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Abstract

We introduce Pseudo Flawed-smudging Generators (PFGs). A PFG is an expanding
function whose outputs Y satisfy a weak form of pseudo-randomness. Roughly speaking,
for some polynomial bound B, and every distribution χ over B-bounded noise vectors, it
guarantees that the distribution of (e, Y + e) is indistinguishable from that of (e′,Y + e),
where e ← χ is a random sample from χ, and e′ is another independent sample from χ
conditioned on agreeing with e at a few, o(λ), coordinates. In other words, Y “hides” e at all
but a few coordinates. We show that assuming LWE and the existence of constant-locality
Pseudo-Random Generators (PRGs), there is a construction of IO from 1) a PFG that has
polynomial stretch and polynomially bounded outputs, and 2) a Functional Encryption (FE)
scheme able to compute this PFG. Such FE can be built from degree d multilinear map if
the PFG is computable by a degree d polynomial.

Toward basing IO on bilinear maps, inspired by [Ananth et. al. Eprint 2018], we further
consider PFGs with partial pubic input — they have the form g(x,y) and satisfy the
aforementioned pseudo flawed-smudging property even when x is public. When using such
PFGs, it suffices to replace FE with a weaker notion of partially hiding FE (PHFE) whose
decryption reveals the public input x in addition to the output of the computation. We
construct PHFE for polynomials g that are quadratic in the private input y, but have up to
polynomial degree in the public input x, subject to certain size constraints, from the SXDH
assumption over bilinear map groups.

Regarding candidates of PFGs with partial public input, we note that the family of
cubic polynomials proposed by Ananth et. al. can serve as candidate PFGs, and can be
evaluated by our PHFE from bilinear maps. Toward having more candidates, we present a
transformation for converting the private input x of a constant-degree PFG g(x,y) into a
public input, by hiding x as noises in LWE samples, provided that x is sampled from a LWE
noise distribution and g satisfies a stronger security property.
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1 Introduction

Indistinguishability obfuscation (IO), first defined in the seminal work of Barak et. al. [BGI+01],
aims to obfuscate functionally equivalent programs into indistinguishable ones while preserving
functionality. IO is an extraordinarily powerful object that has been shown to enable a large set
of new cryptographic applications.

The first-generation IO constructions [GGH+13,BR14,BGK+14,PST14,AGIS14,GLSW15,
Zim15,AB15,GMM+16,DGG+16] rely on polynomial-degree multilinear maps or graded encodings.
An L-linear map [BS03] essentially allows to evaluate degree-L polynomials on secret encoded
values, and to test whether the output of such polynomials is zero or not. While bilinear maps (i.e.,
L = 2) can be efficiently instantiated from elliptic curves, instantiation of L-linear maps for L ≥ 3
has remained elusive — so far, vulnerabilities [CHL+15,CGH+15,MSZ16,CGH17,ADGM17]
were demonstrated against all known candidates [CLT13,LSS14,GGH15,CLT15]. Of course, this
does not mean that the resulting IO constructions are insecure; in particular, the construction
of [GMM+16] is formally shown to withstand all existing attacks.

A line of recent works [Lin16, LV16, Lin17,AS17] aimed at finding the minimal degree of
multilinear maps sufficient for constructing IO, and has successfully reduced the required degree
to L = 3. A key ingredient in these second-generation constructions are PRGs with small
locality1. They showed that to construct IO, it suffices to have multilinear maps with degree
matching exactly the locality of the PRG [Lin16, AS17], or even a relaxed notion of block
locality [LT17]. These constructions essentially use degree-L multilinear maps to evaluate a PRG
with (block-)locality L, and then bootstrap from there to hide arbitrary complex computation.
Unfortunately, the locality of a PRG cannot be smaller than 5 [CM01,MST03], and recent
attacks [LV17,BBKK18] showed that block-locality cannot be smaller than 3. This raises the
following natural question:

Are there different types of simple PRGs with weak security that are useful for
building IO from trilinear maps? or even bilinear maps?

Flawed-Smudging Generators. Toward answering these questions, we propose Pseudo
Flawed-smudging Generators (PFGs) that have much weaker security requirements than pseudo-
randomness and different structural properties from local PRGs. More specifically, they are
polynomially expanding functions from n input elements to m = n1+α output elements (where
n,m are parameterized by the security parameter λ), satisfying a weak form of pseudo ran-
domness that we call pseudo flawed-smudging (described shortly below). To construct IO from
d-linear maps, we need PFGs that are computable by low degree d polynomials over Zp (with no
restriction on locality) and have polynomially bounded outputs (i.e., every output element is an
integer of polynomial magnitude). As such, they can be computed in the exponent of d-linear
map groups, and their outputs can be extracted via brute force discrete logarithm.

The pseudo flawed-smudging property guarantees that the outputs of a PFG (on inputs
from a specific distribution) can “smudge”, or flood, a small noise vector, at all but a few, o(λ),
coordinates. More precisely, its output distribution is indistinguishable to a, so-called, flawed-
smudging distribution Y ← Y, satisfying that for some polynomial B, and every B-bounded
noise vector distribution e← χ, Y + e “hides” the value of the noise vector e at all but a few
coordinates: There is a random variable I correlated with e,Y, representing a small, |I| = o(λ),

1A function has locality ` if every output element depends on at most ` input elements
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subset of “compromised” coordinates, so that the joint distribution of (I, e,Y + e) is statistically
close to that of (I, e′,Y + e), where e′ is a fresh new sample from χ conditioned on agreeing
with e at coordinates in I (i.e., e′i = ei for all i ∈ I):

{ I, e, Y + e } ≈s
{
I, e′, Y + e

}
, where e′ ← χ|eI ,I .

In short, given Y + e, the noise vector e remains randomly distributed, up to a few coordinates
being fixed.

In the literature, noise smudging (or noise flooding) is a commonly used technique for hiding
small noises in LWE samples, which is also our purpose. However, the smudging distributions
used in the literature usually have super-polynomially large output elements (for instance, a
discrete Gaussian with super-polynomial standard deviation, or a uniform distribution over a
consecutive super-polynomial sized support). A sample Y from such distributions can hide a
small noise vector e entirely at all coordinates (with overwhelming probability), in the sense
that (e,Y + e) ≈ (e′,Y + e) for a completely independent e′ ← χ. In fact, to hide the noise
vectors e entirely, it is necessary that Y is super-polynomially large. This highlights the key
rationale behind the definition of flawed-smudging distributions — when the smudging distribution
is polynomially bounded, it inevitably “reveals” the noise vector e at some coordinates with
non-negligible probability.

The fact that PFG has polynomially small outputs is crucial for evaluating it in the exponent
of multilinear map groups and extracting the outputs. Leveraging this, if degree 3 (or generally
d) PFGs exist, we give a new approach for building IO from trilinear maps (or d-linear map).
Natural candidate (degree d) PFGs are random (degree d) multivariate polynomials with small
inputs and coefficients. Evaluating such polynomials over Zp with large modulus does not trigger
wrap-around and the outputs are guaranteed to be small.

Toward Bilinear Maps. Ideally, we would like to have degree 2 PFGs, to obtain IO from
bilinear maps. However, it has already been shown that random Multivariate Quadratic (MQ)
polynomials with small inputs and coefficients are not secure [BHK+18]. The work of [AJKS18]
proposed a variant of the natural candidate that is a degree 3 multilinear polynomial g(x,y, z)
over three input vectors, where the first input x can be made public without hurting the weak
pseudo-randomness properties of g’s output. Thanks to the fact that computation on the private
inputs y, z is only quadratic, they construct a Functional Encryption (FE) scheme for evaluating
such functions, in the generic bilinear map model.

Inspired by their proposal and the notion of partial hiding predicate encryption of [GVW15],
we consider the generalization — partially-hiding FE, which is implicit in [GVW12]; they can
evaluate functions g(x,y) and guarantee that ciphertexts and secret keys reveal only the outputs
and part of its input x, referred to as the public input, while hiding the remaining part y, referred
to as the private input. Partially-hiding FE naturally interpolates attribute-based encryption and
functional encryption — if the public input x is empty, it is equivalent to functional encryption,
and if g is such that it outputs y when some predicate on c outputs 1, then it corresponds to
attribute-based encryption.

Using just bilinear map groups where the SXDH assumption holds, we implement partially-
hiding FE supporting the computation of g = q(f(x),y) that first performs a complex, up
to polynomial degree, computation f on the public input, followed by a simple, quadratic,
computation q with the private input, and f is a formula with width bounded by max(|x|, |y|)2.
We can use this partially-hiding FE to evaluate PFGs computable by such function g, including
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the candidate proposed in [AJKS18]. To extend the repertoire of potential candidates, we describe
a transformation for turning g(x,y) with no public input into h(c,y′) with a public input by
hiding x in LWE samples c. This method is implicit in the candidate of [AJKS18].

1.1 Our Results in More Detail

We describe our results in two parts; Part 1 contains results appeared in our previous Eprint
version and Part 2 is new in this version2.

Part 1: FE from degree-d PFG and d-linear map. Leveraging the simple structure of
PFGs, we construct secret-key functional encryption schemes for computing polynomial-sized
NC1 circuits with sublinearly compact ciphertexts whose sizes grow polynomially in the security
parameter λ and input length N , and sublinearly in the size S of the circuits computed.3

Our schemes satisfy standard 1-key (fully-selective) indistinguishability security, based on the
assumptions summarized in the following theorem.

Theorem 1.1 (Informal). Assume the LWE assumption, the SXDH assumption over asymmetric
d-linear map groups of order p, the existence of a family of constant-locality PRGs (with mild
structural properties described below), and a family of Pseudo Flawed-smudging Generators
computable by degree d polynomials over Zp with polynomially bounded outputs. There is a
construction of secret-key functional encryption schemes for computing polynomial-sized circuits
in NC1, with sublinearly compact ciphertexts and 1-key fully selective indistinguishability security.

If all assumptions and primitives are subexponentially secure, so are the functional encryption
schemes.

The above theorem relies on a family of PRGs mapping n bits to n1+α bits for an arbitrarily
small constant α, where every PRG is defined by a predicate P and an input-output dependency
graph G, such that the i’th output bit yi = P (sdG(i)) is computed by evaluating the predicate P
on a subset of seed bits sdG(i) specified by G(i). We require the output locality (i.e., maxi |G(i)|)
to be a constant, and the input locality (i.e., the maximal number of output bits that an input bit
influences) to be bounded by o(n1−α). Most candidate constant-locality PRGs [Gol00,MST03,
OW14,AL16] satisfy these structural properties. In particular, the input-output dependency graph
is often chosen at random in which case the input locality is indeed bounded by o(n1−α). The
security of local PRGs, especially ones with large constant locality, has been studied extensively,
for instance in [CM01,MST03,CEMT09,BQ12,OW14,AL16].

Previous works [AJ15,BV15,LPST16b,LPST16a,BNPW16,KNT18] showed that functional
encryption schemes with sublinearly compact ciphertexts and subexponential security imply
indistinguishability obfuscation. We thus get the following corollary.

Corollary 1.2 (Informal). Assume the same assumptions as in Theorem 1.1, all with subex-
ponential security. Then, there is a construction of subexponentially secure indistinguishability
obfuscation for polynomial-sized circuits.

2The results in Part 1 are concurrent and independent with the work by Ananth et. al. [AJKS18], and the
results in Part 2 are follow-up to their work.

3In [BV15,AJ15], the notion of compactness requires the encryption time to be poly(λ,N)S1−ε, where N and
S are respectively the input length and size of the computation. However, in later works [LPST16b,LPST16a,
BNPW16,BLP17], a more relaxed notion of compactness was considered which only requires the ciphertext size
to be mildly compact, and allows encryption time to depend polynomially on S. We use the relaxed notion in this
work.
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Our techniques for achieving Theorem 1.1 gives a new way of constructing compact functional
encryption, that instead of performing the computation y = f(x) in the exponent of multi-linear
map groups, performs the computation using homomorphic encryption, and uses multi-linear
maps only to decrypt; for most HE schemes, decryption involves a linear opeartion, which already
reveals the output perturbed by a small noise y + 2e. In order to ensure that only the output
is revealed, the multi-linear map is used to additionally evaluate PFGs and add the generated
smudging noises Y to the decryption output y + 2e + 2Y to hide e. Therefore, the degree of the
PFG determines the degree of the multi-linear map. More specifically, we use FE for computing
degree-d polynomials, or degree-d FE, for short to evaluate PFG, which in turn can be based on
degree-d multilinear map [AS17,Lin17].

Preliminary Study of PFGs. A natural class of candidate degree-d PFGs is random degree-d
multivariate polynomials g(x) with small inputs and coefficients. More specifically, for every l,
the l’th output noise is computed by gl(xG(l)), where the function gl, the input x, and the input-
output dependency graph G can all be sampled from some distribution. For instance, we can
consider constant degree d = O(1) polynomials gl(x1,x2, · · ·xd) =

∑
i1,··· ,id ci1,··· ,idx

1
i1
· · ·xdid with

inputs and coefficients sampled from some polynomially bounded distribution. The advantage of
having small inputs and coefficients is that, when the degree is a constant, the outputs are kept
small. The disadvantage is that the computation never triggers wrap-around modulo p, which
may be beneficial for security. Indeed, the degree 2 polynomials gl(x,y) =

∑
i,j ci,jxiyj with

small inputs and coefficients from distributions proposed in recent works, including an earlier
version of this work, were broken [BHK+18].

We further study properties of flawed-smudging distributions. First, we show that distributions
in the following class are flawed-smudging: Y is the product Y = Y1 × · · · × Ym of independent
distributions Yi for sampling individual smudging noises such that the statistical distance
δ(Yi,Yi + e) between Yi and Yi shifted by a small noise e ∈ [−B,B] ∩ Z is bounded by a
sufficiently small inverse polynomial. (For example, Yi could be a polynomially wide Gaussian
distribution over Z, or a uniform distribution over a polynomially sized consecutive integer
interval.) Secondly, we show that the flawed-smudging property is preserved under addition with
an independent distribution, and under convex combinations. This property can help us combine
multiple PFG candidates, or a PFG candidate and an independent function to enhance security.

Part 2: Toward Bilinear Maps — Partially-Hiding Functional Encryption and Weak-
ening PFGs. Toward the goal of relying only on bilinear maps, it is important to extend the
class of PFGs that can be evaluated using bilinear maps as much as possible. As mentioned
above, inspired by [GVW15,AJKS18], we consider Partially-Hiding FE (PHFE) that computes
functions g(x,y) in a way revealing the output and also the public input x, while hiding the
private input y. (See Section 4 for the formal definition.) We first show that using only bilinear
maps, we can have PHFE for polynomials that are quadratic in its private input and linear in its
public input.

Theorem 1.3 (Informal). Assume the SXDH assumption over asymmetric bilinear map of
order p. There is a construction of secret-key partially-hiding functional encryption schemes
for computing polynomials g(x,y, z) over Zp that are multilinear in x, y, and z, and have
polynomially bounded outputs. The encryption time is poly(λ)N , where N is the length of the
inputs N ≥ max(|x|, |y|, |z|).

Our construction improves that of [AJKS18] for the same class of polynomials in terms of
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assumptions — their scheme is proven secure in the generic bilinear map model, whereas we rely
on the SXDH assumption.

Next, building upon the above scheme for degree 3 multilinear polynomial, we construct
PHFE for functions g with up to polynomial degree in the public input x, using still bilinear
maps. However, we cannot handle the general case, and need to put certain constraints on g, as
described below.

Theorem 1.4 (Informal). Assume SXDH over asymmetric bilinear maps of order p. There is a
construction of secret-key partially-hiding functional encryption schemes for computing arithmetic
formulas with fan-in 2 multiplication and unbounded fan-in addition over Zp of form:

• g(x,y, z) = q(f(x),y, z), where q is multilinear, and f has logarithmic O(log λ) multiplica-
tive depth, and the output length of g and the width of f are bounded by N2, where N is
the input length N ≥ max(|x|, |y|, |z|).

The encryption time poly(λ)N .

Weakening PFGs — 1) Allow Public Input. We can use the above PHFE scheme from bilinear
map to evaluate any PFG g(x,y, z) = q(f(x),y, z) that has a public input x and satisfies the
special form specified in Theorem 1.4; in particular, for a PFG with N1+ε-stretch, to satisfy the
constraint on the width of f , it suffices to require that every output noise gl is computed by a
formula of size N1−ε (which bounds the width of f).

Weakening PFGs — 2) Transformation for Converting Private Input to Public Input. We now
describe a transformation that turns a private input into a public input. Our transforma-
tion is inspired by the ∆RG candidate of [AJKS18]. As a warm-up, consider a multilinear
polynomial g(x,y, z) where all three inputs vectors are private and x is sampled from a LWE
noise distribution. The key idea is that we can hide x in LWE samples ci = (ai,ais

′ + xi) mod p
as the noise terms. Then computing g translates into computing another function h where xi is
replaced with 〈ci, s〉 mod p for s = (−s′||1),

h(c, y′ = (y ⊗ s), z) :=
∑
j

sjg(c?,j ,y, z) = g ({〈ci, s〉}i ,y, z) = g(x,y, z) (mod p) ,

where c?,j is the vector containing the j’th element of all LWE samples. By providing the tensor
y ⊗ s as input, the polynomial h remains multilinear. Also, note that its computation triggers
wrap-around modulo p due to LWE “decryption”. For h to be secure at the presence its public
input, it means that the output of g is indistinguishable to a pseudo-smudging distribution, say
X , even when its first input is hidden in some LWE samples,

{ g(x,y, z), {ci = (ai,ais + xi)}i } ≈ { ∆← X , {ci = (ai,ais + xi)} }

Naturally, this heuristic can be applied to any g(x1, · · · ,xd,y, z) that is multilinear in d+ 2
inputs for some constant d = O(1), by defining h as below with the first d inputs public

h
(
c = (c1, · · · , cd), y′ = (y ⊗ s(d/2)), z′ = (z⊗ s(d/2))

)
:=

∑
j1,···jd

sj1 · · · sjdg(c1
?,j1 , · · · , c

d
?,jd

,y, z) = g(x1, · · · ,xd,y, z) ,
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where every xk is embedded in LWE samples {cki } with secret s, as noises, and s(α) denotes the
vector obtained after tensoring s for α times. Again, h is multilinear in c1, · · · , cd,y′, z′ and it is
secure at the presence of c, as long as g satisifies similarly as above{

g(x1, · · · ,xd,y, z), {cki = (aki ,a
k
i s
′ + xki )}i

}
≈
{

∆← X , {cki = (aki ,a
k
i s
′ + xki )}

}
.

Finally, if g is a constant-degree polynomial satisfying the constraints in Theorem 1.3 or 1.4,
then its transformed function h can be evaluated using the PHFE provided by these theorems.

Weakening PFGs — 3) Flawed Smudging with only 1/poly(λ) Probability. Inspired by the no-
tion of ∆RG in [AJKS18], we further weaken our notion of PFG to have outputs indistinguishable
from a distribution that is flawed-smudging only with polynomial probability. We show that our
techniques for handling PFGs readily extend to handle also these weaker PFGs, which are hence
also sufficient for constructing FE and IO.

1.2 Our Techniques

Part 1: FE from degree-d PFG and d-linear maps. Toward constructing functional
encryption schemes for NC1, we follow the same two-step approach as previous works [Lin16,
LV16, Lin17, AS17]: First construct functional encryption schemes for computing constant-
degree polynomials, or constant-degree FE for short; then bootstrap constant-degree FE to
FE for computing NC1 circuits. The key technical difference lies in how the computation of
FE is performed. Current constructions of compact (or collusion resistant) FE all perform the
computation to be done in the exponent of multilinear map groups. In this work, we explore
a different, extremely natural, approach of performing the computation using a Homomorphic
Encryption (HE).

FE via Homomorphic Encryption and Noisy Linear FE. Several previous works [GVW12,GVW15,
GKP+13,AR17,Agr18b] have already explored this natural approach in the context of FE. The
rough template is as follows: Let the FE scheme encrypt an input x using an HE scheme
and a secret vector s. To compute a function f on x, the decryptor can homomorphically
evaluate f on x and obtain a ciphertext ctf encrypting the output y. The challenges are 1)
privacy — how to decrypt ctf in a secure way that reveals only y and hides all other information
of x, and 2) integrity — how to enforce that only ciphertexts associated with a “legitimate”
function f (ones for which secret keys are generated) can be decrypted. The challenges are
made harder by the fact that full-fledged HE decryption is a NC1 computation. Previous
works [GVW12,GKP+13,GVW15,AR17,Agr18b] proposed novel ways for achieving them, using
a variety of tools from garbled circuits, partial hiding predicate encryption, to noisy linear FE.
Unfortunately, the resulting FE schemes fall short in either compactness, or full security, or
relying on low degree MMap. Built upon them, our constant-degree FE scheme extends their
methods to achieve all three desiderata.

Observe that the decryption of most HE schemes, such as [BV11,BGV12], involves i) a simple
linear operation, such as 〈ctf , s〉 that produces an approximate output, y + 2e, perturbed by
a small noise vector e, ii) followed by a threshold function (complex, in NC1) to remove the
noise. It is tempting to ignore the threshold function, and just half-decrypt ctf using a linear
FE (encrypting s) to obtain the approximate output. But the noise e is sensitive, revealing
information about the input x, the HE secret s, and the noises used for generating the original
ciphertext encrypting x. On the other hand, removing the noise e has high complexity. The

9



works of [AR17,Agr18b] suggest to hide e using another bigger smuding noise — compute instead
the approximate output y + 2e + 2Y further shifted by a large noise Y that hides e. Toward
this, Agrawal [Agr18b] introduced the notion of noisy linear FE, which adds a fresh noise to the
decrypted output of every pair of ciphertext and secret key.

However, to implement noisy linear FE, where do these smudging noises come from? If there
are n ciphertexts and n secret keys, we need n2 fresh noises. Agrawal [Agr18b] suggests to
generate them using a low-degree noise generator (similar to our PFG) and a matching low-degree
FE to perform both the linear half-decryption and noise generation. This already seems to
give a way to implement noisy linear FE using low-degree MMaps. However, a more careful
examination reveals a dilemma: Current MMap-based FE schemes can only evaluate polynomials
whose outputs are polynomially bounded; but, a polynomially-bounded smudging noise Y cannot
hide e entirely. Agrawral circumvents the problem by implementing low-degree FE supporting
super-polynomially sized outputs from a new lattice assumption.

Weak and Leaky Constant-Degree FE. We instead ask whether we can, sticking to MMap-based
FE and using noises Y that only partially hide e, still achieve meaningful security. More precisely,
we use our Pseudo-Flawed-smudging Generator, which has only polynomially-bounded outputs,
and ensures that e + Y hides e at all but a few coordinates. Since revealing e at even one
coordinate violates the standard security requirement of FE, we aim for what is the best possible
— ensuring that revealing e at a few coordinates translates to revealing the input x at a few
coordinates. By using an HE scheme that is robust to leakage, we show that this is possible,
and construct constant-degree FE with (1-key) weak and leaky simulation security. Roughly
speaking, it guarantees that a tuple (mpk, skf , ctx) consisting of an honestly generated master
public key mpk, a secret key skf for a distributional function f ← FN , and a ciphertext ctx for
a distributional input x← X , can be simulated by a simulator Sim using the output y = f(x) of
a randomly sampled x conditioned on its value being fixed at a few coordinates. More precisely,
there is a distribution Fix over the fixed coordinates K and values x∗, such that |K| = o(λ), and

{ x, mpk, skf , ctx } ≈ { x, Sim ((x∗,K), f, y = f(x))} ,
where (x∗,K)← Fix, and x← X|x∗,K .

In other words, given mpk, skf , ctx, the encrypted input x appears random up to a few coordinates
being fixed, and the output being y.

