers own attributes which leaves a simple condition of the sender’s
attributes. Finally, to be publicly verifiable, the receiver can prove in zero-knowledge that it is
able to decrypt the given message m with its key from the authority, which could serve as a
public signature that does not reveal the attributes (and no privacy on the payload m is required
since a PCS scheme is a signature scheme). The above sequence of arguments sounds compelling,
but are unfortunately not sound:

While we explained the stronger unforgeability requirements in the main body, we focus
here on the privacy requirements since they seem to be more related due to the condition on
attribute-hiding. Intuitively, this property says that nothing about the honest sender attributes
is leaked beyond what a malicious receiver can infer bye decrypting the ciphertext with its own
attributes and the policies it demands from the sender.

However, since ME and A-ME are tailored to the use-case of replacing a handshake including
a single message, the adversary in the security game only obtains a single value (the ciphertext)
which is a function of the private sender key. Due to this reason, there are schemes that are too
weak for our purpose: consider an (A-)ME scheme with the following tweak: each encryption key
is extended by a random bitstring r. If the message to be encrypted equals r, the attributes of
the sender are revealed. Furthermore, we also append r to every ciphertext this (A-)ME scheme
produces. Therefore, if only one ciphertext is ever generated, the privacy guarantees of the
underlying scheme are preserved unless one guesses r, which can be made negligible. However,
such a scheme could not be used in our context as there is an adaptive attack that directly
reveals the attributes.

B On the Relationship Between PCS and PE

Our PCS scheme is based on predicate-only predicate encryption schemes. This is actually not a
coincidence since there is a closer connection which we outline for the IND-based case. A PCS
scheme PCS = (Setup, KeyGen, Sign, Verify) for the class Fλ of predicates F : Xλ ×Xλ → {0, 1}
implies a collection of predicate-only PE schemes PE = (Setup, KeyGen, Enc, Dec), namely for
each of the associated class of predicates F ′

λ,F defined by fx : Xλ → {0, 1}; y 7→ F (x, y). We
consider here only the IND-based notion for PE (and PCS). In words, the resulting scheme is
a predicate-only PE scheme for the sub-policy describing “to whom a party, identified by the
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secret key for fx, can send messages allowed by the general policy”. We assume that x ∈ X can
be efficiently recovered from the description of fx. In the resulting PE scheme (w.r.t. parameter
F ), a secret key for function fx is equated with the secret functional key for (sender) attributes
x of the associated PCS scheme. The core idea of the PE scheme is to treat the public keys
(w.r.t. receiver attributes) of the PCS scheme as ciphertexts. Since a public key hides the
attributes of a party, we satisfy the hiding property of PE directly. Decryption of a ciphertext is
implemented by having the holder of the secret key for attribute x doing a trial signature to
check whether it is allowed to sign messages for the public key encoded in the ciphertext. By
the property of PCS, this is only possible if fx(y) = F (x, y) = 1 and otherwise does not reveal
anything beyond this fact. For completeness, we state the concrete set of algorithms (where we
keep F explicit for clarity).

PEF .Setup(1λ): Execute (mpkPCS, mskPCS) ← PCS.Setup(1λ, F ) and return msk := (mpkPCS,
mskPCS).

PEF .KeyGen(msk, fx): Execute (pkPCS, skPCS) ← PCS.KeyGen(mskPCS, x). Then define and re-
turn skfx ← (mpkPCS, pkPCS, skPCS).

PEF .Enc(msk, x): Execute (pkPCS, skPCS)← PCS.KeyGen(mskPCS, x). Return ct := pkPCS. (Note
that we have x ∈ Xλ here.)

PEF .Dec(skf , ct): Parse the secret key as (mpkPCS, pkPCS, skPCS). Run σ ← PCS.Sign(ct, skPCS, m)
for a random message m. Return the verification bit Verify(mpkPCS, pkPCS, ct, m, σ).

In the remainder of this section, we leave the security parameter implicit to simplify notation.

Lemma B.1. Let F ∈ F be a policy and let F ′
F be the derived predicate class defined above.

If PCS is an attribute-hiding PCS scheme for F then the scheme PEF is an attribute hiding
predicate-only PE scheme for F ′

F .

Proof. The resulting scheme is a correct PE scheme by correctness of the PCS scheme. We now
show that any valid adversary A against the PE scheme above, i.e., for the random experiment
AHPEF

β can be turned into a valid adversary A′ for PCS experiment AHPCS
β that achieves the

same advantage. The adversary A′ = (A′
1,A′

2) is specified as follows: A′
1 outputs the policy F .