HE schemes robust to leakage can be instantiated using the [BV11,BGV12] schemes based on
LWE, thanks to the robustness of LWE itself. When the LWE secret s comes from a small domain
(e.g., s is binary), the hardness of LWE holds as long as s has sufficient entropy, and does not
necessarily need to be uniformly random [GKPV10,AKPW13]. Furthermore, for the construction
of weak and leaky constant-degree FE to go through, we need a slightly stronger version of the
flawed-smudging property: Consider a B-bounded noise vector distribution χ = e(R) where
the noise e is a function over another distributional secret w← R; there is again a correlated
random variable I such that

{ I, w, Y + e(w) } ≈
{
I, w′, Y + e(w)

}
, where w′ ← χ|wI ,I .

This means given Y + e(w), only a few coordinates of the secret w get fixed and leaked. In our
construction of constant-degree FE, we use this guarantee to bound what information of the HE
input x and secret s is fixed and leaked through leakage of the noise e in the ciphertext obtained
via homomorphic evaluation. We further show that the above stronger flawed-smudging property
in fact follows from the normal flawed-smudging property that is agnostic of how e is generated.
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Bootstrapping from Weak and Leaky Constant-Degree FE. We next present a new bootstrapping
technique to FE for NC1 from weak and leaky constant-degree FE. Our bootstrapping follows
the same paradigm as previous works [Lin16,LV16,Lin17,AS17,LV17] — it uses a randomized
encoding [IK02,AIK04] to transform a NC1 computation g(v) into a simple constant-degree
polynomial ĝ(v; r), and uses a constant locality PRG to supply pseudorandom coins r = PRG(sd)
needed for the randomized encoding. The fact that the underlying constant-degree FE is weak
and leaky means both the input v, as well as the PRG seed sd may be fixed and leaked at a few
coordinates. To deal with this, we introduce a new primitive called Bit-Fixing Homomorphic
Sharing in order to make the original computation g robust.

Our bit-fixing homomorphic sharing resembles the recent new concept of Homomorphic Secret
Sharing (HSS) [BGI15] in syntax, but differs in security and efficiency requirements. It enables
compiling a single computation g(v) into a collection of computations o1 = h1(x1), . . . , oT =
hT (xT ) that operates on a secret sharing x1, . . . , xT of the original input v, and from the collection
of outputs o1, . . . , oT , the original output g(v) can be reconstructed. Security ensures that the
original input v remains hidden, given all output shares o1, . . . , oT and a small subset of input
shares (whereas HSS only guarantees that the input remains hidden given a subset of input
shares, without the output shares). Moreover, the security is robust to a few bits in the input
shares being fixed. We give a construction of bit-fixing homomorphic sharing from multi-key
FHE with threshold decryption as constructed in [MW16].

Next, we use the weak and leaky constant-degree FE to compute the randomized encoding
of the compiled computations

{
ĥi(xi ; ri)

}
. Through careful analysis, we show that the weak

security of constant-degree FE only leads to a small subset of the computation oi = hi(xi) being
“corrupted”, meaning the input share xi is revealed or some bits of xi are fixed. It then follows
from the security of bit-fixing homomorphic sharing that the original input v remains hidden.

Part 2: Partially-Hiding Functional Encryption. There are known constructions of FE
for quadratic polynomials from bilinear maps [Lin17, BCFG17]. It turns out that a simple
modification of the scheme by [Lin17] allows for adding a public input and performing a linear
computation on it. This yields our PHFE scheme for degree 3 multilinear polynomials g(x,y, z)
with x public in Theorem 1.3.

Next, toward Theorem 1.4, we build PHFE for computing arithmetic formulas g(x,y, z) =
q(f(x),y, z) with complex computation f on the public input x. We design a recursive con-
struction that reduce the depth Dep of f at every level, until reaching the base case where g is
just degree 3 and multilinear. To see how recursion happens, consider an output element gi of
g. Since q is linear in f(x), we can write gi as gi =

∑
j∈[k] αijfij + βi, where coefficients αij , βi

depend only on y, z, and fij depends only on x. We further decompose the computation of an
output element fl of f . Since fl has multiplicative depth Dep, it can always be computed in
degree 2 from intermediate results that have multiplicative depth Dep− 1; written in the form of
inner product, we have fl =

〈
fDep−1
l,0 , fDep−1

l,1

〉
where the two vectors denote the intermediate

results with multiplicative depth Dep− 1 involved for computing fl. Plugging this in, we have
that

gi =
∑
j∈[k]

αij

〈
fDep−1
ij ,0

, fDep−1
ij ,1

〉
+ βi = 〈U,V〉 ,

where U = · · · || αijf
Dep−1
ij ,0

|| · · · || βi, V = · · · || fDep−1
ij ,1

|| · · · || 1.
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Now we have reduced the computation of g with depth Dep to the computation of vectors V,U
with depth Dep− 1. This suggests that we can recursively reduce the depth of the computation
fDep−1 on the public input until it becomes linear, which can then be handled by PHFE for
degree 3 multilinear polynomials.

However, one problem is that we cannot leak information of U, which in turn reveals
information of the private inputs y, z through the values of α and β. This problem can be
solved by instead computing U one-time-padded with a random vector t, together with the inner
product of t with V. From U + t and 〈t,V〉, one can only compute gi. The next problem is:
where does t come from? It can only be provided in the ciphertext, but if so, the ciphertext
would be as large as the width of f . We alleviate this problem by setting t = t0 ⊗ t1 as the
tensor product of much shorter random vectors. Since in our construction U + t and 〈t,V〉
are computed in the exponent of bilinear map groups, by the SXDH assumption, t = t0 ⊗ t1 is
pseudo-random in the exponent. Now the length of the ciphertext with tb encoded inside only
scales with

√
width(f), which is N if width(f) is bounded by N2. This gives the high-level ideas.

See Section 4 for the formal construction.

1.3 Related Works

As mentioned above, the approach of using a homomorphic encryption scheme to construct
functional encryption has already been explored in several works [GVW12,GKP+13,GVW15,
AR17,Agr18a]. As discussed before, the challenge are twofold: 1) privacy — decrypt a ciphertext
ctf encrypting output y securely revealing only y, and 2) integrity — enforce that only ciphertexts
for “legitimate” function f (ones for which secret keys are generated) can be decrypted. Below,
we briefly discuss techniques in previous works.

Gorbunov, Vaikuntanathan, and Wee [GVW12] give a bootstrapping theorem from a FE
scheme able to 1) perform homomorphic evaluation of a function f on public HE ciphertext ct,
followed by 2) full HE decryption in NC1 to FE for P . The starting point FE is essentially a
PHFE scheme, though they did not explicitly define it. The bootstrapping works by letting the
FE for P/poly encrypt the input x using a HE scheme, and then uses the PHFE to perform both
the public HE homomorphic evaluation and the private HE decryption, which guarantees both
privacy and integrity. However, this PHFE is for an very complex computation.

The work of Goldwasser et al. [GKP+13] took a different approach to perform homomorphic
evaluation and decryption, using respectively attribute-based encryption and garbled circuits
(with the HE secret s hard-coded). The former ensures integrity while the latter ensures privacy.
However, since each garbled circuit can only be used to decrypt a single HE ciphertext, to
compute a function with M output elements, the ciphertext must include M garbled circuits.
Thus, their FE scheme has non-compact ciphertexts,4 which are insufficient for constructing IO.

Gorbunov, Vaikuntanathan, and Wee [GVW15] made the crucial observation that for all
known HE schemes, decryption corresponds to computing an inner product followed by a threshold
function. Furthermore, there are lattice-based constructions of predicate encryption schemes
for threshold of inner product [AFV11,GMW15]. Building upon techniques from latter works,
they constructed predicate encryption schemes for P/poly, which is weaker than functional
encryption in the sense that it only guarantees “one-sided” security, that is, privacy of inputs is
only guaranteed if the secret key released is for a function that evaluates to the zero vector on

4In their language, the FE scheme handles bounded collusion, where the ciphertext size scales with the number
of secret keys released.
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the inputs. Otherwise, given a secret key that evaluates to a non-zero vector, the attacker would
not only learn the output of the function, but also some HE decryption noises. In this case, their
scheme does not guarantee security; in fact, concrete attacks have been demonstrated [Agr17].
In the context of FE, we would need FE for threshold of inner products, which is only known
under IO or poly-degree multilinear maps.

In the work of [AR17], to ensure privacy of HE decryption, they use an FE scheme to
perform linear HE decryption and add super-polynomially large smudging noises Y to hide the
decryption noise e. In their scheme, the smudging noises Y are sampled and encoded into the
ciphertext. As a result, the ciphertext size grows with the output length of the computation,
which is non-compact. Moreover, they also use a new approach to ensure integrity. Instead
of relying on primitives, such as, attribute based encryption or PHFE, to ensure integrity as
in [GVW12,GKP+13,GVW15]. They employ a special HE scheme whose decryption equation
has form y + e = cf −Afs, where Af depends only on the public and reusable random matrix
A in LWE samples and the evaluated function f . Thus, to ensure integrity, it suffices to enforce
that only linear functions Afs for legitimate f can be evaluated on s.

Comparison with the work by Agrawal [Agr18a]. Following [AR17], to obtain compact
ciphertexts, Agrawal [Agr18b] (an early version of [Agr18a] was shared with us by the author)
proposed the approach of using a noise generator to generate Y. As an abstraction of that, she
introduced the notion of noisy linear functional encryption that adds the smudging noises Y to the
outputs. The noise generator in [Agr18b] is able to produce super-polynomially large smudging
noises, and she proposes a constant degree FE scheme supporting super-polynomially large
outputs from a new assumption on NTRU Rings. In this work, we explore what happens when
Y is polynomially bounded and e may be leaked, which allows us to use FE schemes supporting
only polynomially large outputs from multilinear maps. In the recent updated version [Agr18a],
Agrawal adds that her construction is compatible with the approach of [AJKS18] using ∆RG
with polynomially large outputs and weak security, and later amplify the security of FE in a
black-box way. (This update is concurrent to our work.)

Comparison with the work by Ananth et. al. [AJKS18]. Ananth et al. [AJKS18]
construct IO from (subexponentially-secure) bilinear maps, LWE, block-locality 3 PRGs, and
a new type of randomness generator, called perturbation resilient generator (∆RG). A ∆RG,
introduced in the new work [AJKS18], is a polynomially expanding function, satisfying that for
every integer vector e ∈ Z` with coordinates bounded by some polynomial, efficient distinguishers
can only distinguish ∆RG(sd) and ∆RG(sd) + e with advantage at most 1− 1/poly(λ). Using
these tools they construct FE for computing degree-3 polynomials, and then apply a known
bootstrapping theorem [LT17] to obtain IO. For their construction of degree-3 FE, they need
the ∆RG to be computable by a cubic multilinear polynomial g(x,y,y) where x is public. They
further construct a FE scheme for computing these functions in the generic bilinear map model.

We now compare our notion of PFGs with their ∆RGs. Both notions are geared for the
purpose of generating a smudging noise Y to hide a small polynomially bounded noise e,
however, with different guarantees. PFGs ensure that given Y + e, only a few coordinates of
e are compromised, and the rest remain hidden. On the other hand, a ∆RG ensures that all
coordinates are simultaneously hidden with some polynomial probability.

Besides the use of different weak notions of randomness generator, other differences include: i)
We rely on constant-locality PRGs with mild structural properties, while they use block-locality
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3 PRGs. ii) We rely on the SXDH assumption over bilinear pairing groups, while they show
security in the generic bilinear map model.

In terms of techniques, both works start with constructing some weak notions of FE: We
construct FE for constant-degree polynomials that may leak a small portion of the input, whereas
Ananth et al. construct FE for degree 3 polynomials that bounds the adversarial advantage
only by 1− 1/poly(λ). They then use the dense model theorem to argue that with probability
1/poly(λ) their FE scheme hides the encrypted input entirely (and with probability 1−1/poly(λ),
it may leak the encrypted input). Both works then design different methods to amplify their
respective weak FE to full-fledged FE. The amplification techniques are similar in parts, for
instance, both works use threshold FHE, but also have differences, for instance, we rely on the
use of random permutations and a careful analysis to ensure that the effect of compromising a
few bits of the seed of a constant-locality PRG can be “controlled”.

The results discussed in the above comparison are concurrent and independent — they
corresponds to Part 1 in our results, described in Section 1.1. After their work and a previous
version of this work appeared on Eprint, inspired by their work, we extended our results, described
in Part 2 in Section 1.1, in the following aspects: 1) we define PHFE and construct it for special
functions with high degree in public input and quadratic in private input from SXDH on bilinear
maps, 2) we consider PFGs with constant degree in the public input and quadratic in private
input, and describe a transformation for converting private inputs into public ones. 3) we show
that weaker PFGs for distributions that are only flawed-smudging with polynomial probability, are
already sufficient for our construction.

1.4 Outline of the Paper

We review some notation and standard cryptographic notions that we use in the paper in Section 2.
In Section 3, we define pseudo flawed-smudging generators (PFGs) and prove some properties of
flawed-smudging distributions. In Section 4, we define partially-hiding FE (PHFE) and provide
constructions for some special classes of functions. In Section 5, we give a definition for noisy
secret-key linear FE (NFE) and show how to construct it from PHFE and PFGs. Section 6
describes the construction of a functional encryption scheme for constant degree polynomials,
which makes use of a NFE scheme. In Section 7, we construct a functional encryption scheme
for NC1 using our FE scheme from Section 6 and additional tools, including bit-fixing homomorphic
sharing, which we introduce in Section 7.1. In Section 8, we finally discuss how to weaken the
requirements of PFGs in our construction.

2 Preliminaries

2.1 Notation and Basic Definitions

We denote by Z the set of integers and by N the set of nonnegative integers. For n, p ∈ N,
[n] := {1, . . . , n}, and bncp denotes the value n reduced modulo p. For a distribution D, x← D
denotes that x is sampled according to D, for a probabilistic algorithm A, y ← A(x) denotes
running A on input x and assigning the output to y, and for a finite set S, x ← S denotes
assigning a uniformly random value from S to x. We use the following notation to denote the
distribution that samples xi ← Di for i ∈ [n] and then outputs f(x1, . . . , xn):{

x1 ← D1, . . . , xn ← Dn : f(x1, . . . , xn)
}
.
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Definition 2.1. LetB, ` be positive integers. We say a vector x = (x1, . . . , x`) ∈ Z` isB-bounded
if |xi| ≤ B for all i ∈ [`]. A distribution D over Z` is B-bounded if Support(D) ⊆ [−B,B]`. For
a vector B = (B1, . . . , B`) ∈ Z`, we say x is B-bounded if |xi| ≤ Bi for all i ∈ [`], and D is
B-bounded if all elements in the support of D are B-bounded.

Definition 2.2 (Statistical Distance). Let X and X ′ be random variables over a discrete set X .
The statistical distance between X and X ′ is defined as

δ(X,X ′) :=
1

2

∑
x∈X
|Pr[X = x]− Pr[X ′ = x]|.

The min-entropy of a random variable X is defined as

H∞(X) := − log
(

max
x

Pr[X = x]
)
.

We further define the conditional min-entropy of X given Z following Dodis et al. [DORS08] as

H∞(X | Z) := − log
(
Ez←Z

[
max
x

Pr[X = x | Z = z]
])
.

We denote by PPT probabilistic polynomial time Turing machines. The term negligible is
used for denoting functions that are (asymptotically) smaller than any inverse polynomial. More
precisely, a function ν from N to reals is called negligible if for every constant c > 0 and all
sufficiently large n, ν(n) < n−c.

Definition 2.3 (µ-indistinguishability). Let µ : N→ [0, 1] be a function. A pair of distribution
ensembles {Xλ}λ∈N, {Yλ}λ∈N are µ-indistinguishable if for every family of polynomial-sized
distinguishers {Dλ}λ∈N, and every sufficiently large security parameter λ ∈ N,∣∣Pr

[
x← Xλ : Dλ(x) = 1

]
− Pr

[
y ← Yλ : Dλ(y) = 1

]∣∣ ≤ O(µ(λ)).

2.2 Learning with Errors

We next state the decisional learning with errors (LWE) assumption, which was introduced by
Regev [Reg05].

Definition 2.4. Let n = n(λ), m = m(λ), and q = q(λ) be integers and let χ = χ(λ) be a
distribution over Zq(λ) for λ ∈ N. Then, the LWEn,m,q,χ assumption with µ-indistinguishability
is that the following distributions are µ-indistinguishable:{

A← Zm×nq ; s← Znq ; e← χm : (A,A · s + e)
}
λ∈N

,{
A← Zm×nq ; u← Zmq : (A,u)

}
λ∈N

.

It has been shown that this assumptions holds when χ is a discrete Gaussian distribution if
certain worst-case lattice problems are hard [Reg05,Pei09].

We further define LWE with weak and leaky secrets, as introduced in the full version
of [AKPW13].
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Definition 2.5 (LWE with Weak and Leaky Secrets). Let n = n(λ), m = m(λ), q = q(λ), and
γ = γ(λ) ∈ (0, q/2)∩Z be integers, let k = k(λ) be a real, and let χ = χ(λ) be a distribution over
Zq(λ) for λ ∈ N. Then, the LWE

WL(γ,k)
n,m,q,χ assumption with µ-indistinguishability states that for all

efficiently samplable correlated random variables (s, aux), where the support of s is [−γ, γ]n ∩Zn
and H∞(s | aux) ≥ k, the following distributions are µ-indistinguishable

(aux,A,A · s + e), (aux,A,u),

where A← Zm×nq , e← χm, and u← Zmq are sampled independently of (s, aux).

2.3 Asymmetric Bilinear Maps and the SXDH Assumption

We first define bilinear maps and then the symmetric external Diffie-Hellman (SXDH) assumption.

Definition 2.6 (Bilinear maps). A bilinear map generator G on input a security parameter 1λ,
outputs (p,G1, G2, G3,pair), where G1, G2, and G3 are (descriptions of) cyclic groups of order p
(which can be prime or composite). The groups G1 and G2 are called source groups, and G3

is called target group. We assume the descriptions of the source groups G1 and G2 contain
generators g1 and g2, respectively. Moreover, pair satisfies the following:

• Admissibility : We have that pair : G1×G2 → G3 is an efficiently computable function such
that g3 := pair(g1, g2) generates G3.

• Bilinearity : For all a1, a2 ∈ Zp, pair(ga1
1 , ga2

2 ) = pair(g1, g2)a1a2 = ga1a2
3 .

In this work, we will use the bracket notation [x]l = gxl to represent elements in group Gl.
We next state the SXDH assumption, which says that the DDH assumption holds in all

source groups.

Definition 2.7 (SXDH assumption). Let G be a bilinear group generator. The SXDH assumption
is that the following two distributions are µ-indistinguishable for all i ∈ {1, 2}:{

params = (p,G1, G2, G3, pair)← G(1λ), a, b← Zp :
(
params, [a]i, [b]i, [ab]i

)}
λ∈N ,{

params = (p,G1, G2, G3, pair)← G(1λ), a, b, c← Zp :
(
params, [a]i, [b]i, [c]i

)}
λ∈N .

2.4 Pseudorandom Generators and Pseudorandom Functions

We review the notion of a pseudorandom generator (PRG) family and its locality.

Definition 2.8 (Family of Pseudorandom Generators (PRGs)). Let n and m be polynomials. A
family of (n,m)-PRGs is an ensemble of distributions PRG = {PRGλ}λ∈N satisfying the following
properties:

Syntax: For every λ ∈ N, every PRG in the support of PRGλ defines a function {0, 1}n(λ) →
{0, 1}m(λ), for which we also write PRG.

Efficiency: There is a uniform Turing machine M satisfying that for every λ ∈ N, every PRG
in the support of PRGλ, and for every x ∈ {0, 1}n(λ), M(PRG, x) runs in time poly(λ) and
we have M(PRG, x) = PRG(x).
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µ-Indistinguishability: The following ensembles are µ-indistinguishable:{
PRG← PRGλ; s← {0, 1}n(λ) : (PRG,PRG(s))

}
λ
,{

PRG← PRGλ; r ← {0, 1}m(λ) : (PRG, r)
}
λ
.

Definition 2.9 (Locality of PRGs). Let n, m, and ` be polynomials. We say a family of
(n,m)-PRGs PRG has locality ` if for every λ and for every PRG in the support of PRGλ, every
output bit of PRG depends on at most `(λ) input bits.

We next define pseudorandom function (PRF) families.

Definition 2.10. For λ ∈ N, let K = K(λ), X = X(λ), and Y = Y (λ) be finite sets, and
let PRF = PRFλ : K ×X → Y be an efficiently computable function. We say (PRFλ)λ∈N is a
pseudorandom function family with µ-indistinguishability if for all PPT algorithms A with access
to an oracle, which is either PRF(K, ·) for K ← K or a truly uniform function X → Y ,∣∣∣Pr

[
K ← K : APRF(K,·)(1λ) = 1

]
− Pr

[
U ← (X → Y ) : AU(·)(1λ) = 1

]∣∣∣ ≤ O(µ(λ)).

2.5 Symmetric Encryption

Now, we give definitions for basic symmetric encryption schemes and IND-CPA-security.

Definition 2.11 (Symmetric encryption). A symmetric encryption scheme Sym consists of the
following PPT algorithms:

• Key Generation: Sym.KeyGen(1λ) on input a security parameter 1λ, outputs a key K.

• Encryption: Sym.Enc(K,m) on input a key K and a message m, outputs a ciphertext c.

• Decryption: Sym.Dec(K, c) on input a key K and a ciphertext c, outputs a message m′.

For correctness, we require for all λ and for all messages m, for K ← Sym.KeyGen(1λ), and
c← Sym.Enc(K,m), that Sym.Dec(K, c) = m with probability 1.

Definition 2.12 (IND-CPA-security). A symmetric encryption scheme Sym = (Sym.KeyGen,
Sym.Enc,Sym.Dec) is µ-IND-CPA-secure if for every PPT adversary A and for every sufficiently
large λ, the advantage of A in the following game is bounded by O(µ(λ)):

• The challenger runs K ← Sym.KeyGen(1λ).

• The adversary A with access to an encryption oracle Sym.Enc(K, ·) chooses a pair of
messages m0,m1 of equal length and sends them to the challenger.

• The challenger samples a bit b← {0, 1}, computes c← Sym.Enc(K,mb), and sends c to A.

• The adversary A again has access to an encryption oracle Sym.Enc(K, ·), and finally outputs
a bit b′.

The advantage of A is defined as

AdvtSymA :=
∣∣2 · Pr[b′ = b]− 1

∣∣.
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2.6 Indistinguishability Obfuscation

We recall the notion of indistinguishability obfuscation for a class of circuits defined by [BGI+01].

Definition 2.13 (Indistinguishability Obfuscator (iO) for a circuit class). A uniform PPT
machine iO is an indistinguishability obfuscator for a class of circuits {Cλ}λ∈N if the following
conditions are satisfied:

Correctness: For all security parameters λ ∈ N, for every C ∈ Cλ, and every input x, we have

Pr[C ′ ← iO(1λ, C) : C ′(x) = C(x)] = 1,

where the probability is taken over the coin-tosses of the obfuscator iO.

µ-Indistinguishability: For every ensemble of pairs of circuits {C0,λ, C1,λ}λ∈N satisfying that
Cb,λ ∈ Cλ, |C0,λ| = |C1,λ|, and C0,λ(x) = C1,λ(x) for every x, the following ensembles of
distributions are µ-indistinguishable:{

C1,λ, C2,λ, iO(1λ, C1,λ)
}
λ∈N ,{

C1,λ, C2,λ, iO(1λ, C2,λ)
}
λ∈N .

Definition 2.14 (IO for P/poly). A uniform PPT machine iOP/poly(?, ?) is an indistinguishability
obfuscator for P/poly if it is an indistinguishability obfuscator for the class {Cλ}λ∈N of circuits
of size at most λ.

2.7 Randomized Encodings

In this section, we recall the traditional definition of randomized encodings with simulation
security [IK02,AIK06].

Definition 2.15 (Randomized encoding scheme for circuits). A randomized encoding scheme
RE consists of the following two PPT algorithms:

• Ĉx ← REnc(1λ, C, x): On input a security parameter 1λ, circuit C, and input x, REnc
generates an encoding Ĉx.

• y = REval(Ĉx): On input Ĉx produced by REnc, REval outputs y.

Correctness: For all security parameters λ ∈ N, circuits C, and inputs x, it holds that

Pr
[
Ĉx ← REnc(1λ, C, x) : Eval(Ĉx) = C(x)

]
= 1.

µ-Simulation Security: There exists a PPT algorithm RSim such that for every ensemble
{Cλ, xλ}λ where |Cλ|, |xλ| ≤ poly(λ), the following ensembles are µ-indistinguishable for
all λ ∈ N : {

Ĉx ← REnc(1λ, C, x) : Ĉx

}
λ∈N

,{
Ĉx ← RSim(1λ, C(x), 1|C|, 1|x|) : Ĉx

}
λ∈N

,

where C = Cλ and x = xλ.

Furthermore, let C be a complexity class. We say that the randomized encoding scheme RE is
in C if the encoding algorithm REnc can be implemented in that complexity class.
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2.8 Functional Encryption

2.8.1 Secret-Key Functional Encryption

We provide the definition of a secret-key functional encryption (FE) scheme, which is an
adaptation of the public-key definition that originally appeared in [BSW11,O’N10]. We further
define indistinguishability-based and simulation-based selective security, for setting in which a
single function key is released, though the function may have multiple output elements. This is
because most part of the paper uses only 1-key FE. Nevertheless, all definitions can be easily
extended to the multi-key setting.

Definition 2.16 (Secret-key FE). Let X = {Xλ}λ∈N and Y = {Yλ}λ∈N be ensembles of sets.
Let F = {Fλ}λ∈N, where every function in the set Fλ maps inputs in Xλ to outputs in Yλ.
A secret-key functional encryption scheme FE for {Fλ}λ∈N consists of four PPT algorithms
(FE.Setup,FE.KeyGen,FE.Enc,FE.Dec) such that

• Setup: FE.Setup(1λ) is an algorithm that on input a security parameter, outputs a master
secret key msk.

• Key Generation: FE.KeyGen(msk, f) on input the master secret key msk and the description
of a function f ∈ Fλ, outputs a secret key skf .

• Encryption: FE.Enc(msk, x) on input the master secret key msk and a message x ∈ Xλ,
outputs an encryption ct of x.

• Decryption: FE.Dec(sk, ct) on input the secret key associated with f and an encryption
of x, outputs y ∈ Yλ.

Correctness. We define perfect correctness here. For every λ, f ∈ Fλ, x ∈ Xλ, it holds that,

Pr

 msk← FE.Setup(1λ)
ct← FE.Enc(msk, x)

sk← FE.KeyGen(msk, f)
: f(x) = FE.Dec(sk, ct)

 = 1.

Indistinguishability security. Indistinguishability security of functional encryption requires
that no adversary can distinguish the FE encryptions of one sequence of inputs x0

1, . . . , x
0
t from

that of another x1
1, . . . , x

1
t , if the adversary only obtains secret keys for functions that yield the

same outputs on x0
i and x1

i for every i.

Definition 2.17 (1-key Sel-Ind-security). A secret-key functional encryption scheme FE =
(FE.Setup,FE.KeyGen,FE.Enc,FE.Dec) for {Fλ}λ∈N is 1-key µ-Sel-Ind-secure, if for every ensemble
of functions {fλ}λ∈N where fλ ∈ Fλ, every polynomial t, and every ensemble of sequences of
pairs of inputs {x0

i,λ, x
1
i,λ}λ∈N,i∈[t(λ)] where x0

i,λ, x
1
i,λ ∈ Xλ and fλ(x0

i,λ) = fλ(x1
i,λ), the following

distributions for b = 0 and b = 1 are µ-indistinguishable:
msk← FE.Setup(1λ)

sk← FE.KeyGen(msk, fλ){
cti ← FE.Enc(msk, xbi,λ)

}
i∈[t(λ)]

: sk, {cti}i∈t(λ)


λ∈N

.
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Note that our notion of fully-selective security is weaker than the notion of selective security
in some papers in the literature (e.g., [GKP+13,ABSV15]), which only requires the adversaries to
choose challenge inputs statically, but allows the adversaries to choose challenge function inputs
adaptively. Intuitively, the notion of fully-selective security is sufficient for applications that are
non-interactive, for instance, building IO from FE as in [AJ15,BV15].

Simulation security. We will also consider 1-key simulation-based security, which essentially
requires that the secret key for a function f and the ciphertext for an input x can be simulated by
a simulator receiving only the output f(x). Our definition is slightly stronger. Since adversaries
do not have the capability of generating ciphertexts in the secret key setting, the definition below
allows the adversaries to see multiple ciphertexts, and the simulator is required to simulate all
ciphertexts using the output for one input, and the other actual inputs.

Definition 2.18 (1-key Sel-Sim-security). A secret-key functional encryption scheme FE =
(FE.Setup,FE.KeyGen,FE.Enc,FE.Dec) for {Fλ}λ∈N is 1-key µ-Sel-Sim-secure, if there is a PPT
universal simulator Sim such that, for every ensemble of functions {fλ}λ∈N where fλ ∈ Fλ, every
ensemble of inputs {x?λ}λ∈N, every polynomial t, and every ensemble of sequences of inputs
{xi,λ}λ∈N,i∈[t(λ)], where x?λ, xi,λ ∈ Xλ, the following distributions are µ-indistinguishable:

msk← FE.Setup(1λ)
sk← FE.KeyGen(msk, fλ)

ct? ← FE.Enc(msk, x?λ)
{cti ← FE.Enc(msk, xi,λ)}i∈[t(λ)]

: sk, ct?, {cti}i∈[t(λ)]


λ∈N

,

{
Sim

(
fλ, fλ (x?λ) , {xi,λ}i∈[t(λ)]

) }
λ∈N

.

Function Hiding. In the literature, there is also a stronger notion of security for secret key
FE, called function hiding5, which roughly speaking requires the scheme to hide both information
of the encrypted inputs, as well as, the functions encoded in secret keys. We now define the
notion of function hiding in the fully selective and multi-key setting.

Definition 2.19 (Function hiding). A secret-key FE scheme FE = (FE.Setup,FE.KeyGen,FE.Enc,
FE.Dec) for {Fλ}λ∈N is µ-Sel-FH, if for every polynomial t, every {f0

i,λ, f
1
i,λ}i∈[t(λ)],λ∈N, and every

{x0
i,λ, x

1
i,λ}λ∈N,i∈[t(λ)], where f0

i,λ, f
1
i,λ ∈ Fλ, x0

i,λ, x
1
i,λ ∈ Xλ and f0

λ(x0
i,λ) = f1

λ(x1
i,λ), the following

distributions for b = 0 and b = 1 are µ-indistinguishable:


msk← FE.Setup(1λ){

ski ← FE.KeyGen(msk, f bi,λ)
}
i∈[t(λ)]{

cti ← FE.Enc(msk, xbi,λ)
}
i∈[t(λ)]

: {sk}i∈t(λ) , {cti}i∈t(λ)


λ∈N

.

2.8.2 FE for P/poly, NC1, and Inner Products, and Compactness

Definition 2.20 (FE schemes for families of function classes). Let {FI}I∈I be a family of
function classes. We say that {FEI}I∈I is a family of (1-key) FE schemes for {FI}I∈I with

5Public key FE cannot be function hiding.
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µ-Sel-Ind-security (or µ-Sel-Sim-security) if for every function class FI = {FIλ}λ∈N, FEI is a
(1-key) FE scheme for FI with µ-Sel-Ind-security (or µ-Sel-Sim-security).

We further define the following special cases:

• FE for P/poly is a family of FE schemes for
{

P/polyN,S
}
N∈N ,S∈S , where N ,S are the

sets of all polynomials and P/polyN,S is the class of functions that can be computed by
circuits with N(λ)-bit inputs and size S(λ).

• FE for NC1 is a family of FE schemes for
{

NC1N,S,Dep}
N∈N ,S∈S,Dep∈D as defined above,

but only for circuits with logarithmic depth Dep(λ) = O(log(λ)), where D is the set of
logarithmic functions.

• FE for inner products in R is a family of FE schemes for F = {FN} where FN is the
set of functions of form fv(x) = 〈v,x〉 that compute the inner product between a fixed
vector v and an input vector x in RN(λ)

λ . Such a family of schemes is also called Inner
Product Functional Encryption (IPE) in R.

Compactness. Let
{

FEN,S,Z
}
N∈N ,N∈S,Z∈Z be a family of FE schemes for

{
FN,S,Z

}
, where

FN,S,Zλ contains a subset of functions with input lengths bounded by N(λ) (i.e., Xλ = ∆≤N(λ)

for some alphabet ∆) and size bounded by S(λ) (e.g., P/polyN,S or NC1N,S,Dep). According
to the above definition, algorithms in the FE schemes could run in time polynomial in the
parameters N and S. Stronger efficiency requirements have been considered; in particular, the
works of [AJ15,BV15] defined compact FE schemes, which requires the encryption time to be
independent of, or only mildly dependent on, the circuit size S of the functions. Here, we consider
a relaxation that only requires the ciphertext size to be independent of, or only mildly dependent
on S, whereas the encryption time can still be polynomial in S. See Remark 5.3 for reasons for
using this more relaxed notion of compactness.

Definition 2.21 (Ciphertext-Compactness of FE schemes). Let
{

FEN,S,Z
}
N∈N ,N∈S,Z∈Z be a

family of FE schemes for
{
FN,S,Z

}
N∈N ,N∈S,Z∈Z , where functions in FN,S,Zλ have input length

bounded by N(λ) and size bounded by S(λ).

Ciphertext-Compactness: We say that
{
FN,S,Z

}
is ciphertext-compact if for every Z ∈ Z,

there exists a polynomial p such that, for all polynomials N and S, ciphertexts of FEN,S,Z

have size p(λ,N(λ), logS(λ)).

(1− ε)-Sublinear Ciphertext-Compactness: We say that
{
FN,S,Z

}
is (1 − ε)-sublinearly

ciphertext-compact if for every Z ∈ Z, there exists a polynomial p such that, for all
polynomials N and S, ciphertexts of FEN,S,Z have size p(λ,N(λ)) · S(λ)1−ε.

In the rest of the paper, by compactness, we mean by default ciphertext-compactness.

2.9 (Fully) Homomorphic Encryption

We give a definition of secret key fully homomorphic encryption following [Gen09a,Gen09b].

Definition 2.22 ((Fully) Homomorphic Encryption). A fully homomorphic secret-key encryption
(FHE) scheme FHE consists of the following four PPT algorithms:

21



Key generation: The algorithm FHE.KeyGen on input a security parameter 1λ, outputs a key s.

Encryption: The algorithm FHE.Enc on input a key s and a message x, outputs a ciphertext ct.

Evaluation: The algorithm FHE.Eval on input a circuit C and a tuple of ciphertexts (ct1, . . . , ctt),
outputs a ciphertext ct′.

Decryption: The algorithm FHE.Dec on input a key s and a ciphertext ct, outputs a message y.

An FHE scheme is required to have to following two properties:

Correctness: For all s output by FHE.KeyGen(1λ), all circuits C, all messages x1, . . . , xt, and
all ciphertexts ct1, . . . , ctt output by FHE.Enc(s, x1), . . . ,FHE.Enc(s, xt), we have

Pr
[
ct′ ← FHE.Eval(C, (ct1, . . . , ctt)) : FHE.Dec(s, ct′) = C(x1, . . . , xt)

]
= 1− negl(λ).

Compactness: There is a polynomial p such that for all s output by FHE.KeyGen(1λ), all
circuits C, all messages x1, . . . , xt, all ciphertexts ct1, . . . , ctt output by FHE.Enc(s, x1), . . . ,
FHE.Enc(s, xt), and all ct′ output by FHE.Eval(C, (ct1, . . . , ctt)), we have that |ct′| ≤ p(λ)
and FHE.Dec(s, ct′) runs in time bounded by p(λ) (independently of C).

If the evaluation only allows circuits from a certain class (and correctness and compact-
ness holds for such circuits), we call the scheme homomorphic for that class (instead of fully
homomorphic).

Definition 2.23 (Leveled Homomorphic Encryption). A family of homomorphic encryption
schemes {HE(d)}d∈N, where for all d ∈ N, HE(d) is homomorphic for all circuits of depth at
most d, is called leveled fully homomorphic if all HE(d) use the same decryption circuit, and the
computational complexity of all algorithms in HE(d) is polynomial in λ, d, and (for the evaluation
algorithm) the size of the circuit.

The definition of IND-CPA-security for (fully) homomorphic encryption is identical to the
definition for ordinary secret-key encryption:

Definition 2.24 (IND-CPA-Security). Let FHE = (FHE.KeyGen,FHE.Enc,FHE.Eval,FHE.Dec)
be an FHE scheme. The scheme FHE is µ-IND-CPA-secure if for every PPT adversary A and for
every sufficiently large λ, the advantage of A in the following game is bounded by O(µ(λ)):

• The challenger runs s← FHE.KeyGen(1λ).

• The adversary A with access to an encryption oracle FHE.Enc(s, ·) chooses a pair of
messages x0, x1 of equal length and sends them to the challenger.

• The challenger samples a bit b← {0, 1}, computes ct← FHE.Enc(s, xb), and sends ct to A.

• The adversary A again has access to an encryption oracle FHE.Enc(s, ·), and finally outputs
a bit b′.

The advantage of A is defined as

AdvtFHE
A :=

∣∣2 · Pr[b′ = b]− 1
∣∣.

22



2.9.1 Threshold Multi-Key FHE

We next give definitions for multi-key FHE [LATV12] and threshold multi-key FHE following
[MW16].

Definition 2.25 (Multi-Key (Leveled) FHE). A multi-key (leveled) FHE scheme consists of the
following PPT algorithms:

• MFHE.Setup on input a security parameter 1λ and circuit depth 1d, outputs the system
parameters params.

• MFHE.KeyGen on input the system parameters params, outputs a public key pk and a
secret key sk.

• MFHE.Enc on input pk and a message x, outputs a ciphertext ct.

• MFHE.Expand on input a sequence of public keys pk1, . . . , pkN , an index i ∈ [N ], and a
fresh ciphertext c under the ith key pki, outputs an “expanded” ciphertext ĉt.

• MFHE.Eval on input params, a boolean circuit C of depth at most d, and expanded
ciphertexts ĉt1, . . . , ĉt`, outputs an evaluated ciphertext ĉt.

• MFHE.Dec on input params, a sequence of secret keys sk1, . . . , skN , and a ciphertext ĉt,
outputs a message.

We require the following properties:

Correctness and Compactness: Let params ← MFHE.Setup
(
1λ, 1d

)
, for i ∈ {1, . . . , N}, let

(pki, ski)← MFHE.KeyGen(params), and let x1, . . . , x` be messages. Moreover, let I1 ∈ [N ],
. . . , I` ∈ [N ], cti ← MFHE.Enc(pkIi , xi), and let ĉti ← MFHE.Expand((pk1, . . . , pkN ), Ii, cti)
for i ∈ [`]. Let C be a circuit of depth at most d and let ĉt := MFHE.Eval(C, (ĉt1, . . . , ĉt`)).
Then the following holds:

Correctness of Expansion: MFHE.Dec
(
params, (sk1, . . . , skN ), ĉti

)
= xi for all i ∈ [`].

Correctness of Evaluation: MFHE.Dec
(
params, (sk1, . . . , skN ), ĉt) = C(x1, . . . , x`

)
.

Compactness:
∣∣ĉt
∣∣ is polynomial in λ, d, and N (independently of C and `).

µ-Semantic Security: For any polynomial d and any two messages x0, x1, the following two
distributions are µ-indistinguishable:{

params← MFHE.Setup
(
1λ, 1d(λ)

)
(pk, sk)← MFHE.KeyGen(params)

:
(
params, pk,MFHE.Enc(pk, x0)

)}
λ∈N

,{
params← MFHE.Setup

(
1λ, 1d(λ)

)
(pk, sk)← MFHE.KeyGen(params)

:
(
params, pk,MFHE.Enc(pk, x1)

)}
λ∈N

.

Definition 2.26 (Threshold Multi-Key FHE). A threshold multi-key FHE scheme is a multi-key
FHE scheme with the following two additional algorithms:

• MFHE.PartDec on input an expanded ciphertext ĉt, public keys pk1, . . . , pkN , an index i ∈
[N ], and the ith secret key ski, outputs a partial decryption pi.
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• MFHE.FinDec on input partial decryptions p1, . . . , pN , outputs a message.

We further require correctness and simulatability of partial decryptions defined as follows:
Let params ← MFHE.Setup

(
1λ, 1d

)
, (pki, ski) ← MFHE.KeyGen(params) for i ∈ [N ], and let

x1, . . . , x` be messages. Further let I1 ∈ [N ], . . . , I` ∈ [N ], and let cti ← MFHE.Enc(pkIi , xi) and
ĉti ← MFHE.Expand

(
(pk1, . . . , pkN ), Ii, cti

)
for i ∈ [`]. Finally let C be a circuit of depth at

most d and let ĉt := MFHE.Eval
(
params, C,

(
ĉt1, . . . , ĉt`

))
. We then require:

Correctness of Decryption: For pi ← MFHE.PartDec
(
ĉt, (pk1, . . . , pkN ), i, ski

)
, i ∈ [N ], we

have MFHE.FinDec(p1, . . . , pN ) = C(x1, . . . , x`) with probability 1.

µ-Simulatability of Partial Decryptions: There exists a PPT simulator Sim that on input
i ∈ [N ], (skj)j∈[N ]\{i}, ĉt, and C(x1, . . . , x`), produces a simulated partial decryption p′i
such that

δ(pi, p
′
i) ≤ O(µ(λ)),

where pi ← MFHE.PartDec
(
ĉt, (pk1, . . . , pkN ), i, ski

)
. Here, the randomness for the statis-

tical distance is only over the coins of Sim and MFHE.PartDec, and all other values are
fixed.

3 Pseudo Flawed-Smudging Generators

3.1 Definitions

In this section, we define what it means for a distribution over Z` to be smudging and flawed-
smudging, and then introduce pseudo flawed-smudging generators. First, the distribution of a
random variable X is smudging if the statistical distance between X and X + e is small for all e
with bounded coefficients.

Definition 3.1 (Smudging distributions). Let ` be a positive integer, let ε ∈ [0, 1], and let B
either be a positive integer or an `-dimensional vector of positive integers. We say a distribution X
over Z` is (B, ε)-smudging if for X ← X and for all B-bounded e ∈ Z`, we have δ(X,X + e) ≤ ε.

We next define distributions obtained by fixing some positions in the output of a distribution.
This will be used for defining flawed-smudging distributions.

Definition 3.2 (Bit-fixing distributions). Let D be a distribution over strings in ∆≤` for some
set ∆ and some integer `. Let I ⊆ [`] be a set of indices, and x an arbitrary string in ∆|I|. Define
D|x,I to be the distribution of sampling x from D conditioned on xI = x. For convenience, we
sometimes also write I as its characteristic vector v, where vi = 1 iff i ∈ I.

We say that D is bit-fixing efficiently samplable if D|x,I is efficiently samplable for any x, I.

We now define flawed-smudging distributions. On a high level, the distribution of X is
flawed-smudging for a random variable E if there are a few “bad” coordinates such that X + E
“hides” E at all coordinates that are not bad. This means, given X + E and which coordinates
are bad, one cannot distinguish E from E, where E is a fresh sample conditioned on agreeing
with E on the bad coordinates.

Definition 3.3 (Flawed-smudging distributions). Let ` be a positive integer and let X and E be
distributions over Z`. Further let K ∈ N and µ ∈ [0, 1]. We say that X is (K,µ)-flawed-smudging
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for E if there exist randomized predicates
{

BADi : Z
`+1 → {0, 1}

}
i∈[`]

such that the following
two distributions are identical:

D1 =


E ← E
X ← X

bad =
(
badi ← BADi(Ei, X)

)
i∈[`]

: (E, X + E, bad)

 ,

D2 =


E ← E
X ← X

bad =
(
badi ← BADi(Ei, X)

)
i∈[`]

E ← E|Ebad,bad

:
(
E, X + E, bad

) ,

and in addition, with probability at least 1− µ, the 1-norm of bad is bounded by |bad|1 ≤ K.
We say the distribution X is (K,µ)-flawed-smudging for B-bounded distributions if it is

(K,µ)-flawed-smudging for every B-bounded distribution E , where B can either be a positive
integer or a vector in Z`.

Remark 3.4. We remark that in the above definition, we require D1 and D2 to be identically
distributed for convenience. It can be relaxed to being µ-statistically close. For our FE schemes,
it suffices to have µ being negligible, and for IO schemes, µ needs to be subexponentially small.

Remark 3.5. A more direct generalization of the definition of smudging distributions (see
Definition 3.1) would be that for all e, the distribution of X + e is equal (or statistically close)
to the distribution of Y , where Yi = Xi + ei for all bad i, and Yi = Xi for non-bad i. This
is, however, not sufficient for our purposes: We need that no information about the non-bad
coordinates is leaked. While Xi itself does not leak anything about ei, the fact that i is not a bad
coordinate can leak something about ei, since the predicate BAD depends on ei. Definition 3.3
resolves this issue by sampling the non-bad coordinates freshly after sampling bad.

Definition 3.3 asserts that (E,X + E,bad) and (E,X + E,bad) are equally distributed. As
we next show, this is equivalent to the non-bad coordinates of E being independent of X + E
and bad (only depending on the bad coordinates of E). This characterization will later be useful
to prove properties of flawed-smudging distributions.

Lemma 3.6. Let ` be a positive integer and let X and E be distributions over Z`. Further let
BADi : Z

`+1 → {0, 1} be randomized predicates for i ∈ [`], and let E ← E, X ← X , bad =(
badi ← BADi(Ei, X)

)
i∈[`]

, and E ← E|Ebad,bad. Then, the distributions of (E,X +E,bad) and
(E,X + E,bad) are equal if and only if for all y, e ∈ Z` and for all I ⊆ [`],

Pr[X+E = y∧bad = I∧E = e] = Pr[X+E = y∧bad = I∧EI = eI ]·Pr[E[`]\I = e[`]\I | EI = eI ].

Proof. We have for all y, e ∈ Z` and for all I ⊆ [`],

Pr
[
X + E = y ∧ bad = I ∧ E = e

]
= Pr

[
X + E = y ∧ bad = I ∧ EI = eI

]
· Pr
[
E[`]\I = e[`]\I

∣∣ X + E = y ∧ bad = I ∧ EI = eI
]
.

By definition of E, we further have EI = EI for bad = I, and E[`]\I is sampled from the same
distribution as E[`]\I conditioned on the values of EI being fixed. Hence,

Pr
[
E[`]\I = e[`]\I

∣∣ X + E = y ∧ bad = I ∧ EI = eI
]

= Pr
[
E[`]\I = e[`]\I

∣∣ EI = eI
]
.
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This implies that

Pr
[
X + E = y ∧ bad = I ∧ E = e

]
= Pr

[
X + E = y ∧ bad = I ∧ EI = eI

]
· Pr
[
E[`]\I = e[`]\I

∣∣ EI = eI
]
.

Therefore, (E,X + E,bad) and (E,X + E,bad) are equally distributed if and only if we have
Pr
[
X + E = y ∧ bad = I ∧ E = e

]
= Pr

[
X + E = y ∧ bad = I ∧ E = e

]
for all y, e,

and I, which is the case if and only if the right hand side of the equation above is equal to
Pr[X + E = y ∧ bad = I ∧ E = e].

Example. We now give a very simple example of a flawed-smudging distribution. Let ` be a
positive integer, let X be the uniform distribution over {1, . . . , 10}`, and let E be the uniform
distribution over {0, 1}`. We show that X is flawed-smudging for E . Let X ← X and E ← E .
Intuitively, we have for each coordinate i that the sum Xi +Ei hides Ei if Xi +Ei ∈ {2, . . . , 10},
because such sums are possible for both values of E. We therefore define the predicate

BADi(Ei, X) =

{
0, Xi + Ei ∈ {2, . . . , 10},
1, Xi + Ei ∈ {1, 11}.