A′
2 is called on input mpkPCS and has access to oracles QKeyGenLRβ(xi,0, xi,1), QCor(i), and

QSign(i, pk′, m). A′
2 internally runs A and emulates the two PE oracles towards A as follows:

– QEncLRβ(xi,0, xi,1): A′
2 makes an oracle call QKeyGenLRβ(xi,0, xi,1) and obtains the corre-

sponding public key pki, which it returns as the ciphertext. We say that index i is honest.
– O(fx) := KeyGen(msk, fx): A′

2 extracts the attributes x from the description of fx and
makes an oracle call QKeyGenLRβ(x, x). Let this oracle call be the jth oracle call and
denote the response by pkj . Then A′

2 calls QCor(j) to obtain skj . Finally return the PE key
(mpkPCS, pkj , skj). We say that index j is corrupted.

When the internal emulation of A returns a bit α′, A′
2 outputs α′.

We first observe that thanks to the oracles of provided by the experiment AHPCS
β , A′

2 is able
to simulate all key-generation queries perfectly and outputs keys identically distributed to the
ones obtained from the PE scheme. For encryption queries w.r.t. a pair (xi,0, xi,1 of attributes,
A′

2, by invoking its own LR oracle, returns the public key pk corresponding to attribute xβ,
where β is the parameter of the experiment. By definition, this is exactly what the oracle
QEncLRβ(xi,0, xi,1) would return in the experiment AHPEF

β for the above PE scheme. Thus,
the distribution of the output of A′

2 in experiment AHPCS
β is identical to the distribution of

the output of A in experiment AHPEF
β . This establishes AdvAH

PCS,A′ = AdvAH
PEF ,A. It remains to

analyze the validity of A′, where we can assume that A is valid. This means for A that for all
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queries (xi,0, xi,1) to the simulated oracle QEncLRβ(·, ·) and for any function f queried to the
simulated key generation oracle KeyGen(msk, ·), we have f(xi,0) = f(xi,1). By definition of the
admissible predicates f , consider an f that led to the jth query QKeyGenLRβ(xj , xj) by A′

2,
where xj is the attributed extracted from f . By construction and the definition of the predicate
class, this index j is corrupted and the condition on A implies that for each such xj we have

fxj (xi,0) = F (xj , xi,0) = fxj (xi,1) = F (xj , xi,1) (2)

for all attribute pairs (xi,0, xi,1) corresponding to honest indexes.
In order for A′ to be valid, two conditions must hold. Recall that QC is the set of corrupted

indexes j and their keys, and QK is the set of all keys.

1. for every (j, pkj , skj , xj,0, xj,1) ∈ QC and for all (i, pki, ski, xi,0, xi,1) ∈ QK, it must hold that
xj,0 = xj,1 =: xj︸ ︷︷ ︸

(∗)

and F (xj , xi,0) = F (xj , xi,1)︸ ︷︷ ︸
(∗∗)

,

2. and for all (i, pki, pkj , m, σ) ∈ QS, and (i, pki, ski, xi,0, xi,1), (j, pkj , skj , xj,0, xj,1) ∈ QK, we
have F (xi,0, xj,0) = F (xi,1, xj,1).

We observe that Item 2 is trivially satisfied since A′ does not call its signature oracle.
Condition (∗) holds since A′ only corrupts indexes j for which it called QKeyGenLRβ(xj , xj)
beforehand, and for which condition therefore (∗∗) trivially holds. For all remaining honest
indexes, we observe that (∗∗) is satisfied because we already established Eq. (2). This concludes
the proof. ⊓⊔

The analogous statement holds in the simulation-based world:

Lemma B.2. Let F ∈ F be a policy and let F ′
F be the derived predicate class defined above.

If PCS is a simulation-based attribute-hiding PCS scheme for F then the scheme PEF is a
simulation-based attribute hiding predicate-only PE scheme for F ′

F .

Proof (Sketch). We are more brief here and only sketch how to obtain a simulator SPEF =
(SPEF

Setup,SPEF
Enc ,SPEF

KG ) based on the assumed simulator SPCS = (SPCS
Setup,SPCS

KG ,SPCS
Cor ,SPCS

Sgn ).

– SPEF
Setup runs (mpk, sPCS) ← SPCS

Setup(F ) and returns (mpk, sPCS). The simulator(s) further
maintain a leakage set LPCS which is initially empty (note that the experiment for PE will
maintain the leakage set LPE). Furthermore, the simulators maintain two (initially empty
tables Te and Tk and a counter C, initially 1.