Now let bad =
(
badi ← BADi(Ei, X)

)
i∈[`]

and let E ← E|Ebad,bad. We have to show that the
distributions of (E,X + E,bad) and (E,X + E,bad) are equal. Since all coordinates of X, E,
E, and bad are independent, we can analyze these distributions coordinate-wise. For all ei and
yi ∈ {1, 11}, we have that badi = 1 if Xi + Ei = yi, and therefore Ei = Ei. Hence,

Pr
[
Ei = ei ∧Xi + Ei = yi ∧ badi = 1

]
= Pr[Ei = ei ∧Xi + Ei = yi ∧ badi = 1],

and both probabilities are 0 for badi = 0. For all ei and all yi ∈ {2, . . . , 10}, we have yi − ei ∈
{1, . . . , 10}, which implies that Pr[Xi + ei = yi] = 1

10 . Hence,

Pr[Ei = ei ∧Xi + Ei = yi ∧ badi = 0] = Pr[Ei = ei] · Pr[Xi + ei = yi] =
1

2
· 1

10
=

1

20
.

Furthermore, Ei for badi = 0 is distributed independently and identically to Ei, which yields

Pr
[
Ei = ei ∧Xi + Ei = yi ∧ badi = 0

]
= Pr[Ei = ei] · Pr[Xi + Ei = yi]

= Pr[Ei = ei] ·
∑

e′i∈{0,1}

Pr[Ei = e′i] · Pr[Xi + e′i = yi]

= 1/20.

We can therefore conclude that (E,X + E,bad) and (E,X + E,bad) are equally distributed.
For each i ∈ [`],

Pr[badi = 1] = Pr[Xi + Ei = 1] + Pr[Xi + Ei = 11]

= Pr[Xi = 1 ∧ Ei = 0] + Pr[Xi = 10 ∧ Ei = 1]

= 1/10.

We can therefore use the Chernoff-Hoeffding bound to obtain that for all ε > 0,

Pr[|bad|1 ≥ ` · (1/10 + ε)] ≤ exp(−2ε2`).
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Hence, X is (K,µ)-flawed-smudging for the distribution E , with K = (1/10 + ε)` and µ =
1− exp(−2ε2`).

The crucial properties of X here are that all coordinates of X are independent and that the
marginal distributions of each coordinate are smudging for the coordinates of E . In Section 3.2.5,
we generalize this example by showing that if X = X1 × . . .×X` is a product distribution and
each Xi is (B, ε)-smudging, then X is flawed-smudging for B-bounded distributions.

Pseudo flawed-smudging generators. We finally define pseudo flawed-smudging generators
(PFGs). A PFG is a distribution of efficiently computable functions and seeds for which the
output of the functions is indistinguishable from a flawed-smudging distribution.

Definition 3.7. (Pseudo Flawed-Smudging Generator) Let n,m,K,B be polynomials. A family
of (K,µ)-pseudo flawed-smudging generators ((K,µ)-PFG) for B-bounded distributions is an
ensemble of distributions PFG = {PFGλ}λ∈N satisfying the following properties:

Syntax: For every λ ∈ N, every (PFG,Dsd) in the support of PFGλ defines a function
PFG: Zn(λ) → Zm(λ) and a distribution Dsd over seeds.

Efficiency: There is a uniform Turing machine M satisfying that for every λ ∈ N, every
(PFG,Dsd) ∈ Support(PFGλ) and sd ∈ Support(Dsd), M(PFG, sd) runs in time poly(λ)
and we have M(PFG, sd) = PFG(sd). Furthermore, PFG and all Dsd in the support of
PFGλ are efficiently samplable.

(K,µ)-pseudo-flawed-smudging for B-bounded distributions: There exists an ensemble
{Xλ} of distributions, such that the distribution Xλ is (K(λ), µ(λ))-flawed-smudging for
all B(λ)-bounded distributions, and the following ensembles are µ-indistinguishable:{

(PFG,Dsd)← PFGλ; sd← Dsd : (PFG,PFG(sd))
}
λ∈N

,{
(PFG,Dsd)← PFGλ;X ← Xλ : (PFG, X)

}
λ∈N

.

Remark 3.8. We have defined PFGs to compute functions PFG: Zn → Zm. In Section 5, we will
need PFGs that can be computed by polynomials over Zp for some p ∈ N. There are two ways
how this can fit our definition: Either the PFGs consist of polynomials over Z that have bounded
seeds and outputs, such that computing them modulo p does not cause any wrap-around. Or
the PFGs already consist of polynomials over Zp, which can be viewed as computing a function
(which is not a polynomial) over Z

3.2 Properties of (Flawed-)Smudging Distributions

In this section, we prove some properties of smudging and of flawed-smudging distributions.

3.2.1 Bounds on the Smudging Property

We show that a polynomially bounded distribution cannot hide a value entirely. To this end, we
first prove that the min-entropy gives raise to an upper bound on the smudging property of a
one-dimensional distribution.
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Lemma 3.9. Let X be a random variable over Z with finite support S. We then have

δ(X,X + 1) ≥ max
x∈S

Pr[X = x].

Proof. Let S↑ := {x ∈ Z | Pr[X = x] > Pr[X + 1 = x]} and S↓ := {x ∈ Z | Pr[X = x] <
Pr[X + 1 = x]}. By definition of the statistical distance, we have

δ(X,X + 1) =
1

2

∑
x∈Z
|Pr[X = x]− Pr[X + 1 = x]|

≥ 1

2

∑
x∈S↑
|Pr[X = x]− Pr[X + 1 = x]|+ 1

2

∑
x∈S↓
|Pr[X = x]− Pr[X + 1 = x]|.

Since the support S is finite, there are x0, x1 ∈ S↑ such that Pr[X+1 = x0] = 0 and Pr[X = x1] =
maxx∈S Pr[X = x]. Hence,

∑
x∈S↑ |Pr[X = x] − Pr[X + 1 = x]| ≥ maxx∈S Pr[X = x]. Anal-

ogously,
∑

x∈S↓ |Pr[X = x] − Pr[X + 1 = x]| ≥ maxx∈S Pr[X = x]. In conclusion, we have
δ(X,X + 1) ≥ maxx∈S Pr[X = x].

The next lemma implies that polynomially bounded distributions cannot be smudging with
negligible ε. This means they cannot completely hide a value.

Lemma 3.10. Let ` and B be positive integers, and let X be a B-bounded distribution over Z`.
Further assume that X is (B′, ε)-smudging for some ε ∈ [0, 1] and B′ ≥ 1. Then,

ε ≥ 1

2B + 1
.

Proof. Let X = (X1, . . . , X`)← X . Since X is (B′, ε)-smudging, we have δ(X,X + e) ≤ ε for all
e ∈ [−B′, B′]` ∩Z`. In particular, δ(X,X + e1) ≤ ε for e1 := (1, 0, . . . , 0)>. We therefore have

ε ≥ δ(X,X + e1) ≥ δ(X1, X1 + 1).

Since the support ofX1 is contained in [−B,B], there exists some x1 ∈ Z such that Pr[X1 = x1] ≥
1/(2B + 1). Hence, Lemma 3.9 implies that δ(X1, X1 + 1) ≥ 1/(2B + 1), which concludes the
proof.

3.2.2 Preservation Under Addition of Independent Values

We show that if the distribution of X is (flawed-)smudging and Y is independent from X, then
the distribution of X + Y is (flawed-)smudging. In other words, adding an independent value
cannot destroy the (flawed-)smudging property.

Lemma 3.11. Let ` be a positive integer and let X and Y be independent random variables
over Z`. If the distribution of X is (B, ε)-smudging, then the distribution of X + Y is (B, ε)-
smudging.

Proof. Since adding an independent random variable cannot increase the statistical distance, we
have for all B-bounded e ∈ Z`,

δ(X + Y,X + Y + e) ≤ δ(X,X + e) ≤ ε.

Hence, the distribution of X + Y is (B, ε)-smudging.
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Lemma 3.12. Let ` be a positive integer and let X and E be distributions over Z`. Further
let X be a random variable with distribution X and let Y be an independent random variable
over Z`. Assume that X is (K,µ)-flawed-smudging for E. Then, the distribution of X + Y is
(K,µ)-flawed-smudging for E.

Proof. By assumption, there are randomized predicates
{

BADi : Z`+1 → {0, 1}
}
i∈[`]

such that
D1 and D2 as defined in Definition 3.3 are identical and |bad|1 ≤ K with probability at least 1−µ.
Now define BAD′i for the distribution of X + Y as follows: Given Ei and X + Y , sample X ′ and
Y ′ with marginal distributions equal to the distributions of X and Y , respectively, conditioned
on X ′ + Y ′ = X + Y , and return BADi(Ei, X

′). Let bad′ =
(
bad′i ← BAD′i(Ei, X + Y )

)
i∈[`]

and

let E′ ← E|Ebad′ ,bad′ . Since X and X ′ have the same distribution and D1 and D2 are equal, we
also have that

(
E,E +X ′, bad′

)
and

(
E
′
, E +X ′, bad′

)
have the same distribution. Note that

Y ′ is independent of
(
E,E +X ′,bad′

)
and

(
E
′
, E +X ′, bad′

)
, since it only depends on X ′ given

X + Y , and nothing depends on X + Y beyond depending on X ′. Hence,
(
E,E +X ′ + Y ′, bad′

)
and

(
E
′
, E +X ′ + Y ′,bad′

)
also have the same distribution. Using X ′ + Y ′ = X + Y , we obtain

that D′1 and D′2 defined as in Definition 3.3 for X + Y and BAD′ are equal. Furthermore, bad
and bad′ are equally distributed, which implies that |bad′|1 ≤ K with probability at least 1− µ.
Thus, the distribution of X + Y is (K,µ)-flawed-smudging for E .

3.2.3 Mixtures of (Flawed-)Smudging Distributions

We next show that the probabilistic mixture of several (flawed-)smudging distributions is also
(flawed-)smudging.

Lemma 3.13. Let ` and k be positive integers, let for i ∈ [k], εi ∈ [0, 1] and let Xi be a random
variable over Z` with (B, εi)-smudging distribution. Further let α1, . . . , αk ∈ [0, 1] such that∑k

i=1 αi = 1, and define the random variable X with Pr[X = x] =
∑k

i=1 αi Pr[Xi = x]. Then,
the distribution of X is

(
B,
∑k

i=1 αiεi
)
-smudging.

Proof. Let e ∈ Z` be B-bounded. We then have

δ(X,X + e) =
1

2

∑
x∈Z`

∣∣Pr[X = x]− Pr[X + e = x]
∣∣

≤ 1

2

∑
x∈Z`

k∑
i=1

αi ·
∣∣Pr[Xi = x]− Pr[Xi + e = x]

∣∣
=

k∑
i=1

αi · δ(Xi, Xi + e).

Since δ(Xi, Xi + e) ≤ εi, the claim follows.

Lemma 3.14. Let ` and k be positive integers, let E be a distribution over Z`, let for i ∈ [k],
µi ∈ [0, 1], and let Xi be a random variable over Z` with (K,µi)-flawed-smudging distribution
for E. Further let α1, . . . , αk ∈ [0, 1] such that

∑k
i=1 αi = 1, and define the random variable X with

Pr[X = x] =
∑k

i=1 αi Pr[Xi = x]. Then, the distribution of X is
(
K,
∑k

i=1 αiµi
)
-flawed-smudging

for E.
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Proof. By assumption, there are randomized predicates
{

BAD
(i)
j : Z`+1 → {0, 1}

}
j∈[`]

for i ∈ [k]

such that D(i)
1 and D(i)

2 as defined in Definition 3.3 for Xi are identical and |bad(i)|1 ≤ K with
probability at least 1− µi. Now define BAD′j for the distribution of X as follows: Given Ej and
X, sample (X ′1, . . . , X

′
k, A) conditioned on X ′A = X, where X ′i is distributed as Xi for i ∈ [k]

and Pr[A = i] = αi. Then output BAD
(A)
j (Ej , X

′
A). Let bad′ =

(
bad′j ← BAD′j(Ej , X)

)
j∈[`]

and

let E′ ← E|Ebad′ ,bad′ and E
(i) ← E|E

bad(i) ,bad(i) .
We have for all t

Pr
[(
E
′
, E +X,bad′

)
= t
]

=
k∑
i=1

Pr[A = i] · Pr
[(
E
′
, E +X ′A, bad′

)
= t

∣∣ A = i
]

=
k∑
i=1

Pr[A = i] · Pr
[(
E

(i)
, E +Xi, bad(i)

)
= t
]

=

k∑
i=1

Pr[A = i] · Pr
[(
E,E +Xi, bad(i)

)
= t
]

= Pr
[(
E,E +X,bad′

)
= t
]
.

This established the desired equality of distributions.
Using that the distribution of bad′ conditioned on A = i equals the distribution of bad(i), we

obtain

Pr
[
|bad′|1 ≤ K

]
=

k∑
i=1

Pr[A = i] · Pr
[
|bad(i)|1 ≤ K

]
≥

k∑
i=1

αi · (1− µi) = 1−
k∑
i=1

αi · µi.

3.2.4 Composition of Flawed-Smudging Distributions

We now show that the product of flawed-smudging distributions is again flawed-smudging, not
only for product distributions but also for distributions E with correlated coordinates. We prove
this only for the product of two distributions, but the result can easily be extended to arbitrarily
many distributions by induction.

Lemma 3.15. Let `(1) and `(2) be positive integers, let ` := `(1) + `(2), and let E be a distribution
over Z`. Let E ← E, and denote by E(1) the first `(1) coordinates of E, and by E(2) the last `(2)

coordinates of E. Moreover, let X (1) and X (2) be distributions over Z`(1) and Z`(2) , respectively,
such that X (i) is

(
K(i), µ(i)

)
-flawed-smudging for the distribution of E(i). Then, X := X (1)×X (2)

is
(
K(1) +K(2), µ(1) + µ(2)

)
-flawed-smudging for E.

Proof. Let BAD
(1)
i and BAD

(2)
i be the randomized predicates guaranteed by the flawed-smudging

properties of X (1) and X (2), respectively. To prove the flawed-smudging property of X , we define
the randomized predicates BADi for i ∈ [`] as follows: for i ≤ `(1), evaluate BAD

(1)
i , and for

i > `(1), evaluate BAD
(2)

i−`(1) .

Let
(
X(1), X(2)

)
← X (1) × X (2), bad(j) =

(
bad

(j)
i ← BAD

(j)
i (E

(j)
i , X(j))

)
i∈[`(j)]

, bad =(
badi ← BADi(Ei, X)

)
i∈[`]

, and E ← E|Ebad,bad. We have to show that (E,X + E,bad) and

(E,X + E,bad) have the same distribution. Let y, e ∈ Z`, I ⊆ [`], let y(1), y(2), and e(1), e(2)
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be the first `(1) and last `(2) coordinates of y and e, respectively, and let I(1) := I ∩ [`(1)] and
I(2) := I ∩ {`(1) + 1, . . . , `}. Because X(2) and bad(2) do not depend on X(1) and bad(1), we have

Pr[E = e ∧X + E = y ∧ bad = I]

= Pr
[
E = e ∧X(1) + E(1) = y(1) ∧ bad(1) = I(1)

]
· Pr
[
X(2) + E(2) = y(2) ∧ bad(2) = I(2)

∣∣ E = e
]

= Pr[E = e] ·
2∏
j=1

Pr
[
X(j) + E(j) = y(j) ∧ bad(j) = I(j)

∣∣ E = e
]
.

Since X(j) and bad(j) do not depend on E(j′) for j′ 6= j, and using Lemma 3.6 together with the
fact that the distribution of X(j) is flawed-smudging for the distribution of E(j), we obtain

Pr
[
X(j) + E(j) = y(j) ∧ bad(j) = I(j)

∣∣ E = e
]

= Pr
[
X(j) + E(j) = y(j) ∧ bad(j) = I(j)

∣∣ E(j) = e(j)
]

= Pr
[
X(j) + E(j) = y(j) ∧ bad(j) = I(j)

∣∣ E(j)

I(j) = e
(j)

I(j)

]
.

Hence,

Pr[EI = eI ∧X + E = y ∧ bad = I]

=
∑
ei∈Z
i∈[`]\I

Pr[E = e ∧X + E = y ∧ bad = I]

=
∑
ei∈Z
i∈[`]\I

Pr[E = e] ·
2∏
j=1

Pr
[
X(j) + E(j) = y(j) ∧ bad(j) = I(j)

∣∣ E(j)

I(j) = e
(j)

I(j)

]

= Pr[EI = eI ] ·
2∏
j=1

Pr
[
X(j) + E(j) = y(j) ∧ bad(j) = I(j)

∣∣ E(j)

I(j) = e
(j)

I(j)

]
.

This implies

Pr[E = e ∧X + E = y ∧ bad = I]

Pr[EI = eI ∧X + E = y ∧ bad = I]
= Pr[E[`]\I = e[`]\I | EI = eI ].

Again using Lemma 3.6 yields that (E,X +E,bad) and (E,X +E,bad) are equally distributed.
Note that |bad|1 = |bad(1)|1 + |bad(2)|1. Hence,

Pr
[
|bad|1 > K(1) +K(2)

]
≤ Pr

[
|bad(1)|1 > K(1) ∨ |bad(2)|1 > K(2)

]
≤ Pr

[
|bad(1)|1 > K(1)

]
+ Pr

[
|bad(2)|1 > K(2)

]
≤ µ(1) + µ(2).

This implies that X is
(
K(1) +K(2), µ(1) + µ(2)

)
-flawed-smudging for E-bounded and concludes

the proof.
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3.2.5 Smudging and Independence Implies Flawed-Smudging

We want to show that if several mutually independent random variables each have a smudging
distribution, then their joint distribution is flawed-smudging. To this end, we first prove a general
lemma. Our starting point is the known fact that for two random variables X and X ′, one can
define events bad and bad′ such that the probability of these events equals δ(X,X ′) each and
the distribution of X conditioned on ¬bad is equal to the distribution of X ′ conditioned on
¬bad′ [MPR07]. We are interested in the following related statement, for which the bad event
can be defined similarly: Assume X and E are independent random variables over Z such that
E is B-bounded and δ(X,X + e) is “small” for all e in the support of E. Then, there exists an
event bad with “small” probability such that if bad does not occur, then E does not depend on
X + E and the fact that bad does not occur.

The high-level idea is to define the event bad such that for all y ∈ Z, Pr[X+E = y∧¬bad] =
mine{Pr[X + e = y]}. This means that given X + E = y, the probability of bad gets larger the
greater the gap between the probabilities of X + e = y for different values of e is. The following
lemma generalizes this to several Xi and Ei. We define events badi for each Xi +Ei and get the
statement that intuitively says that the coordinates of E that are not bad do not depend on any
Xi + Ei.

Lemma 3.16. Let ` ∈ N and let X1, . . . , X`, E1, . . . , E` be random variables over Z such that
the ` + 1 random variables X1, . . . , X`, and (E1, . . . , E`) are mutually independent.6 Further
let Ri be the support of Ei with |Ri| <∞. Then, there exist events bad1, . . . ,bad` with badi =
BADi(Ei, Xi) depending only on Ei and Xi such that for all y, e ∈ Z` and for all I ⊆ [`],

(i) Pr[X +E = y ∧bad = I ∧E = e] = Pr[X +E = y ∧bad = I ∧EI = eI ] ·Pr[E[`]\I = e[`]\I |
EI = eI ],

(ii) Pr
[∧

i∈I badi
]
≤
∏
i∈I 4 ·

∑
e′i∈Ri

δ(Xi, Xi + e′i).

Proof. We define BADi for Ei = ei and Xi = xi as

Pr[BADi(ei, xi) = 1] := 1− min
e′i∈Ri

{
Pr[Xi + e′i = xi + ei]

Pr[Xi = xi]

}
.

Note that this is a valid probability since mine′i∈Ri{Pr[Xi + e′i = xi + ei]} ≤ Pr[Xi = xi]. We
then have for y, e ∈ Z` with Pr[X + E = y ∧ E = e] > 0,

Pr[badi | X + E = y ∧ E = e] = 1− min
e′i∈Ri

{
Pr[Xi + e′i = yi]

Pr[Xi + ei = yi]

}
,

where the badi are sampled independently given X + E = y ∧ E = e.
Now fix y, e ∈ Z` and I ⊆ [`]. We then have using the independence of the Xi and the

6But, E1, . . . , E` need not be independent.
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conditional independence of the badi,

Pr
[
X + E = y ∧ E = e ∧ bad = I

]
= Pr[E = e] ·

∏
i∈[`]

Pr[Xi + ei = yi] ·
∏

i∈[`]\I

min
e′i∈Ri

{
Pr[Xi + e′i = yi]

Pr[Xi + ei = yi]

}

·
∏
i∈I

(
1− min

e′i∈Ri

{
Pr[Xi + e′i = yi]

Pr[Xi + ei = yi]

})
= Pr[E = e] ·

∏
i∈I

Pr[Xi + ei = yi] ·
∏

i∈[`]\I

min
e′i∈Ri

{Pr[Xi + e′i = yi]}

·
∏
i∈I

(
1− min

e′i∈Ri

{
Pr[Xi + e′i = yi]

Pr[Xi + ei = yi]

})
.

(1)

This implies

Pr[X + E = y ∧ EI = eI ∧ bad = I]

=
∑
ei∈Z
i∈[`]\I

Pr[X + E = y ∧ E = e ∧ bad = I]

= Pr[EI = eI ] ·
∏
i∈I

Pr[Xi + ei = yi] ·
∏

i∈[`]\I

min
e′i∈Ri

{Pr[Xi + e′i = yi]}

·
∏
i∈I

(
1− min

e′i∈Ri

{
Pr[Xi + e′i = yi]

Pr[Xi + ei = yi]

})
.

(2)

Dividing equation (1) by equation (2) yields

Pr
[
E[`\I] = e[`]\I

∣∣ X + E = y ∧ EI = eI ∧ bad = I
]

= Pr
[
E[`]\I = e[`]\I

∣∣ EI = EI
]
.

Since Pr[X +E = y∧bad = I ∧E = e] = Pr[X +E = y∧bad = I ∧EI = eI ] ·Pr[E[`]\I = e[`]\I |
X + E = y ∧ bad = I ∧ EI = eI ], this concludes the proof of the first claim of the lemma.

To prove (ii), note that
∧
i∈I badi only depends on Xi and Ei for i ∈ I. Together with the

independence of the Xi, this yields

Pr

[∧
i∈I

badi

]
=

∑
yi,ei∈Z
i∈I

Pr[XI + EI = yI ∧ EI = eI ] · Pr

[∧
i∈I

badi

∣∣∣∣∣ XI + EI = yI ∧ EI = eI

]

=
∑

yi,ei∈Z
i∈I

Pr[XI + EI = yI ∧ EI = eI ] ·
∏
i∈I

(
1− min

e′i∈Ri

{
Pr[Xi + e′i = yi]

Pr[Xi + ei = yi]

})

=
∑

yi,ei∈Z
i∈I

Pr[EI = eI ] ·
∏
i∈I

(
Pr[Xi + ei = yi]− min

e′i∈Ri

{
Pr[Xi + e′i = yi]

})

≤
∑

yi,ei∈Z
i∈I

Pr[EI = eI ] ·
∏
i∈I

(
max
e′i∈Ri

Pr[Xi + e′i = yi]− min
e′i∈Ri

{
Pr[Xi + e′i = yi]

})
.
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Since the term in the product over i ∈ I does not depend on eI , we obtain

Pr

[∧
i∈I

badi

]
≤
∑
yi∈Z
i∈I

∏
i∈I

(
max
e′i∈Ri

Pr[Xi + e′i = yi]− min
e′i∈Ri

{
Pr[Xi + e′i = yi]

})

=
∏
i∈I

∑
yi∈Z

(
max
e′i∈Ri

Pr[Xi + e′i = yi]− min
e′i∈Ri

{
Pr[Xi + e′i = yi]

})

≤
∏
i∈I

∑
yi∈Z

(∣∣∣∣max
e′i∈Ri

Pr[Xi + e′i = yi]− Pr[Xi = yi]

∣∣∣∣
+

∣∣∣∣Pr[Xi = yi]− min
e′i∈Ri

{
Pr[Xi + e′i = yi]

}∣∣∣∣).
Since

∣∣maxe′i∈Ri Pr[Xi + e′i = yi]− Pr[Xi = yi]
∣∣ and ∣∣Pr[Xi = yi]−mine′i∈Ri

{
Pr[Xi + e′i = yi]

}∣∣
are both upper bounded by

∑
e′i∈Ri

|Pr[Xi = yi]− Pr[Xi + e′i = yi]|, we have

Pr

[∧
i∈I

badi

]
≤
∏
i∈I

2 ·
∑

e′i∈Ri,yi∈Z

|Pr[Xi = yi]− Pr[Xi + e′i = yi]|

=
∏
i∈I

4 ·
∑
e′i∈Ri

δ(Xi, Xi + e′i).

Using the lemma above, we can now show that independent random variables with smudging
distributions jointly have a flawed-smudging distribution.

Proposition 3.17. Let ` and K be positive integers and let X be a distribution over Z` such
that for (X1, . . . , X`)← X , X1, . . . , X` are mutually independent and the distribution of each Xi

is (B, ε)-smudging for ε ≤ K+1
22`·(2B+1) . Further let µ = 2−K . Then, X is (K,µ)-flawed-smudging

for B-bounded distributions.

Proof. Let E be a B-bounded distribution over Z` and let E ← E . Further let badi be the
events guaranteed by Lemma 3.16. Using Lemma 3.16 (i) and Lemma 3.6, we obtain that the
distributions D1 and D2 from Definition 3.3 are equal.

By Lemma 3.16 (ii), we have for all I ⊆ [`], Pr
[∧

i∈I badi
]
≤
∏
i∈I 4 ·

∑
e′i∈Ri

δ(Xi, Xi + e′i).
By our assumptions on X and E, we have δ(Xi, Xi + e′i) ≤ ε for all e′i ∈ Ri and |Ri| ≤ 2B + 1.
Thus, Pr

[∧
i∈I badi

]
≤ (4(2B + 1)ε)|I|. We therefore have

Pr[|bad|1 > K] =
∑̀

k=K+1

Pr[|bad|1 = k]

≤
∑̀

k=K+1

∑
I⊆[`]
|I|=k

Pr

[∧
i∈I

badi

]
≤

∑̀
k=K+1

∑
I⊆[`]
|I|=k

(4(2B + 1)ε)k.

There are
(
`
k

)
subsets I ⊆ [`] of size k. Using the bound

(
`
k

)
≤
(
`e
k

)k, where e is Euler’s constant,
we obtain

Pr[|bad|1 > K] ≤
∑̀

k=K+1

(
`e · 4(2B + 1)ε

k

)k
<

∑̀
k=K+1

(
11` · (2B + 1)ε

K + 1

)k
.
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Let α := 11`·(2B+1)ε
K+1 . Since ε ≤ K+1

22`·(2B+1) by assumption, we have α ≤ 1/2. Using the formula∑n
k=0 α

k = 1−αn+1

1−α for the first n terms of the geometric series, we then have

Pr[|bad|1 > K] <
∑̀
k=0

αk −
K∑
k=0

αk =
αK+1 − α`+1

1− α
≤
(1

2

)K
.

Hence, the probability that |bad|1 ≤ K is at least 1 − 2−K = 1 − µ. Altogether, we conclude
that X is (K,µ)-flawed-smudging for B-bounded distributions.

3.2.6 Hiding Function Inputs

If X has a flawed-smudging distribution for the distribution of E, then E + X hides E at all
coordinates that are not bad. In our application in Section 6.3, E is a function of a random
input V and we want to hide coordinates of the input V . Furthermore, the function that computes
E from V has a certain local structure in the sense that each coordinate of E depends only
on a few coordinates of V , say Ei is a function of VΦi for some set of coordinates Φi. Now, if
X +E hides all coordinates of E not in some bad set I, this should intuitively also hide V at all
coordinates on which no bad coordinate of E depend, i.e., V at coordinates not in ΦI :=

⋃
i∈I Φi

should be hidden. The following lemma shows that this intuition holds.

Lemma 3.18. Let ` and m be positive integers and let V be a distribution over Zm. Further let
for i ∈ [`], Φi ⊆ [m] and let Ei : Z|φi| → Z be functions. For I ⊆ [`], let ΦI :=

⋃
i∈I Φi. Define

E : Zm → Z` as
E(v1, . . . , vm) =

(
E1

(
(vj)j∈φ1

)
, . . . , E`

(
(vj)j∈φ`

))
.

Let X be a distribution over Z` that is flawed-smudging for E(V), and let BADi : Z
`+1 → {0, 1}

for i ∈ [`] be the randomized predicates guaranteed to exist by Definition 3.3. Then, the following
two distributions are identical:

D1 =


V ← V
X ← X

bad =
(
badi ← BADi(Ei(VΦi), X)

)
i∈[`]

: (V, E(V ) +X, bad)

 ,

D2 =


V ← V
X ← X

bad =
(
badi ← BADi(Ei(VΦi), X)

)
i∈[`]

V ← V|VΦbad
,Φbad

:
(
V , E(V ) +X, bad

)
 .

Proof. Let V ← V and X ← X . Slightly abusing notation, we denote by E also the random
variable E = E(V ). Further let bad =

(
badi ← BADi(Ei, X)

)
i∈[`]

, and let V ← V|VΦbad
,Φbad

.
We have to show that (V,E(V ) +X,bad) and

(
V , E(V ) +X, bad

)
have the same distribution.

To prove this, we need the following two facts, which we first prove. The first fact states that
non-bad coordinates of E do not depend on bad. The second claim states that coordinates of V
on which no bad coordinates depend, are also independent of bad.

Claim 3.19. For all e ∈ Z` and I ⊆ [`],

Pr[E = e ∧ bad = I] = Pr[EI = eI ∧ bad = I] · Pr[E[`]\I = e[`]\I | EI = eI ].
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Proof. Let e ∈ Z` and I ⊆ [`]. Lemma 3.6 implies that

Pr[X+E = y∧bad = I∧E = e] = Pr[X+E = y∧bad = I∧EI = eI ]·Pr[E[`]\I = e[`]\I | EI = eI ].

Summing both sides of the equation over all y ∈ Z` implies the claim.

We next prove the second fact, which follows from the first one.

Claim 3.20. For all v ∈ Zm and I ⊆ [`],

Pr[V = v ∧ bad = I] = Pr[VΦI = vΦI ∧ bad = I] · Pr[V[m]\ΦI = v[m]\ΦI | VΦI = vΦI ].

Proof. Let v ∈ Zm, I ⊆ [`], and let e := E(v). Then,

Pr[V = v ∧ bad = I] = Pr[V = v ∧ E = e ∧ bad = I]

= Pr[E = e ∧ bad = I] · Pr[V = v | E = e ∧ bad = I].

We further have Pr[V = v | E = e ∧ bad = I] = Pr[V = v | E = e] since V depends on
bad = bad(X,E(V )) only via E = E(V ). Using Claim 3.19, we thus obtain

Pr[V = v ∧ bad = I]

= Pr[EI = eI ∧ bad = I] · Pr[E[`]\I = e[`]\I | EI = eI ] · Pr[V = v | E = e]

= Pr[EI = eI ∧ bad = I] · Pr[E = e]

Pr[EI = eI ]
· Pr[V = v ∧ E = e]

Pr[E = e]
.

Since E = E(V ) is uniquely determined by V , we have Pr[V = v ∧ E = e] = Pr[V = v]. Hence,

Pr[V = v ∧ bad = I] = Pr[bad = I | EI = eI ] · Pr[V = v].

This implies

Pr[VΦI = vΦI ∧ bad = I] =
∑
vi∈Z

i∈[m]\ΦI

Pr[V = v ∧ bad = I]

=
∑
vi∈Z

i∈[m]\ΦI

Pr[bad = I | EI(VΦI ) = eI ] · Pr[V = v]

= Pr[bad = I | EI(VΦI ) = eI ] · Pr[VΦI = vΦI ].

We therefore obtain

Pr[V = v ∧ bad = I]

Pr[VΦI = vΦI ∧ bad = I]
= Pr

[
V[m]\ΦI = v[m]\ΦI | VΦI = vΦI

]
,

which implies the claim.

We now prove Lemma 3.18. To this end, let y ∈ Z`, v ∈ Zm, and let I ⊆ [`]. We then have

Pr
[
X + E = y ∧ bad = I ∧ V = v

]
=
∑
e∈Z`

Pr
[
X + E = y ∧ bad = I ∧ V = v ∧ E = e

]
.
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Since EI = EI(V ) = EI(V ) for bad = I, we can fix eI := EI(v) and sum only over the remaining
indices:

Pr
[
X + E = y ∧ bad = I ∧ V = v

]
=
∑
ei∈Z
i∈[`]\I

Pr
[
X + E = y ∧ bad = I ∧ E = e

]︸ ︷︷ ︸
Lemma 3.6

= Pr[X+E=y∧bad=I∧EI=eI ]·Pr[E[`]\I=e[`]\I |EI=eI ]

·Pr
[
V = v

∣∣ E = e ∧ bad = I
]
.

Moreover, using Claim 3.19, we obtain

Pr
[
V = v

∣∣ E = e ∧ bad = I
]

=
Pr
[
V = v ∧ E = e ∧ bad = I

]
Pr[E = e ∧ bad = I]

=
Pr
[
V = v ∧ E = e ∧ bad = I

]
Pr[EI = eI ∧ bad = I] · Pr[E[`]\I = e[`]\I | EI = eI ]

.

Hence,

Pr
[
X + E = y ∧ bad = I ∧ V = v

]
=
∑
ei∈Z
i∈[`]\I

Pr[X + E = y ∧ bad = I ∧ EI = eI ] ·
Pr
[
V = v ∧ E = e ∧ bad = I

]
Pr[EI = eI ∧ bad = I]

= Pr[X + E = y ∧ bad = I ∧ EI = eI ] ·
Pr
[
V = v ∧ EI = eI ∧ bad = I

]
Pr[EI = eI ∧ bad = I]

.

Using that EI = EI(V ) = EI(V ) is uniquely determined by V , and eI = EI(v), we obtain
Pr
[
V = v ∧EI = eI ∧ bad = I

]
= Pr

[
V = v ∧ bad = I

]
. By definition of V , we have for bad = I

that V ΦI = VΦI and the coordinates not in ΦI have the same distribution as these coordinates
in V conditioned on VΦI = vΦI . Therefore,

Pr
[
V = v ∧ bad = I

]
= Pr

[
V ΦI = vΦI ∧ bad = I

]
· Pr
[
V [m]\ΦI = v[m]\ΦI

∣∣ V ΦI = vΦI ∧ bad = I
]

= Pr
[
VΦI = vΦI ∧ bad = I

]
· Pr
[
V[m]\ΦI = v[m]\ΦI

∣∣ VΦI = vΦI

]
.

Claim 3.20 implies that the last line ob the equation above is equal to Pr[V = v ∧ bad = I].
Together with the equation above, we obtain

Pr
[
X+E = y∧bad = I ∧V = v

]
= Pr[X+E = y∧bad = I ∧EI = eI ] ·

Pr[V = v ∧ bad = I]

Pr[EI = eI ∧ bad = I]
.

Now let e[`]\I := E[`]\I(V ). Then, Pr[V = v ∧ bad = I] = Pr[V = v ∧ E = e ∧ bad = I]. Using
Claim 3.19, we thus have

Pr[V = v ∧ bad = I]

Pr[EI = eI ∧ bad = I]
=

Pr[V = v ∧ E = e ∧ bad = I]

Pr[E = e ∧ bad = I]
· Pr[E[`]\I = e[`]\I | EI = eI ].

Moreover, Lemma 3.6 implies that

Pr[X+E = y∧bad = I∧EI = eI ]·Pr[E[`]\I = e[`]\I | EI = eI ] = Pr[X+E = y∧bad = I∧E = e],
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which yields

Pr
[
X+E = y∧bad = I∧V = v

]
= Pr[X+E = y∧bad = I∧E = e]·Pr[V = v | E = e∧bad = I].

Since V does not depend on X, we have

Pr[V = v | E = e ∧ bad = I] = Pr[V = v | E = e ∧ bad = I ∧X + E = y],

leading to

Pr
[
X + E = y ∧ bad = I ∧ V = v

]
= Pr[X + E = y ∧ bad = I ∧ E = e ∧ V = v].

Finally, the right hand side of the equation above equals Pr[X + E = y ∧ bad = I ∧ V = v]
because E is uniquely determined by V , which concludes the proof.

4 Partially-Hiding Functional Encryption

In this section, we define Partially-Hiding Functional Encryption (PHFE) and construct it for
some special classes of functions. PHFE computes functions g(x, y) that take a public input x
and a private input y, and guarantees that a collection of ciphertexts and secret keys of PHFE
reveals only the outputs of the function and all public inputs, while hiding the private inputs.
The concept of PHFE was introduced in [AJKS18] as three-restricted FE for the special case of
cubic polynomials with three inputs. PHFE is a direct extension of the notion of Partially-Hiding
Predicate Encryption (PHPE) of [GVW15] that interpolates attribute based encryption and
predicate encryption. PHFE instead interpolates attribute based encryption and functional
encryption — if the public input c is empty, PHFE is equivalent to functional encryption, and if
g is such that it outputs y when some predicate P on c outputs 1, then PHFE is attribute based
encryption. Like in [GVW15], we will consider functions g that perform only simple computation
on the private input, but complex computation on the public input. In our case, the simple
computation is quadratic and we construct PHFE from bilinear maps.

Definition 4.1 (PHFE). A secret-key partially-hiding functional encryption scheme PHFE for
a class {Fλ}λ∈N of functions with domains Xλ × Yλ and ranges Zλ consists of the four PPT
algorithms PHFE.Setup, PHFE.KeyGen, PHFE.Enc, and PHFE.Dec, satisfying the same syntax
and correctness as functional encryption in Definition 2.16, and the following security:

PHFE simulation security: PHFE is 1-key µ-Sel-PH-Sim-secure if there is a PPT universal
simulator PSim such that for every {fλ}λ∈N, {xλ, yλ}λ∈N, every polynomial t, and all
{xi,λ, yi,λ}λ∈N,i∈[t(λ)] with fλ ∈ Fλ, xλ, xi,λ ∈ Xλ and yλ, yi,λ ∈ Yλ, the following distribu-
tions are µ-indistinguishable:

msk← PHFE.Setup(1λ)
sk← PHFE.KeyGen(msk, fλ)
ct← PHFE.Enc(msk, xλ, yλ)

{cti ← PHFE.Enc(msk, xi,λ, yi,λ)}i∈[t(λ)]

: sk, ct, {cti}i∈[t(λ)]


λ∈N

,

{
PSim

(
fλ, fλ (xλ, yλ) , xλ, {xi,λ, yi,λ}i∈[t(λ)]

) }
λ∈N

.
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Note that the only weakening from full simulation security of FE is that xλ is provided to
the simulator PSim.

In this section, all FE schemes used and constructed rely on bilinear map groups where
the SXDH assumption holds, reflected in that their setup algorithm receives the description
pp = (p,G1, G2, GT ,pair) of a bilinear map as input. These FE schemes satisfy only correctness
in the exponent in the sense that the function outputs are computed in the exponent of the
groups, and are only extractable if they reside in a polynomially-sized range. Correspondingly,
the PHFE schemes constructed satisfy a stronger variant of the above security notion, where
the simulator PSim only receives an encoding of the function output [fλ(xλ, yλ)]1 in the first
source group G1 of the bilinear map.7 In addition, they satisfy linear efficiency in the sense that
encryption time is linear in the input length. We now give a formal definition.

Definition 4.2. Let FE be a secret-key or public-key functional encryption scheme for {Fλ}λ∈N
with domain ZN(λ)

p(λ) and range ZM(λ)
p(λ) .

• FE is correct in the exponent if for all λ, f ∈ Fλ, x ∈ ZNp , and all pp = (p,G1, G2, GT ,pair)
describing a bilinear map,

Pr

 msk← FE.Setup(1λ, pp)
ct← FE.Enc(msk, x)

sk← FE.KeyGen(msk, f)
: [f(x)]T = FE.Dec(sk, ct)

 = 1.

• It has linear efficiency if the encryption time is poly(λ)N .

Definition 4.3. Let PHFE be a partially-hiding functional encryption scheme for {Fλ}λ∈N.
We say that PHFE is strongly µ-Sel-PH-Sim-secure if it satisfies the same security requirements
as in Definition 4.1, except that the setup algorithm PHFE.Setup receives additionally pp =
(p,G1, G2, GT ,pair) describing a bilinear map and the simulator PSim receives{

PSim
(
fλ, [fλ (xλ, yλ)]1, xλ, {xi,λ, yi,λ}i∈[t(λ)]

) }
λ∈N

.

4.1 PHFE for Polynomials of Degree 3

Let p be an arbitrary modulus, and N,S polynomials. We start with constructing a PHFE
scheme for the class

{
GN,Sλ

}
of degree 3 polynomials g(x,y, z) over Zp that are multilinear in

each input vector x,y, z ∈ ZNp and have size S. The first input x is the public input while the
second and third y, z are private inputs.

Note that the computation over the private inputs is quadratic. In the literature, there are
constructions of FE for quadratic polynomials from bilinear maps [Lin17,BCFG17]. It turns
out that a simple modification of the scheme by [Lin17] allows for adding the public input and
performing a linear computation on it. The proof in [Lin17] establishes the indistinguishability
security of their quadratic FE scheme, but a careful examination reveals that the scheme also
satisfies simulation security as in Definition 2.18. The same proof, slightly modified, establishes
the simulation security of our degree 3 PHFE. For completeness, below we describe formally our
construction and proof, while highlighting the difference from the construction of [Lin17].

7We can also swap G1 with G2 since they are symmetric.
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Ingredients. Like in [Lin17], our construction uses a secret key Function Hiding IPE scheme
constructed from bilinear map with the following canonical form, as the one in [Lin17].

Theorem 4.4 ( [Lin17]). Assume the µ-indistinguishability of the SXDH assumption over bilinear
map groups of order p = p(λ). There is poly(µ)-Sel-FH IPE {hIPEN} for inner products over
Zp with the following properties:

Canonical Form For every polynomial N and security parameter λ, hIPEN using bilinear
map groups (p,G1, G2, GT ,pair) satisfy that for every x ∈ ZNp , a ciphertext (or secret key)
of a vector x consists of only encodings in the group G1 (or G2 respectively) of elements
that depend linearly in the encoded vector x, that is, of the form [L1(x)]1 for some linear
function L1 (or [L2(x)]2).

Linear Efficiency For every polynomial N and security parameter λ, the encryption and key
generation algorithms of hIPEN takes time poly(λ)N .

PHFE for Degree-3 Multilinear Polynomial. Let hIPE = (hIPE.Setup, hIPE.KeyGen,
hIPE.Enc, hIPE.Dec); we omit the input lengths since they are implicit in the construction
below. Our PHFE scheme PHFEN,S = (PHFE.Setup,PHFE.KeyGen,PHFE.Enc,PHFE.Dec) for
computing degree 3 multilinear polynomials g(x,y, z) in GN,Sλ proceeds as follows:

• PHFE.Setup(1λ, pp) on input 1λ and public parameter pp = (p,G1, G2, GT , pair) samples
a hIPE master secret key ¯hmsk ← hIPE.Setup(1λ, pp), as well as two random vectors
s1, s2 ← ZNp . Output msk = ( ¯hmsk, s1, s2).

• PHFE.KeyGen(msk, g) on input a degree 3 multilinear polynomial g(x,y, z) ∈ GN,Sλ , parses
the computation of every output element gl as

∀l ∈ |g|, gl(x,y, z) = xDl(y ⊗ z),

where Dl is a N ×N2 matrix over Zp. Then, for every l, generate a hIPE ciphertext h̄ctl
encrypting ūl = (Dl(s1 ⊗ s2))||0 using master secret key ¯hmsk,

h̄ctl ← hIPE.Enc( ¯hmsk, ūl), where ūl = (Dl(s1 ⊗ s2))||0 .

Output sk = {h̄ctl, Dl}l.

• PHFE.Enc(msk,x,y, z) on input vectors x,y, z ∈ ZNp . (Assume w.l.o.g. that every input
vector contains a 1.) Do the following:

– Sample a scalar r ← Zp and a hIPE master secret key hmsk← hIPE.Setup(1λ, pp).
– For every i ∈ [N ], generate a hIPE ciphertext of vector ui = (rs1

i ||yi||0), and for
every j ∈ [N ], generate a secret key of vector vi = (s2

j ||zj ||0),

hcti ← hIPE.Enc(hmsk,ui), where ui = (rs1
i ||yi||0) ,

hskj ← hIPE.KeyGen(hmsk,vj), where vj = (s2
j ||zj ||0) .

– Generate a hIPE secret key of the vector v̄ = (rx||0),

¯hsk← hIPE.KeyGen( ¯hmsk, v̄), where v̄ = (rx||0) .
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Output ct = ({hcti, hskj}i,j∈[N ], ¯hsk, x).

• PHFE.Dec(sk, ct) first decrypts all hIPE ciphertexts.

∀i, j ∈ [N ], hIPE.Dec(hcti, hskj) = [〈ui,vj〉]T =
[
rs1
i s

2
j + yizj

]
T
,

∀l ∈ [|g|], hIPE.Dec(h̄ctl, ¯hsk) = [〈ūl, v̄〉]T = [rxDl(s1 ⊗ s2)]T .

Concatenate the decrypted outputs of the first line for all i, j, which gives a one-time pad
encryption of y ⊗ z using key rs1 ⊗ s2,

{hIPE.Dec(hcti, hskj)} =
[
rs1 ⊗ s2 + y ⊗ z

]
T

= ict .

Then, for every l ∈ |g|, the l’th output element ol can be recovered as

〈xDl, ict〉 − [rxDl(s1 ⊗ vs2)]T = [xDl(y ⊗ z)]T = [ol]T .

Output the concatenation [o]T of all [ol]T .

Lemma 4.5. Assume the µ-indistinguishability of the SXDH assumption over bilinear map
groups. The above scheme PHFEN,S is a partially-hiding functional encryption scheme for the
class GN,S of degree 3 multilinear polynomials over Zp, satisfying correctness in the exponent,
linear efficiency, and strong poly(µ)-Sel-PH-Sim security.

The above simulation security is strong because the simulator only takes an encoding of the
output in G1, instead of the output in the clear.

Proof. It is clear that the scheme is correct in the exponent and all algorithms run in time
polynomial in λ,N, S. The encryption algorithm PHFE.Enc generates O(N) hIPE ciphertexts
and secret keys of vectors of length 3, and a ciphertext of a vector of length O(N), which by the
efficiency of hIPE, takes poly(λ)N time. Therefore PHFE satisfies linear efficiency.

To show that PHFE satisfies strong µ-Sel-PH-Sim-security, we build a sequence of hybrids H0

to HN+2 where the first hybrid H0 and Hn are respectively identical to Real and Ideal above.

Hybrid H1: Recall that the PHFE secret key sk and ciphertext ct can be parsed as

sk = {h̄ctl, Dl}l , ct = ({hcti, hskj}i,j∈[N ], ¯hsk, x) ,

ctk = ({hctki , hskkj }i,j∈[N ], ¯hsk
k
, xk) ,

where {h̄ctl}l, ¯hsk and { ¯hsk
k}k are all the hIPE ciphertexts and secret keys generated using

master secret key ¯hmsk.

H1 proceeds identically to H0 = Real except that the hIPE ciphertexts {h̄ctl} (in sk) and
secret key ¯hsk (in challenge ciphertext ct) are changed to encode vectors:

In H0, ∀l, ūl = (Dl(s
1 ⊗ s2) || 0) v̄ = (rx || 0) ,

In H1, ∀l, ūl = (Dl(s
1 ⊗ s2) || rxDl(s

1 ⊗ s2)) v̄ = (0 || 1) .