– The simulator SPEF
KG receives as input the state s, leakage set LPE, and on the ith query to

this oracle the requested function f (which is not hidden from the simulator). It first sets
Tk[i] := C and extracts the attributes x from the function description and stores xC := x.
The leakage set contains the following (new) information: for all previous encryption queries,
j ∈ [nENC ] (where nENC is the number of PE encryption queries so far), the mappings
(j, i) 7→ f(xj) = F (x, xj) =: bj are found in LPE (where the last equality follows by definition
of the predicate class).
We now first add the i − 1 mappings (Tk[1], C) 7→ F (xTk[1], xC), . . . , (Tk[i − 1], C) 7→
F (xT [i−1], xC) to LPCS (for all the previously stored attributes xTk[·] extracted from functions
to the key-gen oracle). Then, SPCS

KG (sPCS,LPCS) is invoked, which returns a value pk and
updates the state sPCS. The simulator SPEF

KG updates its state accordingly, increments the
counter C and proceeds as follows:
SPEF

KG updates the leakage set LPCS by including the triple (C, xC , M) where the set M
(of new mappings) is formed as the union of the two sets {(C, Te[j]) 7→ bj}j∈[nENC ] and
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{(C, Tk[j]) 7→ F (xC , xTk[j])}j=1..i. (Note that this union covers all “receiver” indexes ever
created in the view of SPCS.) Then, SPCS

Cor (sPCS,LPCS, C) is invoked, which returns a value sk
and updates the state sPCS. The simulator SPEF

KG updates its state accordingly, and outputs
(mpk, pk, sk) as the functional secret key for f .

– The simulator SPEF
Enc receives as input the state s and leakage set LPE. On the ith query to

the oracle (w.r.t. the unknown (to the simulator) attributes x), the leakage set contains the
following (new) information: for all previous key-generation queries, j ∈ [nKG] (where nKG is
the number of PE key-generation queries so far), the mappings (i, j) 7→ fj(x) = F (xj , x) =: bj

are found in LPE (where the last equality follows by definition of the predicate class). Thus, all
the new mappings (Tk[j], C) 7→ bj are added to LPCS and then SPCS

KG (sPCS,LPCS) is invoked,
which returns the value pk and updates the state sPCS. The simulator SPEF

Enc updates its state
accordingly, sets Te[i] := C, increments the counter C, and finally returns pk.

As we can observe, the modular structure of the PE scheme from the PCS scheme is reflected
in the design of the simulator. Based on our intuition on the PE scheme, it is not surprising
that the leakage towards the PCS simulator upon a PE Encryption query is exactly the policy
evaluations of this “newly created party” i (in the role of the receiver) with respect to all
previously “corrupted parties” (in the role of the sender). In the view of the PCS simulator, all
indexes j are considered corrupted, for which a PE key-generation query has been submitted.
Furthermore, on a PE key-generation query, we create a new party with the attributes x extracted
from the function that is received as part of this query (recall that the PE notion we look at
here is not function hiding). Thus, also this leakage can be simulated since it is easy to figure
out to whom this new party can send (and hence to include all the relevant mappings), since it
either receives the PE leakage set (that refer to predicate evaluations w.r.t. PE encryptions)
and for all other created parties, their attributes are known (as the only other case is that the
party index was created as part of a PE key-gen query where we could extract the attributes).
To make this mapping precise, we have to keep tables Te and Tk which map each respective
query to the PE encryption oracle resp. PE key-generation oracle to its party-index in the view
of the PCS experiment (since PE key-gen is implemented similarly to the proof of the previous
lemma by creating a party using PCS key-gen and subsequent corruption). It is thus not hard
to see that if we have a distinguisher A with advantage α in distinguishing RealPEF (1λ,A)
and IdealPEF (1λ,A,SPE) for the simulator above, this implies a distinguisher A′ with the same
advantage for the systems RealPCS(1λ,A) and IdealPCS(1λ,A,SPCS). Similar to the previous
lemma, A′ only has to emulate encryption and key-generation queries towards A. The former
are implemented using PCS key-generation queries, and the latter are implemented using key-
generation queries followed by a corruption query. ⊓⊔

C From Single-Challenge to Multi-Challenge Attribute Hiding Predicate
Encryption

We need a predicate encryption scheme that allows an adversary to adaptively query for many
challenge ciphertexts via a left-or-right oracle, see Definition 2.9. We below present a secret-key
version the definition from [OT12a] that allows for a single challenge query and gives access to
an encryption oracle and a key generation oracle. Afterwards, we prove, via a hybrid argument,
that this implies the notion we use in this work.