Secret keys { ¯hsk
k} in other ciphertexts ctk do not change and remain encoded

∀k, v̄k = (rkxk || 0) .
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Observe that all inner products between {ūl} and v̄, {v̄k} remain the same. Therefore, it
follows from the function hiding property of hIPE that H0 and H1 are indistinguishable.

We will switch the vector vj encoded in hskj from (s2
j ||zj ||0) to (s2

j ||0||0) one by one in the
following sequence of hybrids {Hm+1:1, Hm+1:2, Hm+1:3, Hm+1:4, Hm+1:5}m∈[N ].

Hybrids Hm+1 for m ∈ [N ]: This hybrid proceed identically to H1 except that the vectors
{vj}j≤m encoded in the firstm secret keys {hskj}j≤m are changed to encode {(s2

j ||0||0)}j≤m
instead of {(s2

j ||zj ||0)}j≤m. This is done via the following 7 sub-hybrids.

Hybrid Hm+1:1: Toward changing vm from (s2
m||zm||0) to (s2

m||0||0), this hybrid changes
the ciphertexts and secret keys {hct?i , hsk?j}j generated using the master secret key
hmsk? (recall that PHFE.Enc samples a fresh master secret key for every ciphertext).
When ? is empty, these keys and ciphertexts are contained in the challenge ciphertext
ct, and when ? = k ∈ [t], they are contained in ciphertexts ctk. They are changed
from encoding the top vectors in Hm:7 (H1:7 = H1) to the bottom vectors in Hm+1:1.

In Hm:5, ∀i, ?, u?i = (r?s1
i || y?i || 0) v?m = (r?s2

m || z?m || 0)
In Hm+1:1, ∀i, ?, u?i = (r?s1

i || y?i || r?s1
i s

2
m + y?i z

?
m) v?m = (0 || 0 || 1)

All vectors vj ,v
k
j for j 6= m do not change and remain as follows:

∀j < m, ?, v?j = (r?s2
j || 0 || 0) ∀j > m, ?, v?j = (r?s2

j || z?j || 0) .

Note that for every ?, the inner products between u?i and v?j for all i, j are identical in
Hm:5 and Hm+1:1. Applying the function hiding property of hIPE for every ? implies
that Hm:5 and Hm+1:1 are indistinguishable.

Hybrid Hm+1:2: In this hybrid, for every i ∈ [N ] we replace s1
i s

2
m with a random scalar

ti ← Zp. This means,

In Hm+1:1, ∀i, ?, u?i = (r?s1
i || y?i || r?s1

i s
2
m + y?i z

?
m)

∀l, ūl = (Dl(s
1 ⊗ s2) || (rxDl(s

1 ⊗ s2) + ∆l,m−1))
In Hm+1:2, ∀i, ?, u?i = (r?s1

i || y?i || r?ti + y?i z
?
m)

∀l, ūl = (Dlhm || (rxDlhm + ∆l,m−1)),
where hm = s1 ⊗ s2

<m || t || s1 ⊗ s2
>m

and s2
<m = s2

1 · · · s2
m−1, s2

>m = s2
m+1 · · · s2

N , and t = t1 · · · tN . (Ignore for the moment
the scalar ∆l,m−1, which will be explained shortly in the next hybrid.) Note that
{s1
i s

2
m} and s2

m do not appear in any v, v̄ vectors

∀?, v?j =


(r?s2

j || 0 || 0) ∀j < m

(0 || 0 || 1) j = m

(r?s2
j || z?j || 0) j > m

v̄ = (0 || 1) ∀k, v̄k = (rkxk || 0).

Since all u, ū vectors are encoded in ciphertexts of hIPE, by the canonical form
of hIPE (see Theorem 4.4), these ciphertexts consist of encodings {[L1(u?i )]1},
{[L1(ūl)]1} in the first source group G1 of elements that are linear in these u, ū
vectors. This means Hm+1:1 can be perfectly emulated from {

[
s1
i

]
1
,
[
s1
i s

2
m

]
1
}i (by
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sampling all other elements internally), while Hm+1:2 can be perfectly emulated given
{
[
s1
i

]
1
, [ti]1}i. It follows from the SXDH assumption w.r.t. G1 that Hm+1:1 and

Hm+1:2 are indistinguishable.
Hybrid Hm+1:3: Similar to above, in this hybrid, for every i ∈ [N ], we replace rti with a

random scalar t′i ← Zp. Note that rti only appears in ui (for ? being empty) and ūl.
Thus,

In Hm+1:2, ∀i, ui = (rs1
i || yi || rti + yizm)

∀l, ūl = ((w6=m +Dl,mt) || (x (rw6=m +Dl,m(rt)) + ∆l,m−1)) ,
where Dl =

[
Dl,1

∣∣ · · · ∣∣Dl,m

∣∣ · · · ∣∣Dl,N

]
, w6=m =

∑
i 6=mDl,i(s

1s2
i )

In Hm+1:3, ∀i, ui = (rs1
i || yi || t′i + yizm)

∀l, ūl = ((w6=m +Dl,mt) || (x (rw6=m +Dl,mt′ ) + ∆l,m−1))

It follows again from the canonical form of hIPE thatHm+1:2 can be perfectly emulated
from [r]1, [t]1, [rt]1 (by sampling all other elements internally), while Hm+1:3 can be
perfectly emulated from [r]1, [t]1, [t

′]1. It follows from the SXDH assumption w.r.t.
G1 that Hm+1:2 and Hm+1:3 are indistinguishable.
Observe that in this hybrid, {ui} contain {t′i + yizm}, which is a one-time pad
encryption of yizm. Therefore, we can define t′′ = t′ + yzm which is randomly
distributed, and rewrite as follows:

In Hm+1:3, ∀i, ui = (rs1
i || yi || t′′i )

∀l, ūl = ((w6=m +Dl,mt) || (x (rw6=m +Dl,m(t′′ − yzm) ) + ∆l,m−1))

Hybrid Hm+1:4: In this hybrid, we change yzm to the zero vector 0, and ∆l,m−1 to
∆l,m = ∆l,m−1 − xDl,m(yzm). That is,

In Hm+1:4, ∀i, ui = (rs1
i || yi || t′′i )

∀l, ūl = ((w6=m +Dl,mt) || (x (rw6=m +Dl,m(t′′ − 0)) + ∆l,m)) .

Since xDl,m(t′′−0) + ∆l,m = xDl,m(t′′−yzm) + ∆l,m−1, hybrid Hm+1:4 is identically
distributed as Hm+1:3.

Hybrid Hm+1:5: In this hybrid, we reverse the change done in Hm+1:3 — that is, for every
i ∈ [N ], we replace t′′i with rti.

In Hm+1:5, ∀i, ui = (rs1
i || yi || rti)

∀l, ūl = ((w6=m +Dl,mt) || (x (rw6=m +Dl,m(rt)) + ∆l,m)) .

It follows again from the same argument as in Hm+1:3 that by the canonical form of
hIPE and the SXDH assumption in G1, Hm+1:4 is indistinguishable to Hm+1:5.

Hybrid Hm+1:6: Observe that Hm+1:5 is identical to Hm+1:2, except that yzm is replaced
with 0, or equivalently zm replaced with 0, and ∆l,m−1 replaced with ∆l,m. Therefore
we can reverse the change done in Hm+1:2 — that is, for every i ∈ [N ], we replace ti
with s1

i s
2
m.

In Hm+1:5, ∀i, ?, u?i = (r?s1
i || y?i || r?ti + y?i z

?
m) , with zm = 0

∀l, ūl = (Dlhm || (rxDlhm + ∆l,m)),
where hm = s1 ⊗ s2

<m || t || s1 ⊗ s2
>m .

In Hm+1:6, ∀i, ?, u?i = (r?s1
i || y?i || r?s1

i s
2
m + y?i z

?
m) , with zm = 0

∀l, ūl = (Dl(s
1 ⊗ s2) || (rxDl(s

1 ⊗ s2) + ∆l,m)).
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It follows again from the same argument as in Hm+1:2 that by the canonical form of
hIPE and the SXDH assumption in G1, Hm+1:5 is indistinguishable to Hm+1:6.

Hybrid Hm+1:7: In this hybrid, we reverse the change done in Hm+1:1, that is,

In Hm+1:6, ∀i, ?, u?i = (r?s1
i || y?i || r?s1

i s
2
m + y?i z

?
m) , with zm = 0,

v?m = (0 || 0 || 1).
In Hm+1:7, ∀i, ?, u?i = (r?s1

i || y?i || 0),
v?m = (r?s2

m || z?m || 0) , with zm = 0.

It follows from the same argument as in Hm+1:1 that by the function hiding of hIPE,
hybrids Hm+1:6 and Hm+1:7 are indistinguishable.

Combining the above sub-hybrids, we observe that Hm+1 changes zm to 0 and ∆l,m−1 to
∆l,m. Next, we summarize the last hybrid HN+1.

Hybrid HN+1: In this hybrid, all {zj} values are changed to 0 and the value ∆l,N is used,
that is,

In HN+1, ∀i, ?, u?i = (r?s1
i || y?i || 0) v?j =

{
(rs2

j || 0 || 0) ? empty
(rks2

j || zkj || 0) ? = k

∀l, ūl = (Dl(s
1 ⊗ s2) || (rxDl(s

1 ⊗ s2) + ∆N )).

We now analyze the ∆l,N values: Since ∆0 = 0 and ∆l,m = ∆l,m−1 − xDl,m(yzm),

∆l,N =
∑
i∈[N ]

xDl,i(yzi) = xDl(y ⊗ z) = gl(x,y, z) .

In other words, the outputs {gl(x,y, z)} are hardcoded in ūl, which are in turn encrypted
using hIPE in c̄tl contained in the PHFE secret key sk.

Hybrid HN+2 : In this hybrid, for every i ∈ [N ], we change yi to 0, that is,

In HN+1, ∀i, ui = (rs1
i || yi || 0) vj = (rs2

j || 0 || 0).

In HN+2, ∀i, ui = (rs1
i || 0 || 0) vj = (rs2

j || 0 || 0).

Recall that {ui} and {vj} are encoded, respectively, in ciphertexts and secret keys of hIPE
using a freshly sampled master secret key hmsk at time encrypting the challenge message
(x,y, z). Since all inner products {〈ui,vj〉}ij are identical in HN+1 and HN+2, it follows
from the function hiding property of hIPE that these two hybrids are indistinguishable.

Observe that y and z are not used for generating HN+2 and the output g(x,y, z) is
hardcoded in {ūl}, which are encrypted using hIPE in {c̄tl} contained in the PHFE secret
key sk. By the canonical form of hIPE, {c̄tl} can thus be simulated from encodings
[g(x,y, z)]1. Thus, HN+2 can be generated by a simulator PSim with the following inputs
as desired:

HN+2 = PSim

(
g, [g (x,y, z)]1, x,

{
xk,yk, zk

}
i∈[t]

)
.

Since there are O(N) hybrids in total, and all hybrids are poly(µ)-indistinguishable, we conclude
that PHFE satisfies poly(µ)-Sel-PH-Sim security.
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4.2 PHFE for Polynomials with Polynomial Degree

Building upon the construction of PHFE for degree 3 multilinear polynomials g(x,y, z), we
attempt to construct PHFE for the more general case of g with polynomial degree in the public
input x, but still linear in the private inputs x,y, using again only bilinear maps. However, we
can only handle a sub-class of such polynomials of the form g(x,y, z) = q(f(x),y, z), which first
performs a complex high-degree computation f on x, followed by a simple computation q on the
output of the first step and y, z. Furthermore, we need q and f to satisfy certain size constraints
— the length of the outputs of q/g is bounded by N2, as well as the width of the formula that
computes f . Below, we first formally define the subclass of polynomials considered and then give
a construction of PHFE for computing them.

The special class GN,S,Dep of polynomials. Fix an arbitrary modulus p(λ). The function
class {GN,S,Dep

λ } indexed by polynomials N,S and a logarithmic function Dep contains functions
g, mapping three input vectors x,y, z ∈ ZNp to an output vector o ∈ Z|g|p , that can be written in
the following canonical form and satisfy the following constraints.

Canonical Form: g is decomposed into functions α, β, f and ` that depend either only on the
public input x or only on the private inputs y, z. More specifically, every output element gi is
computed as

∀i ∈ [|g|], gi(x,y, z) = 〈α[i](y, z), f [i](`(x))〉+ βi(y, z) ,
α = α[1]|| · · · ||α[|g|] and f = f [1]|| · · · ||f [|g|] , (3)

where α[i] and f [i] denote the i’th chunk of output elements of α and f of appropriate equal
length, and βi the i’th output element of β. f depends only on `(x) which is linear in the public
input x. We note that for different i, the fan-in of the inner product8, that is |f [i]| = |α[i]|, may
be different and is specified implicitly by g. For simplicity, we represent the computation of all
output elements as

g(x,y, z) = 〈〈α(y, z), f(`(x))〉〉+ β(y, z) .

Furthermore, f is a formula (i.e., all gates have fan-out 1) composed of alternating layers of
fan-in 2 multiplication gates and layers of unbounded fan-in addition gates. Equivalently, f is
composed of layers of unbounded fan-in inner product gates. We associate with this computation
a binary tree Tf , where the root represents f , and every other node γ represents a function fγ

s.t.

fγ = 〈〈fγ0, fγ1〉〉, i.e., ∀i ∈ |fγ |, fγi =
〈
fγ0[i], fγ1[i]

〉
, (4)

where we suppress the input `(x).
We define the depth of f to be the depth of Tf , that is, the number of layers of inner products,

and the size of a function X (e.g., g, f , α, β) to be the number of fan-in two addition and
multiplication over Zp needed for computing it.

We remark that any function g can be written in the above canonical form, for instance, by
stratifying according to monomials in y, z, and writing the public computation on x in formula.
There might be multiple ways of writing a computation in canonical form, and some of them,
perhaps all of them, are not efficient.

8The fan-in of the inner product refers to the length of the vectors in the computation.
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Constraints: Here, we only consider g with canonical form satisfying the following constraints.

1. g, as well as α, β, is linear in both y and z (its degree in x may be an arbitrary polynomial).

2. g in its canonical form has polynomial size S.

3. f in the canonical form of g has logarithmic depth Dep = O(log λ).

4. The output length |g| of g and the width width(f) of f is bounded by N2.

Overview of our PHFE for GN,S,Dep We give a recursive construction of PHFE for GN,S,Dep,
in the depth Dep of the public computation f . In the base case, when Dep = 0, the function g is
indeed degree 3 multi-linear and hence can be computed using the degree 3 PHFE constructed
in the previous section. Next, assume that we have constructions of PHFE schemes PHFEDep−1

for function classes GN ′,S′,Dep−1 with depth Dep− 1, we construct PHFEDep for GN,S,Dep with
depth Dep using the following ideas.

Given a function g ∈ GN,S,Dep in the canonical form, every output element gi can be computed
as in equation (3). Let i1, . . . , ik be the indexes of elements in the i’th output chunks of α and f ,
that is, α[i] = αi1,...,ik and f [i] = fi1,...,ik ; we have

gi =
∑
j∈[k]

αijfij + βi ,

where we suppress the input dependency for simplicity. Moreover, since every output element fij
of f is computed by an inner product

〈
f0[ij ], f

1[ij ]
〉
as in equation (4), we have

gi =
〈
αi1f

0[i1] || · · · || αikf
0[ik] || βi , f1[i1] || · · · || f1[ik] || 1

〉
.

Note that the input vectors of the above inner product have public computation f0, f1 of depth
exactly Dep−1. Thus, the key idea is using PHFEDep−1 to compute the input vector. But clearly
we cannot output the first input vector in the clear, which contains output elements of α and
β that depend on the private inputs y, z. Instead, we will use PHFEDep−1 to compute the first
input vector one-time-padded with a random vector t[i], together with the inner product of t[i]
and the second vector, that is,

g0[i] =
(
αi1f

0[i1] || · · · || αikf
0[ik] || βi

)
+ t[i],

g1
i =

〈
t[i] ,

(
f1[i1] || · · · || f1[ik] || 1

)〉
.

Given g0
i , g

1
i , one can recover gi as

gi =
〈
g0[i] , (f1[i1] || · · · || f1[ik] || 1)

〉
− g1

i . (5)

Thanks to the random pad t[i], g0
i , g

1
i reveal only gi and f1. In summary, we reduce the

computation of g to that of g0 = {g0
i }i and g1 = {g1

i }i.
To compute g0, g1 using PHFEDep−1, it remains to argue that they satisfy the constraints

of GN ′,S′,Dep−1 w.r.t. some (different) N ′, S′. Observe that the private computation of g0, g1

involves computing α, β on y, z and outputting the random pad t, which is linear in y, (z||t)
(constraint 1). By setting N ′ = N + |t| ≥ 2N , we have that the public computation of g0

and g1, which are exactly f0 and f1 on input `(x), has depths Dep − 1 and widths bounded
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by width(f) ≤ N2 < N ′2 (constraint 3 and 4). Their output lengths are both bounded by
2N2 < N ′2 (constraint 4) since∣∣g0

∣∣ =
∑
i∈|g|

(
∣∣f0[i1]

∣∣+ · · ·+
∣∣f0[ik]

∣∣+ 1) =
∣∣f0
∣∣+
∣∣g∣∣ , ∣∣g1

∣∣ =
∣∣g∣∣ , (6)

where the second last equality follows from that every f0[ij ] is used only once (as f is a formula
and each fi is used only once). Finally, their sizes are polynomial (constraint 2)

size(g0) = O(size(f0) + size(α) + size(β)) = O(size(g)) ,
size(g1) = O(size(f1) + |g|) = O(size(f1) + size(β)) = O(size(g)) .

(7)

Therefore, PHFEDep recursively invokes PHFEDep−1 to compute g0, g1 and recovers g by equa-
tion (5). Its correctness and PHFE simulation security follow from that of PHFEDep−1.

Arguing linear efficiency is however a bit tricky. To ensure the linear efficiency of PHFEDep,
we need the total length of the private inputs y, z||t be bounded by O(N). If so, after Dep levels
of recursion, the length of private inputs grows to poly(λ)N , and the linear efficiency of the
degree 3 PHFE scheme constructed in the previous section implies that of PHFEDep. However, t
is a one-time pad for g0 and |vt| = |g0| = |f0|+ |g| (see equation (6)). Restricting |t| = O(N)
means PHFEDep can only compute functions with linear-length outputs, which is insufficient for
our application later of evaluating pseudo-flawed smudging generators with polynomial N1+ε

length outputs. To circumvent this problem, instead of sampling t randomly, we compute it as
the tensor product t = u0 ⊗ u1 of two random vectors of length-

√
|t|. We show that as long as

|g| and widthf are bounded by poly(λ)N2 (constraint 4), the length of t used at every recursion
level is bounded by poly(λ)N2 and hence the lengths of the actual private inputs |u0| = |u1|
are always bounded by poly(λ)N . For security, to address the problem that t = u0 ⊗ u1 is no
longer random, we use the fact that in our construction t is computed in the exponent of bilinear
map groups and never revealed in the clear, and hence the SXDH assumption implies that t is
pseudo-random in the exponent.

Construction of our PHFE for GN,S,Dep Let Dep be a logarithmic function and N,S
polynomials. Using a PHFE scheme PHFEDep−1 for GN ′,S′,Dep−1 with appropriate N ′, S′ set
below, we construct a PHFE scheme PHFEN,S,Dep for GN,S,Dep as follows:

• PHFE.SetupDep(1λ, pp) on input 1λ and public parameter pp = (p,G1, G2, GT , pair) samples
two PHFEDep−1 master secret keys,

∀b ∈ {0, 1}, mskb ← PHFE.SetupDep−1(1λ, pp) .

Output msk = (msk0,msk1).

• PHFE.KeyGenDep(msk, g) on input a function g ∈ GN,S,Dep of canonical form

∀i ∈ [|g|], gi(x,y, z) = 〈α[i](y, z), f [i](`(x))〉+ βi(y, z) , and

∀j ∈ [|f |], fj(`(x)) =
〈
f0[j] (`(x)) , f1[j] (`(x))

〉
,

does the following:
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– Prepare functions g0, g1 with additional private inputs u0,u1 ∈ Z2N
p as follows,

∀i ∈ [|g|], g0[i]
(
x, (y||u0), (z||u1)

)
=
(
αi1f

0[i1] || · · · || αikf
0[ik] || βi

)
+ t[i],

g1
i

(
x,u0,u1

)
=
〈
t[i] ,

(
f1[i1] || · · · || f1[ik] || 1

)〉
,

t(u0,u1) = u0 ⊗ u1 = (t[1] || t[i] || t[|g|] || ?) ,

where i1, . . . , ik are indexes of output elements contained in chunk α[i] and f [i]
(specified implicitly by g).9 Note that the input lengths N ′ of g0, g1 are bounded by
3N and by equation (7), their sizes S′ are bounded by O(S).

– For every b ∈ {0, 1}, generate a PHFEDep−1 secret key of gb using mskb,

skb ← PHFE.KeyGenDep−1(mskb, gb) .

Output sk = (sk0, sk1, g).

• PHFE.EncDep(msk,x,y, z) does the following:

– Sample two random vectors of length 2N , u0,u1 ← Z2N
p .

– Generate two PHFEDep−1 ciphertexts

ct0 ← PHFE.EncDep−1(msk0,x, (y||u0), (z||u1)),

ct1 ← PHFE.EncDep−1(msk1,x,u0,u1).

Output ct = (ct0, ct1,x).

• PHFE.DecDep(sk, ct) first decrypts both PHFEDep−1 ciphertexts

∀b ∈ {0, 1},
[
ob
]
T

= PHFE.DecDep−1(skb, ctb) .

According to g, parse
[
o0
]
T

=
[
o0[1]

]
T
|| · · · ||

[
o0[|g|]

]
T
, where |o0[i]| = |g0[i]|. For every

i ∈ [|g|], compute

[oi]T =
〈[

o0[i]
]
T
,
(
f1[i1] || · · · || f1[ik] || 1

)〉
−
[
o1
i

]
T
,

where the output elements of f1 can be computed using the public input x. Output the
concatenation [o]T of all [oi]T .

Correctness: The correctness in exponent of PHFEDep follows immediately from that of PHFEDep−1.
By the latter, we know that o0[i] = g0[i](x,y||u0, z||u1) and o0

i = g1
i (x,u0,u1). It then follows

from the definition of g0 and g1 that we have

oi = gi =
〈
g0[i] , (f1[i1] || · · · || f1[ik] || 1)

〉
− g1

i .

Thus the output of gi is computed correctly in the exponent.

Linear Efficiency: PHFE.EncDep makes two calls to PHFE.EncDep−1 with inputs of length 3N .
After all Dep levels of recursion, it makes at most 2Dep calls to PHFE.Enc0 with inputs of length

9As analyzed above in equation (6), since |t| = |g0|+ |f | ≤ 2N2, u0 ⊗ u1 is long enough to cover t.
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3DepN . The base case scheme PHFE.Enc0 is the PHFE scheme for computing degree 3 multi-linear
polynomials constructed in Section 4.1, which has linear efficiency. Hence the encryption time of
PHFE.EncDep is bounded by 2DepO(3DepN), which is bounded by poly(λ)N as Dep is logarithmic
in λ. Since PHFE.DecDep−1 has linear efficiency, TDep(N) = 2poly(λ)O(3N) = poly(λ)N .

Strong PHFE Simulation Security: We show the following theorem:

Theorem 4.6. Let p,N, S,Dep and bilinear map groups (pp, G1, G2, GT , pair) be defined above,
and let µ be any negligible function. If the µ-indistinguishability of the SXDH assumption holds
w.r.t. G1, then PHFEDep−1 above is a partially-hiding functional encryption for GN,S,Dep, with
strong poly(µ)-Sel-PH-Sim security.

The above theorem follows from the security of the base scheme PHFE0 (Lemma 4.5) and
the following lemma on the security loss due at every recursion level. Lemma 4.5 states that
it follows from the µ-indistinguishability of SXDH w.r.t. G1 that PHFE0 is strong poly(µ)-
Sel-PH-Sim-secure. By the following lemma, after Dep levels of recursion, we obtain PHFEDep

with 3Deppoly(µ)-Sel-Sim security. Since Dep is logarithmic and µ is negligible, PHFEDep is
poly(µ)-Sel-Sim secure.

Lemma 4.7. Let p,N, S,N ′, S′,Dep and bilinear map groups (pp, G1, G2, GT ,pair) be as defined
above. If PHFEDep−1 is a partially-hiding functional encryption scheme for GN ′,S′,Dep−1 with
strong µ-Sel-PH-Sim security, and the µ · negl-indistinguishability of the SXDH assumption holds
w.r.t. G1, then PHFEDep above is a partially-hiding functional encryption for GN,S,Dep, with
strong 3µ-Sel-PH-Sim security.

Proof. We want to show a PPT universal simulator PSim, such that, for every security parameter
λ, bilinear map groups pp = (p,G1, G2, GT , pair), function g ∈ GN,S,Dep

λ , and input vectors
(x,y, z), {xk,yk, zk}k∈[t] for some polynomial t = t(λ), the following distributions are 3µ(λ)-
indistinguishable:

Real =


msk← PHFE.SetupDep(1λ, pp)

sk← PHFE.KeyGenDep(msk, g)

ct← PHFE.EncDep(msk,x,y, z){
ctk ← PHFE.EncDep(msk,xk,yk, zk)

}
i∈[t]

: sk, ct,
{

ctk
}
i∈[t]

 ,

Ideal =

{
PSim

(
g, [g (x,y, z)]1, x,

{
xk,yk, zk

}
i∈[t]

) }
.

We construct the simulator via a sequence of hybrids H1 to H4

Hybrid H1: By construction, each PHFEDep secret key sk and ciphertext contains respectively
two secret keys sk0, sk1 and ciphertexts ct0, ct1 of PHFEDep−1, generated using different
master secret keys msk0,msk1. Each copy is used to compute the function g0 and g1 on
inputs (x,y||u0, z||u1) and (x,u0,u1), respectively. In this hybrid, we apply the strong
PHFE simulation security of PHFEDep−1 to simulate each set of keys and ciphertexts
generated using the same master secret key.

In Real, sk = (sk0, sk1), ct = (ct0, ct1), {ctk = (ctk,0, ctk,1)}k.

In H1, ∀b ∈ {0, 1}, (skb, ctb, {ctk,0}k)← PSimDep−1
(
gb,
[
ob
]

1
, x, {xk,yk||uk0, zk||uk1}

)
,

ob =

{
g0(x,y||u0, z||u1), b = 0,

g1(x,u0,u1), b = 1,
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where u?b is a random sampled vector of length 2N . It follows from the µ-Sel-PH-Sim-security
of PHFEDep−1 that Real and H1 are 2µ-indistinguishable.

Hybrid H2: By construction, for every i ∈ [|g|], the output of g0[i] is a one-time pad en-
cryption using pad t[i] and the output g1

i is an inner product between t[i] and vector
(f1[i1] || · · · || f1[ik] || 1), where t = u0 ⊗ t1. Thus both g0, g1 are linear in t. In this
hybrid, we replace u0,⊗u1 with a freshly sampled random vector t← Z4N2

p of the same
length, and prepare ob used for simulation as follows:

o0[i] =
(
αi1f

0[i1] || · · · || αikf
0[ik] || βi

)
+ t[i],

o1
i =

〈
t[i] , (f1[i1] || · · · || f1[ik] || 1)

〉
.

Observe that in both H1 and H2, only encodings of ob in G1 are needed for simulation,
thus given encodings [u0 ⊗ u1]1 and [t]1, we can perfectly emulate the encodings

[
ob
]
1

needed for simulation in H1, H2. It thus follows from the µ · negl-indistinguishability of the
SXDH assumption w.r.t. G1 that these two hybrids are µ-indistinguishable.

Hybrid H3: In hybrid H2, o0 is distributed randomly as it is a one-time pad encryption using
a truly random key t, and o1 satisfies that o1

i =
〈
o0[i], (f1[i1] || · · · || f1[ik] || 1)

〉
− o,

where o = g(x,y, z). Therefore, we can construct a simulator PSimDep that on input
(g, [o]1,x, {xk,yk, zk}k), samples o0, {ukb} randomly, computes

[
o1
]
1
as above, and invokes

PSimDep−1 twice as inH2. The distribution output by PSimDep is identical to that generated
in H2.

H3 is exactly the distribution Ideal and by a hybrid argument is 3µ-indistinguishable to the
distribution Real.

5 Noisy Secret-Key Linear Functional Encryption

5.1 Definitions

In this section, we define η-noisy secret-key linear functional encryption, where η is a distribution
over the codomain of the functions supported by the functional encryption scheme. For our
construction in Section 6, η is a linear combination of flawed-smudging distributions. We here
only give definitions for linear functions since this is sufficient for our construction, but all
definitions easily extend to general function classes.

Noisy secret-key FE schemes have the same syntax as regular secret-key FE schemes (cf.
Definition 2.16), but decrypting an encryption of x with a secret key for the function f yields
f(x) + e for e← η (instead of f(x)). We further only require weak correctness in the sense that
decryption only needs to succeed if all coordinates of f(x) lie in a polynomially sized range R
known to the decryptor. This generalizes correctness in the exponent as defined in Definition 4.2.

Noisy linear function encryption has recently been introduced by Agrawal [Agr18a], but our
notion differs in three points: First, we require the decryption to recover f(x) + e, where e is
from a specific distribution η, while Agrawal only requires e to have bounded norm. Secondly,
we only require weak correctness. And thirdly, we consider simulation-security, whereas Agrawal
defines indistinguishability-based security for noisy linear functional encryption.
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Definition 5.1 (Noisy secret-key FE). Let n = n(λ), m = m(λ), and p = p(λ) be positive
integers for λ ∈ N. Further let η = η(λ) be a distribution over Zmp , and let B = B(λ) ≤ poly(λ)
be a polynomial bound. An η-noisy secret-key linear functional encryption scheme NFE for
functions Znp → Zmp consists of the following four PPT algorithms.

• Setup: NFE.Setup(1λ) is an algorithm that on input a security parameter, outputs a master
secret key nmsk.

• Key Generation: NFE.KeyGen(nmsk, f) on input the master secret key nmsk and the
description of a linear function f : Znp → Zmp , outputs a secret key nskf .

• Encryption: NFE.Enc(nmsk,x) on input the master secret key nmsk and a message x ∈ Znp ,
outputs an encryption nct of x.

• Decryption: NFE.Dec(nskf , nct,R1, . . . ,Rm) on input a secret key nskf , a ciphertext nct,
and polynomially sized sets R1, . . . ,Rm ⊆ Zp, outputs y ∈ Zmp .

Weak correctness. For all λ ∈ N, for all linear functions f : Znp → Zmp , for all x ∈ Znp , and for
all sets R1, . . . ,Rm ⊆ Zp, we have: If |Ri| ≤ B for all i ∈ [m], and if bf(x)cp ∈ R1 × . . .×Rm,
then

Pr


nmsk← NFE.Setup(1λ)

nskf ← NFE.KeyGen(nmsk, f)
nct← NFE.Enc(nmsk,x)

y← NFE.Dec(nskf , ct,R1, . . . ,Rm)

: ∃e ∈ Support(η) y = bf(x) + ecp

 = 1.

Note that the correctness definition only requires e to be in the support of η, not that it has
distribution η. This is sufficient for correctness in our construction in Section 6, which uses NFE.
The actual distribution η is important for security, which we define next.

Simulation security. We next define 1-key simulation-based fully-selective security for noisy
FE schemes. Similarly to the corresponding definition for secret-key FE schemes, it requires
the existence of a simulator that can simulate a secret key for a function f and a ciphertext
for x given only f and f(x) + e, where e is sampled from η. Additionally, the simulator has to
simulate further ciphertexts for other inputs xi given these xi. The latter is needed since in the
secret-key setting, adversaries cannot produce ciphertexts on their own and simulated ciphertexts
should still be indistinguishable from real ones if one sees additional ciphertexts. Fully-selective
here means that the function and challenge input cannot be chosen adaptively, but are fixed at
the beginning.

Definition 5.2 (1-key Sel-Sim-security for noisy secret-key FE). Let NFE = (NFE.Setup,
NFE.KeyGen,NFE.Enc,NFE.Dec) be an η-noisy secret-key linear functional encryption scheme for
functions Znp → Zmp . We say NFE is 1-key µ-Sel-Sim-secure if there is a PPT universal simulator
Sim such that for every ensemble of linear functions {fλ}λ∈N, where fλ : Z

n(λ)
p(λ) → Z

m(λ)
p(λ) , every

ensemble of inputs {x?λ}λ∈N, every polynomial t, and every ensemble of sequences of inputs
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{xi,λ}λ∈N,i∈[t(λ)], where x?λ,xi,λ ∈ Z
n(λ)
p(λ) , the following distributions are µ-indistinguishable:

nmsk← NFE.Setup(1λ)
nskf ← NFE.KeyGen(nmsk, fλ)

nct? ← NFE.Enc(nmsk,x?λ)
{ncti ← NFE.Enc(nmsk,xi,λ)}i∈[t(λ)]

: nskf , nct?, {ncti}i∈[t(λ)]


λ∈N

,

{
e← η(λ) : Sim

(
fλ,

⌊
fλ
(
x?λ
)

+ e
⌋
p
, {xi,λ}i∈[t(λ)]

)}
λ∈N

.

5.2 Construction from PHFE and Noise Generator

There is a simple construction of an η-noisy secret-key linear FE scheme from a PHFE scheme
for a function class G and a noise generator G in the class G with the following property: Seeds
for the generator are split into a public and a private part, and the output distributions are
indistinguishable from η even when given the public part of the seed. The NFE scheme encrypts
a value x by encrypting x as part of the private input of PHFE, and encrypting a seed φ for the
noise generator split over the public and private inputs. To generate a key for a function f , it
generates a key for the function g(x, φ) = f(x) +G(φ). Decryption clearly recovers f(x) + e for
some e in the support of η, and security follows from simulation security of the FE scheme and
the properties of G. To achieve sublinear compactness, we need G to have superlinear stretch.

We now proceed with the formal description of the used primitives and the construction. Let
n = n(λ), and m = m(λ) be polynomials, let p = p(λ) be super-polynomial, and let F = F(λ)
be the set of linear functions Znp → Zmp . Further let η = η(λ) be a distribution over Zm with
polynomially bounded support and let α > 0 be a constant. We construct an η-noisy secret-key
FE scheme NFE for F using the following tools:

• Partially-hiding functional encryption schemes PHFEn,m for computing functions in a
class {Gλ}λ∈N with public domains Xλ := Zm

1−α
p , private domains Yλ := Zm

1−α
p ×Zn+m1−α

p ,
and ranges Zλ := Zmp . We assume the schemes satisfy correctness in the exponent as
defined in Definition 4.2, and linear efficiency, i.e., the encryption time is poly(λ)(n+m1−α),
depending linearly on the input length and independent of the size of the computation.
Furthermore, we assume that the scheme is 1-key O(µ)-Sel-PH-Sim-secure.

• A family of distributions {Γλ}λ∈N with the same syntax and efficiency as PFGs, with
seeds φ divided into three parts φ1, φ2, φ3 such that outputs are O(µ)-indistinguishable
from η even when given φ1. More formally: For (G,Dsd) ← Γλ, φ = (φ1, φ2, φ3) ← Dsd,
and e← η, the distributions of (φ1, G(φ)) and (φ1, e) are O(µ)-indistinguishable.

We further assume all functions G in the support of Γ have range contained in Support(η)

and polynomial-stretch
(
Zm

1−α
p

)3 → Zmp . Moreover, for all these functions G, computing
G and adding a linear function yields a function in the class G.
For our construction in Section 6.3, we need an η-noisy FE scheme for a distribution η of the
form

∑
i piΦi, where pi are integers and Φi are flawed-smudging distributions. In that case,

we can use pseudo flawed-smudging generators PFGi with distributions indistinguishable
from Φi and let G compute

∑
i piPFGi(φi).

Construction of NFE. Our scheme NFE consists of the following algorithms:
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• NFE.Setup(1λ), on input the security parameter, generates a master secret key msk ←
PHFE.Setup(1λ) for the PHFE scheme, and samples (G,Dsd) ← Γλ. It outputs nmsk =
(msk, G,Dsd).

• NFE.Enc(nmsk,x), on input nmsk = (msk, G,Dsd) and x ∈ Znp , samples φ = (φ1, φ2, φ3)←
Dsd, sets X = φ1 and Y = (φ2, φ3||x), and encrypts ct← PHFE.Enc(msk, (X,Y )). Finally,
it outputs the ciphertext nct = ct.

• NFE.KeyGen(nmsk, f), on input nmsk = (msk, G,Dsd) and a linear function f ∈ F , does
the following: Let g be the function

g(φ1, φ2, φ3||x) = f(x) +G(φ1, φ2, φ3),

and generate the key skg ← PHFE.KeyGen(msk, g). Note that g ∈ G by assumption. Output
nskf = skg.

• NFE.Dec(nskf , nct,R1, . . . ,Rm) on input nskf = skg, nct = ct, and sets R1, . . . ,Rm, let
for i ∈ [m],

R′i := {bri + eicp | ri ∈ Ri, (e1, . . . , em) ∈ Support(η)}.

Then compute [y]T = PHFE.Dec(skg, ct), and extract each coordinate yi by comparing
[yi]T to all [ri]T for r ∈ R′i. Output y.

We next prove the correctness, compactness, and security properties of our scheme.

Weak correctness: Let λ ∈ N, f ∈ F , x ∈ Znp , and let R1, . . . ,Rm ⊆ Zp such that bf(x)cp ∈
R1 × . . .×Rm, and all Ri are of polynomial size. Further let nmsk← NFE.Setup(1λ), nskf ←
NFE.KeyGen(nmsk, f), nct ← NFE.Enc(nmsk,x), and [y]T = PHFE.Dec(skg, ct). Correctness
in the exponent of PHFE implies that [y]T = [g(φ1, φ2, φ3||x)]T , where φ1, φ2, φ3 is the seed
encrypted together with x. We further have bgi(φ1, φ2, φ3||x)cp ∈ R′i for all i since bfi(x)cp ∈ Ri
and the range of G is contained in Support(η). Hence, NFE.Dec can correctly extract

y = bg(φ1, φ2, φ3||x)cp = bf(x) +G(φ1, φ2, φ3)cp.

Note that since all Ri are of polynomial size and the support of η is polynomially bounded,
all R′i used by NFE.Dec are of polynomial size, and the extraction can be done efficiently.

Special-purpose sublinear compactness: The algorithm NFE.Enc encrypts φ1 and (φ2, φ3||x) using
the scheme PHFE. We have x ∈ Znp and φi ∈ Zm

1−α
p . Hence, linear efficiency of PHFE implies

that the encryption time is poly(λ)(n+m1−α). Since the ciphertext size output by the encryption
can be bounded by the encryption time, the size of its ciphertext is

|ct| ≤ poly(λ)(n+m1−α).

Note that unlike standard sublinear compactness, which allows the ciphertext size to grow
polynomially with the length n of the input, the ciphertext size of NFE grows only linearly in n.
We refer to this as special-purpose (1− α)-sublinear compactness.

Remark 5.3. In contrast to the original notion of compactness in [AJ15,BV15] that restricts
the encryption time (as we do with linear efficiency of PHFE), we here restrict the ciphertext
size. This is because the encryption algorithm NFE.Enc samples a seed from some specific
distribution, which may take time polynomial in the seed length poly(m1−α) to sample, and
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hence the encryption time may not be compact. We can of course alternatively consider noise
generators with seed distributions that are samplable in O(m1−α) time, which would give compact
encryption time. But FE with only compact ciphertext size already suffices for constructing IO;
see Section 7.3. Therefore, it is better to not constrain the sampling time of seed distributions
here.

Simulation security: We finally prove that our scheme is 1-key Sel-Sim-secure.

Lemma 5.4. Assume that PHFE satisfies 1-key O(µ)-Sel-PH-Sim-security, and for (G,Dsd)←
Γλ, φ = (φ1, φ2, φ3) ← Dsd, and e ← η, the distributions of (φ1, G(φ)) and (φ1, e) are O(µ)-
indistinguishable. Then, NFE is 1-key O(µ)-Sel-Sim-secure.

Proof. Let {fλ}λ∈N be an ensemble of linear functions, let {x?λ}λ∈N be an ensemble of inputs,
let t be a polynomial, and let {xi,λ}λ∈N,i∈[t(λ)] be an ensemble of sequences of inputs. We prove
security via a sequence of hybrids, where the first hybrid is the real distribution from Definition 5.2
and the last one is the ideal distribution. The simulator NSim for the ideal distribution is defined
in the last hybrid.

Hybrid H0 is the real distribution. Plugging the algorithms of our scheme into the real
distribution of Definition 5.2, we obtain

H0 =



msk← PHFE.Setup(1λ)
(G,Dsd)← Γλ

skgfλ,G ← PHFE.KeyGen(msk, gfλ,G)

φ?, φ1, . . . , φt(λ) ← Dsd
ct? ← PHFE.Enc

(
msk,

(
φ?1, φ

?
2, φ

?
3||x?λ

)){
cti ← PHFE.Enc

(
msk,

(
φi,1, φi,2, φi,3||xi,λ

))}
i∈[t(λ)]

:
skgfλ,G , ct?,

{cti}i∈[t(λ)]


λ∈N

,

where gfλ,G is the function gfλ,G(φ1, φ2, φ3||x) = fλ(x) +G(φ1, φ2, φ3).

Hybrid H1 generates the secret key skgfλ,G and all ciphertexts using the simulator PSim of the
scheme PHFE:

H1 =

 (G,Dsd)← Γλ
φ?, φ1, . . . , φt(λ) ← Dsd

:
PSim

(
gfλ,G,

⌊
gfλ,G

(
φ?1, φ

?
2, φ

?
3||x?λ

)⌋
p
,

φ?1, {xi,λ, φi}i∈[t(λ)]

) 
λ∈N

.

The 1-key O(µ)-Sel-PH-Sim-security of PHFE implies that the hybrids H0 and H1 are
O(µ)-indistinguishable.

Hybrid H2 is the same as H1, except that we replace gfλ,G
(
φ?1, φ

?
2, φ

?
3||x?λ

)
= fλ

(
x?λ
)

+G(φ?)
in the input of PSim with fλ

(
x?λ
)

+ e, where e is sampled from η:

H2 =


(G,Dsd)← Γλ

φ?, φ1, . . . , φt(λ) ← Dsd
e← η(λ)

:
PSim

(
gfλ,G,

⌊
fλ
(
x?λ
)

+ e
⌋
p
,

φ?1, {xi,λ, φi}i∈[t(λ)]

) 
λ∈N

.

Since the distributions of (φ?1, G(φ?)) and (φ?1, e) are O(µ)-indistinguishable, H1 and H2

are O(µ)-indistinguishable.
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Hybrid H3 is the same as H2, but we define NSim to produce the outputs. On input fλ,
y, and {xi,λ}i∈[t(λ)], the simulator NSim samples (G,Dsd) ← Γλ and φ?, φ1, . . . , φt(λ) ←
Dsd. It then defines the function gfλ,G(φ1, φ2, φ3||x) = fλ(x) + G(φ1, φ2, φ3) and runs
the simulatorPSim

(
gfλ,G,y, φ

?
1, {xi,λ, φi}i∈[t(λ)]

)
. It outputs the output of PSim. The

hybrid H3 is then

H3 =
{

e← η(λ) : NSim
(
fλ,
⌊
fλ
(
x?λ
)

+ e
⌋
p
, {xi,λ}i∈[t(λ)]

)}
λ∈N

.

The hybrids H2 and H3 are identical. Moreover, H3 corresponds to the ideal distribution
in Definition 5.2. We can thus conclude that NFE is 1-key O(µ)-Sel-Sim-secure.

5.3 Instantiating the PHFE and Noise Generator

To construct a NFE scheme for noise distribution η, we need a family of distributions {Γλ}
that can sample generator functions and input distributions (G,Dsd) ← Γλ such that G(Dsd)
is indistinguishable to η. If G(x,y) has part of its input public x — meaning that the output
of G(x,y) is indistinguishable to η even when x is public — we can compute it using PHFE;
otherwise, if all inputs are private, then we can only compute it using FE, see Section 5.4.

Here, we first describe a simple technique to turn G(x,y) with private inputs into a function
H(c,y) = G(x,y) whose first input c can be made public, if G satisfies certain properties. Next,
we discuss what kind of functions our PHFE schemes from bilinear maps in Section 4 can support.

Compiling G with private inputs into H with pritial public input. The compilation
works with functions G satisfying the following properties.

1. G is a polynomial over Zp.

2. x sampled by Dsd can be used as noises in LWE samples.

3. G has at most constant degree d = O(1) in x; it will be convenient to use a form where
x = x1, · · · ,xd and G(x = (x1, · · · ,xd),y, z) is multilinear in each xk10.

4. G satisfies the following stronger security property:{
G(x,y), {ci}i∈[|x|]

}
≈ {∆← η, {ci}i∈[|x|]},

where (G,Dsd)← Γλ, (x,y)← Dsd, and , ci = 〈ai, s′〉+xi is an LWE sample with random
vector ai ← Zmp , secret s′ ← Zmp , and noise xi11.

The idea is hiding x in LWE samples, that is, for every xi, generate ci = (a, 〈ai, s′〉 + xi).
Since the “decryption” equation is xi = 〈ci, s〉 for s = (−s′||1), we can convert G using x into H
using c, s instead.

To see this, consider stratifying G by monomials of x (though the number of monomials may
be superpolynomial):

G(x = (x1, · · · ,xd), y) =
∑
j

(
fj(y)

∏
i∈[d]

xiji

)
.

10If G has a single input x, one can always duplicate same input x for d times to make it multilinear
11We can also use different secret keys s to encrypt different parts of s. For simplicity, we use a single s.
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By the decryption equation, we have

G(x = (x1, · · · ,xd),y) =
∑
j

(
fj(y)

∏
i∈[d]

〈
ciji , s

〉)
=
∑
j

(
fj(y)

( ∑
k1,··· ,kd∈[m+1]

∏
i

ciji,kiski

))
=

∑
k1,··· ,kd

∑
j

(
fj(y)

∏
i

ciji,kiski

)
=

∑
k1,··· ,kd

∏
i

ski

(∑
j

(
fj(y)

∏
i

ciji,ki

))
=

∑
k1,··· ,kd

(∏
i

ski

)
G(c1

?,k1
, · · · , cd?,kd , y),

where ci?,ki denotes the concatenation of {cij,ki}j∈N . Now let s(d) denote the vector obtained by
tensoring s for d times. Assume without loss of generality that y contains 1. We define H to be

H(c,y′ = y ⊗ s(d)) :=
∑

k1,...,kd∈[m+1]

(∏
i

ski

)
G(c1

?,ki
, · · · , cd?,kd , y) .

We observe that h also has degree d in c and its degree in y′ = y ⊗ s(d) is the same as the
degree of g in y. The length of the private input |y′| is |y|(m+ 1)d, and the complexity of H
is a multiplicative (m+ 1)d factor higher than that of G. Since d is a constant, the blow up is
polynomial. We denote by {Hλ} the distributions that sample H and its input distribution DH .

Degree 3 PHFE supports degree 3 generators. Section 4.1 presents a PHFE scheme
PHFE for degree 3 multilinear polynomials g(x,y, z), where x is public, based on the SXDH
assumption from bilinear maps. Suppose we have the following.

• A degree 3 multilinear PFG {PFGλ} with the following strong indistinguishability: Its
outputs are indistinguishable to a family of (K,µ)-flawed-smudging distributions {Xλ}.
The indistinguishability holds even at the presence of LWE samples with x as noises.{

g(x,y, z), {ci}i∈[|x|]
}
≈
{

∆← X , {ci}i∈[|x|]
}
, where ci = (ai,

〈
ai, s

′〉+ xi).