Definition C.1 (Single-Challenge Indistinguishability-Based Attribute Hiding). Let
PE = (Setup, KeyGen, Enc, Dec) be a PE scheme for a function family F = {Fλ}λ∈N. For
β ∈ {0, 1}, we define the experiment SC-AHPE

β in Fig. 12, where the advantage of an adversary
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SC-AHPE
β (1λ,A)

msk← Setup(1λ)
(x0, x1, st)← AEnc(msk,·),KeyGen(msk,·)

1 (1λ)
ct← Enc(msk, xβ)
α← AEnc(msk,·),KeyGen(msk,·)

2 (st, ct)
Output: α

Fig. 12: Single-challenge attribute-hiding game of PE.

A is defined as

AdvSC-AH
PE,A (λ) =

∣∣Pr
[
SC-AHPE

0 (1λ,A) = 1
]
− Pr

[
SC-AHPE

1 (1λ,A) = 1
]∣∣.

We call an adversary valid if for the output pair (x0, x1) and for any function f queried to
the key generation oracle KeyGen(msk, ·), we have f(x0) = f(x1) (with probability 1 over the
randomness of the adversary and the involved algorithms).

A predicate-only predicate encryption scheme PE is called single-challenge attribute hiding
if for any valid polynomial-time adversary A, there exists a negligible function negl such that
AdvSC-AH

PE,A (λ) ≤ negl(λ).

Theorem C.2 (From Single-Challenge to Multi-Challenge Attribute Hiding Predi-
cate Encryption). Let PE = (Setup, KeyGen, Enc, Dec) be a PE scheme for a function family
F = {Fλ}λ∈N. If PE is single-challenge attribute hiding, then it is also attribute hiding. More
precisely, for any PPT adversary A, there exits a PPT adversary B such that

AdvAH
PE,A(λ) = q · AdvSC-AH

PE,B (λ),

where q is an upper bound on the number of challenge queries to QEncLRβ by A.

Proof. For every i ∈ {0, . . . , q}, we define the game Gi that corresponds to AHPE
β , where the

oracle QEncLRβ is replaced by an oracle that for the first i queries corresponds to QEncLR0, and
afterwards corresponds to QEncLR1. Note that G0 = AHPE

1 and Gq = AHPE
0 .

For i ∈ {1, . . . , q}, we define an adversary Bi for the SC-AHPE game as follows: Emulate an
execution of A and forward all KeyGen queries to the KeyGen oracle of Bi. For the first i − 1
queries (x0, x1) adversary A makes to QEncLRβ, forward x0 to the oracle Enc. When A makes
the ith such query, return (x0, x1) to the SC-AHPE challenger and give the returned challenge
ciphertext to A. For all remaining queries to QEncLRβ , Bi forwards x1 to the oracle Enc. Finally,
Bi outputs the same α as A.

Note that if Bi is playing the game SC-AHPE
0 , it emulates the game Gi to A, and if it is

playing the game SC-AHPE
1 , it emulates the game Gi−1 to A. Hence,

Pr
[
SC-AHPE

β (1λ,Bi) = 1
]

= Pr
[
Gi−β(1λ,A) = 1

]
.

Further note that Bi is a valid SC-AHPE adversary if A is a valid AHPE adversary: The output
pair (x0, x1) corresponds to a QEncLRβ query from A. Validity of A thus implies that for any
function f queried to the key generation oracle KeyGen, we have f(x0) = f(x1), which is the
validity condition for Bi.
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We finally define the adversary B to pick i ∈ [q] uniformly at random an then execute Bi.
Since all Bi are valid SC-AHPE adversaries, so is B. Furthermore,

AdvSC-AH
PE,B (λ) =

∣∣Pr
[
SC-AHPE

0 (1λ,B) = 1
]
− Pr

[
SC-AHPE

1 (1λ,B) = 1
]∣∣

=
∣∣∣∣∣

q∑
i=1

Pr[i = q] · Pr
[
SC-AHPE

0 (1λ,Bi) = 1
]
−

q∑
i=1

Pr[i = q] · Pr
[
SC-AHPE

1 (1λ,Bi) = 1
]∣∣∣∣∣

= 1
q
·
∣∣∣∣∣

q∑
i=1

Pr
[
Gi(1λ,A) = 1

]
−

q∑
i=1

Pr
[
Gi−1(1λ,A) = 1

]∣∣∣∣∣
= 1

q
·
∣∣Pr

[
Gq(1λ,A) = 1

]
− Pr

[
G0(1λ,A) = 1

]∣∣
=

AdvAH
PE,A(λ)
q

.

This implies AdvAH
PE,A(λ) = q · AdvSC-AH

PE,B (λ) and concludes the proof. ⊓⊔
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