Applying the above transformation gives

• A degree 3 multilinear PFG with one public input {Hλ} satisfying that its outputs
are indistinguishable to X even when c is public{

h(c, (y′ = y ⊗ s), z), c
}
≈ {∆← X , c} .

Furthermore, if Γ has input lengths N,N/(m+ 1), N , H has input lengths N,N,N , where
m = |s| is the length of the LWE secret. The choice of m may affect security; it can be for
instance poly(λ) or N0.5.

Therefore, H can be computed by PHFE in Section 4.1 for constructing NFE for flawed-smudging
distributions.
Remark 5.5 (Relation to the degree 3 candidate ∆RG in [AJKS18]). We emphasize that
the transformed degree 3 PFG H has form identical to the degree 3 ∆RG proposed in [AJKS18].
Our generic transformation above is inspired by their ∆RG candidate, andH is a direct adaptation
of their ∆RG to have the flawed-smudging property (∆RG has a different security notion).

Below, we further extend their candidate to consider PFGs with higher constant degree in
the public input. The reason that we can support them is because we managed to construct
PHFE able to support them from bilinear maps.
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Constant degree PHFE supports constant-degree canonical generators. In Section 4.2,
building upon the degree 3 scheme, we constructed PHFE scheme PHFEDep for the spe-
cial class of polynomials g ∈ GN,S,Dep. Recall that they have canonical form g(x,y, z) =
〈〈α(y, z) , f(`(x))〉〉+ β(y, z), and satisfy the constraints that α, β, ` are multilinear in x,y, z,
f is a logarithmic depth Dep = O(log(λ)) formula, and max(width(f), |g|) ≤ N2. Since our
transformation above only works for polynomials with constant degree d = O(1) in x, we restrict
ourselves to constant depth Dep = O(1). Suppose we have

• A degree-d PFG in GN,S,Dep, {PFGλ}, with the same strong indistinguishability as above:
For some (K,µ)-flawed-smudging distributions {Xλ},{

g(x,y, z), {ci}i∈[|x|]
}
≈
{

∆← X , {ci}i∈[|x|]
}
, where ci = (ai,

〈
ai, s

′〉+ xi).

A careful examination shows that applying the above transformation preserves the canonical
form, as, roughly speaking, h essentially makes (m+ 1)d calls of g and sums the their outputs up
with monomials of s as coefficient. This gives,

• A degree-d PFG in HN,S′,Dep with public input, {Hλ}, satisfying that{
h(c, (y′ = y ⊗ s(d)), z), c

}
≈ {∆← X , c} .

Furthermore, if g in G has input lengths N,N/(m+ 1)d, N , H has input lengths N,N,N ,
where m = |s|. If g has that width(f) ≤ N2/(m + 1)d, then h has the width of its
corresponding fh bounded by N2. Again, the choice of m may affect security; one can
consider for instance poly(λ) or N ε for ε < 1/2d.

Therefore, H can be computed by PHFEDep from Section 4.2 for constructing NFE for flawed-
smudging distributions.

5.4 Construction from FE and Noise Generator

Our construction in Section 5.2 uses a special type of noise generators that remain secure when
a part of the seed is public. We can replace that by regular noise generators (which are only
secure if all of their seeds remain hidden) if we use a regular FE scheme instead of PHFE. We
here consider the construction from an FE scheme for polynomials of degree d over Zp and noise
generators with output distributions indistinguishable from η that can be computed by degree-d
polynomials over Zp.

More concretely, we assume as building blocks such noise generators {Γλ}λ∈N with polynomial-
stretch Zm1−α → Zm, and secret key FE schemes FEn,m for computing polynomials of degree d
over Zp mapping Zn+m1−α

p → Zmp , with correctness in the exponent, linear efficiency, and 1-key
O(µ)-Sel-Sim-security. Such FE schemes are constructed from degree d multilinear maps by
Lin [Lin17]. As discussed in Section 4.1, these schemes satisfy our requirements, in particular
simulation security.

From these building blocks, we construct an η-noisy secret-key FE scheme NFE for linear
functions Znp → Zmp . The construction is almost identical to the one in Section 5.2. We here
use the scheme FE instead of PHFE and since the noise generator here has no public and private
parts, we simply encrypt (x, φ) instead of (φ1, φ2, φ3||x), and to generate a key for a function f ,
NFE.KeyGen generates an FE key for the function g(x, φ) = f(x) +G(φ). Weak correctness and
special-purpose sublinear compactness follow as in Section 5.2. Furthermore, the scheme is 1-key
O(µ)-Sel-Sim-secure, as shown in the following lemma.
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Lemma 5.6. Assume that FE satisfies 1-key O(µ)-Sel-Sim-security, and the outputs of Γ are
O(µ)-indistinguishable from η. Then, NFE also is 1-key O(µ)-Sel-Sim-secure.

Proof sketch. The proof is almost identical to the proof of Lemma 5.4. We again start with
hybrid H0 as the real distribution. Since we here use an FE scheme with 1-key O(µ)-Sel-Sim-
security, the simulator in hybrid H1 does not receive the public part of the seed φ∗1, i.e., H1

outputs
Sim

(
gfλ,G,

⌊
gfλ,G(x?λ, φ

?)
⌋
p
, {xi,λ, φi}i∈[t(λ)]

)
.

In H2, we then use the properties of Γ to replace gfλ,G(x?λ, φ
?) = fλ

(
x?λ
)

+G(φ) in the input of
Sim with fλ

(
x?λ
)

+ e, where e is sampled from η. Finally, hybrid H3, which corresponds to the
ideal distribution in Definition 5.2, defines NSim identically as in the proof of Lemma 5.4 except
that it does not need to sample φ?, since it is not needed by Sim.

6 Functional Encryption for Constant Degree Polynomials

In this section, for any degree D ∈ Z and any polynomially large modulus pD, we construct
special-purpose FE schemes for computing degree D polynomials over ZpD . We will show that
our FE schemes satisfies special-purpose sub-linear compactness and (1-key) simulation-security.
Our construction makes use of the simple secret-key Homomorphic Encryption (HE) scheme
supporting evaluation of constant-degree polynomials proposed by Brakerski and Vaikuntanathan
(BV) [BV11], referred to as the simple-BV scheme. We next review this scheme and observe that
it has many amenable properties that are instrumental for our construction of FE.

6.1 Review of the Simple-BV HE Scheme

Brakerski and Vaikuntanathan showed that the simple secret-key encryption scheme based on
the hardness of LWE — a ciphertext of x ∈ Zp is of the form a, 〈a, s〉 + pe + x over Zq —
supports homomorphic evaluation of constant-degree polynomials. (Without relinearization and
bootstrapping, the ciphertext-size grows exponentially with the depth of the computation, but
it suffices for evaluating constant-degree polynomials.) Furthermore, as shown in [GKPV10,
AKPW13], when the secret s is from {−1, 0, 1}, the hardness of LWE holds even if the secret s is
only entropic instead of uniformly random. This means the semantic security of the scheme holds
as long as s has sufficient entropy. Below we describe the scheme, and highlight the properties
that will be useful for our construction of FE schemes.

The simple-BV HE scheme HE consists of the following algorithms. They are parameterized
by public parameters pp = (p, q, χ), where p < q are coprime integers and χ is an Υ-bounded
distribution over Zq. We set these parameters in Remark 6.5. The public parameters are
specified as a subscript of the algorithms, and omitted when they are clear in the context. We
emphasize that all computations are by default over the integers; all modular operations are
explicitly denoted by bxcp = x mod p. In the description below, we consider only functions with
a single output element; functions with multiple output elements are handled component-wise as
described in Remark 6.2.

• HE.KeyGenpp(1n), on input a security parameter 1n, outputs a random vector s ←
{−1, 0, 1}n.
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• HE.Encpp(s, x), on input a message x ∈ Zp, samples a vector a ← Znq and noise e ← χ,
and outputs

hct =
(
a, c =

⌊
〈a, s〉+ pe+ x

⌋
q

)
.

• HE.Evalpp(f, hct1, . . . , hctt) on input a degree d polynomial f mapping t input elements to
a single output element, and t ciphertexts, expands f as a sum of monomials12

f(x) =
∑
j

mnlj(x) , where mnlj(x) =
∏
γ∈[d]

xjγ .

It then outputs the ciphertext

hctf =
∑
j

hctmnlj , where hctmnlj = ⊗γ∈[d]hctjγ ,

where ⊗ stands for the vector tensor product.

• HE.Decpp(s, hct): The decryption equation for a freshly generated ciphertext hct encrypt-
ing x is ⌊ 〈

hct, s′
〉 ⌋

q
=
⌊
x+ pe

⌋
q
, where s′ = (−s||1) .

Thus, the decryption equation for a ciphertext hct = hctmnlj derived from homomorphically
evaluating a degree d monomial mnlj(x) over ciphertexts hct1, . . . , hctt encrypting x with
noises e is⌊ 〈

hctmnlj , (s′⊗d)
〉 ⌋

q
=
⌊

mnlj(x + pe)
⌋
q

=
⌊

mnlj(x) + pemnlj
⌋
q

= mnlj(x) + pemnlj , (8)

where s′⊗d = ⊗γ∈[d]s
′, emnlj (x, e) = mnlj(x + pe) −mnlj(x) is a polynomial over x and

e, and the last equality holds if q is sufficiently large comparing to mnlj(x) + pemnlj . In
addition, since mnlj(x) =

∏
γ∈Γ(mnlj)

xγ depends on only d variables xγ for γ ∈ Γ(mnlj),
emnlj depends only on xγ and eγ for γ ∈ Γ(mnlj). That is,

emnlj
(
{〈aγ , s〉, xγ , eγ}γ∈Γ(mnlj)

)
= mnlj

(
{xγ + peγ}γ∈Γ(mnlj)

)
−mnlj

(
{xγ}γ∈Γ(mnlj)

)
.

(Though 〈aγ , s〉 is redundant for the computation of emnlj , it will be convenient for later to
include them in the inputs for computing emnlj .)

Then, the decryption equation for a ciphertext hct = hctf derived from homomorphically
evaluating a degree d function f over ciphertexts hct1, . . . , hctt encrypting x with noises e
is ⌊ 〈

hctf , (s′⊗d)
〉 ⌋

q
=
⌊
f(x) + p

∑
j

emnlj
⌋
q

= f(x) + p
∑
j

emnlj = f(x) + pef
d
, (9)

where again the second last equality holds if q is sufficiently large, exceeding f(x) +
p
∑

j e
mnlj , and

ef
d

:=
∑
j

emnlj . (10)

12Assume w.l.o.g. that f is homogeneous, that is, all monomials have exactly degree d.
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From the right hand side of equation (9), the decryption algorithm computes the output of
f(x) over Zp as

y =
⌊
f(x)

⌋
p

=
⌊
f(x) + pef

d
⌋
p
.

For correctness, we need to ensure that f(x) + pef
d
< q.

Below, we point out several special properties of the simple-BV scheme.

Property 1 — Decryption over the Integers. The LHSs of above decryption equations perform
modulo q. For our construction of FE later, we need decryption equations over the integers.
From equation (8), we derive the following decryption equation over integers for mnlj :〈

hctmnlj , (s′⊗d)
〉

= mnlj(x) + pemnlj + qomnlj ,

where omnlj =
⌊ 〈

hctmnlj , (s′⊗d)
〉
/q
⌋
. For a monomial mnlj(x) =

∏
γ∈Γ(mnlj)

xγ depending only
on d variables xγ for γ ∈ Γ(mnlj), hctmnlj depends only on ciphertexts hctγ for γ ∈ Γ(mnlj)
(among the ciphertexts hct1, . . . , hctt encrypting x with noises e). Since each hctγ can be
computed from 〈aγ , s〉, xγ , eγ , we have that omnlj is a function on these variables. More precisely,

omnlj
(
{〈aγ , s〉, xγ , eγ}γ∈Γ(mnlj)

)
=

⌊ ∏
γ (cγ − 〈aγ , s〉)

q

⌋
,

where cγ =
⌊
〈aγ , s〉+ xγ + peγ

⌋
q
.

From the above, and the decryption equation (9) for a polynomial f over Zq, we obtain the
decryption equation for f over integers:〈

hctf , (s′⊗d)
〉

= f(x) + p
∑
j

emnlj + q
∑
j

omnlj .

We refer to emnlj and omnlj as the decryption noises over integers. We emphasize that they are
different from the noises derived when decryption is performed over Zq.

We summarize the above decryption equation over integers in the following claim and note
about the additive and local structure of the decryption noises over integers.

Claim 6.1 (Decryption equation over integers). Let p, q, χ be public parameters described above,
where χ is Υ-bounded. The decryption equation over Z is: For any honestly generated ciphertexts
hct1, . . . , hctt encrypting messages x = (x1, . . . , xt) with secret s and noises e = (e1, . . . , et),
any degree d polynomial f(x) =

∑
j mnlj(x), where mnlj(x) =

∏
γ∈Γ(mnlj)

xγ, and hctf =

HE.Evalpp(f, hct1, . . . , hctt),〈
hctf , (s′⊗d)

〉
= f(x) + pef + qof , where ef :=

∑
j

emnlj , and of :=
∑
j

omnlj .

• Every emnlj = emnlj ({〈aγ , s〉, xγ , eγ}γ∈Γ(mnlj)) depends only on variables for locations γ ∈
Γ(mnlj), and is poly(p,Υ)-bounded.

• Every omnlj = omnlj ({〈aγ , s〉, xγ , eγ}γ∈Γ(mnlj)) depends only on variables for location γ ∈
Γ(mnlj), and is poly(q)-bounded if n < q.
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Property 2 — Public and Private Evaluation-Decryption Operations over Integers.We note that
the evaluation followed by decryption operations, HE.Eval(f, hct1, . . . , hctt) and

〈
hctf , (s′⊗d)

〉
,

over the integers, can be decomposed into a public and a private operation, where the public
operation depends only on the ciphertexts {hcti = (ai, ci)} and private operation additionally
depends on the secret s. We treat the public vectors AT = (a1|a2| · · · |at) ∈ Zn×tq as coefficients
of these operations instead of variables, and obtain〈

hctf , (s′⊗d)
〉

= Pubf,A(c) + Priv′f,A (c, s) .

It is easy to observe that〈
hctf , (s′⊗d)

〉
= f(X) , where X = c−As .

Therefore, when A is treated as coefficients, both Pubf,A and Priv′f,A have degree d, and since
all monomials that are independent of s are included in Pubf,A, every monomial in Priv′f,A

has at least degree 1 in s, and thus has at most degree d − 1 in c. Hence, there is a degree
d− 1 polynomial Privf,A that on input (c, 1)⊗ (s, 1)⊗d (where all multiplication with s has been
precomputed) computes Priv′f,A(c, s). Thus,〈

hctf , (s′⊗d)
〉

= Pubf,A(c) + Privf,A
(

(c, 1)⊗ (s, 1)⊗d
)
.

We refer to Pubf,A as the public evaluation-decryption function, and Privf,A as the private one.
Observe that their sizes are both poly(n, |f |). Furthermore, since the LHS is additive w.r.t.
different monomials in f , each term in the RHS is also additive:

∑
j

〈
hctmnlj , (s′⊗d)

〉
=

∑
j

Pubmnlj ,A(c)

+

∑
j

Privmnlj ,A
(

(c, 1)⊗ (s, 1)⊗d
) ,

and every Pubmnlj ,A and Privmnlj ,A has size poly(n).

Remark 6.2 (A note on evaluating function with multiple output elements.). Homomorphic
evaluation of a function f : Ztp → ZMp with multiple output elements is done component-wise:

HE.Eval(f, hct1, . . . , hctt) := hctf =
{

hctfi = HE.Eval(fi, hct1, . . . , hctt)
}
i∈[M ]

.

For each component, the evaluation-decryption operation can be decomposed into〈
hctfi , (s′⊗d)

〉
= Pubfi,A(c) + Privfi,A

(
(c, 1)⊗ (s, 1)⊗d

)
.

Naturally, we define Pubf,A = {Pubfi,A}i∈[M ], Privf,A = {Privfi,A}i∈[M ], and write

{
〈

hctfi , (s′⊗d)
〉
} = Pubf,A(c) + Privf,A

(
(c, 1)⊗ (s, 1)⊗d

)
.

Property 3 — Robustness under entropic secrets. Semantic security of HE follows directly from
the hardness of LWE with binary secrets. Therefore, by the robustness of LWE [GKPV10,
AKPW13], semantic security holds as long as the binary LWE secret has sufficient entropy. More
precisely, we have the following lemma:
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Lemma 6.3 (Robustness of HE). Let q, p, χ be as described above. By the µ-indistinguishability
of LWE

WL(1,k)
n,t,q,χ (see Definition 2.5), it holds that for all efficiently samplable correlated random

variables (s, aux), where the support of s is {−1, 0, 1}n and H∞(s | aux) ≥ k, the following
distributions are µ-indistinguishable

(aux, {hct← HE.Enc(s, xi)}i∈[t]) (aux, {hct← HE.Enc(s, 0)}i∈[t]) ,

where {xi}i∈t are arbitrary messages in Zp and the encryption randomness is independent of
(s, aux).

It was shown first in [GKPV10] that the weak and leaky LWE assumption is implied by
standard LWE. However, their result requires super-polynomial modulus (q here) and modulus-
to-noise ratio, which is insufficient for our purpose. Fortunately, a later work by [AKPW13]
improved the result to work with polynomial modulus and modulus-to-noise ratio. We recall
their theorem.

Theorem 6.4 ( [AKPW13, Theorem B.5]). Let k, `, t, n, β, γ, σ, and q be integers, and let
Ψ be a distribution (all parameterized by λ) such that Prx←Ψ[|x| ≥ β] ≤ negl(λ) and σ ≥ βγnt.
Further let χσ be either the discrete Gaussian distribution with standard deviation σ, or the
uniform distribution over [−σ, σ] ∩Z. Assuming that the LWE`,t,q,Ψ-assumption holds, the weak
and leaky LWE

WL(γ,k)
n,t,q,χσ -assumption holds if k ≥ (`+ Ω(λ)) log(q), with polynomial security loss.

Remark 6.5. [Setting Parameters for Correctness and Robustness] We now describe how to set
the public parameters p, q, χ to satisfy both correctness and robustness. For correctness, we need
to ensure that f(x) + p

∑
j e

mnlj < q. Let s be an upper bound on the number of monomials
contained in f , then |f(x)| = poly(s, p), and

∑
j e

mnlj is s · poly(p,Υ) bounded. Therefore, q
needs to be a sufficiently large polynomial poly(s, p,Υ).

For robustness, by Theorem 6.4, the parameter σ of the noise distribution χσ needs to be a
polynomial in n, γ, β, and the number t of LWE samples. By setting γ = 1, β = poly(n), we
obtain σ = poly(n, t) and the noise distribution is Υ = poly(n, t) bounded.

Combining the above, it suffices to have q = poly(s, p, λ, t).

6.2 HE Schemes with Linear Private Evaluation-Decryption Functions

The evaluation-decryption of simple-BV for a degree d polynomial f can be decomposed into
a degree d public function Pubf,A and a degree d− 1 private function Privf,A (see property 2
above). By a simple iterative construction, we obtain, for any integer D, a HE scheme DHE for
evaluating degree D polynomials that has a linear private evaluation-decryption function. In
addition, this scheme inherits the nice properties of simple-BV. The homomorphic evaluation
of this scheme is however restricted to operating on a single ciphertext; correspondingly, the
encryption algorithm directly encrypts vectors x instead of scalars.

The scheme DHE consists of the following algorithms. All algorithms are parameterized by
public parameters pp = (pD, qD, . . . , p2, q2, p1, χ), where pD < qD < · · · < p1 is a sequence of
moduli such that for every 2 ≤ d ≤ D, pd, qd are coprime, and χ is an Υ-bounded distribution
over Zq. These parameters must satisfy the conditions described in Remark 6.6. The description
below handles only functions f with a single output element; functions with multiple output
elements can be handled component-wise as described in Remark 6.2. In addition, we directly
describe the evaluation-decryption operation over the integers.
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• DHE.KeyGenpp(1n) on input a security parameter 1n, outputs D − 1 random vector s≤D =

{sd ← {−1, 0, 1}n}2≤d≤D.

• DHE.Encpp(s≤D,x), on input a vector x ∈ ZtpD , sets xD = x and performs the following
two steps for D − 1 iterations: In iteration d = D to 2,

1. Encrypt hctd ← HE.Enc(pd,qd,χ)(s
d,xd).

Let td be the number of elements in xd. The ciphertexts hctd consists of (Ad)T =
(ad1| · · · |adtd) and cd = cd1, . . . , c

d
td
. Let ed be the noises sampled during encryption.

2. Set xd−1 = (cd, 1)⊗ ((sd)⊗d, 1).

Output hct≤D = {hctd}2≤d≤D.

For every 1 ≤ d ≤ D, pd is set to be sufficiently large so that xd ∈ Zpd . Moreover, observe
that for every 1 ≤ d ≤ D − 1, the number td of elements in xd is a polynomial poly(n)
multiplicative factor larger than the number td+1 of elements in xd+1. Therefore, every xd

contains poly(n)t elements, and |hct≤D| = poly(n)t.

• DHE.Decpp(s≤D, DHE.Evalpp(f, hct≤D)): For a degree D polynomial f mapping t input
elements to a single output element, and a single ciphertext hct≤D encrypting a length t
vector, the evaluation-decryption equation over the integers is defined by iteratively applying
the evaluation-decryption function of HE (see Claim 6.1) as follows. Set fD = f ; in iteration
d = D, . . . , 1, we maintain that

fd(xd) + pde
fd + qdo

fd = Pubf
d,Ad

(cd) + Privf
d,Ad

(
(cd, 1)⊗ ((sd)⊗d, 1)

)
,

and define fd−1 := Privf
d,Ad

so that

fd−1(xd−1) = Privf
d,Ad

(
(cd, 1)⊗ ((sd)⊗d, 1)

)
.

Summing over all iterations, the overall evaluation-decryption equation is∑
2≤d≤D

Pubf
d,Ad

(cd) + Privf
2,A2 (

(c2, 1)⊗ ((s2)⊗2, 1)
)

= fD(x) +
∑

2≤d≤D

(
pde

fd + qdo
fd
)
. (11)

Define Pubf,A
≤D

(c≤D) =
∑

2≤d≤D Pubf
d,Ad

(cd). We refer to Pubf,A
≤D

as the public
evaluation-decryption function and Privf

2,A2
the private evaluation-decryption function of

DFE. Importantly, Privf
2,A2

is a linear function.

From the right-hand side, the output of computing f(x) over ZpD can be computed:

y =
⌊
f(x)

⌋
pD

=

⌊
fD(x) +

∑
2≤d≤D

(
pde

fd + qdo
fd
) ⌋

q2,p2,...,qd,pd,...,qD,pD

,

where b?cq2,p2,...,qd,pd,...,qD,pD denotes the operation of iteratively modulo q2 followed by
modulo p2, followed by q3, followed by p3, until qD followed by pD.
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Correctness. The correctness of equation (11) follows from the correctness of the evaluation-
decryption function of HE in Claim 6.1. To further ensure that y = bf(x)cpD is computed
correctly, we need to ensure that for all 2 ≤ ρ ≤ D,

pρ−1 > fD(x) +
∑

ρ≤d≤D

(
pde

fd + qdo
fd
)
,

qρ > fD(x) +
∑

ρ+1≤d≤D

(
pde

fd + qdo
fd
)

+ pρe
fρ .

For every 2 ≤ d ≤ D, fd can be expanded as a sum of monomials fd(xd) =
∑

j mnldj (x
d) =

∏
γ x

d
γ

for γ ∈ Γ(mnldj ). By Claim 6.1,

ef
d

=
∑
j

emnldj
(
{
〈
adγ , s

d
〉
, xdγ , e

d
γ}γ∈Γ(mnldj )

)
,

of
d

=
∑
j

omnldj
(
{
〈
adγ , s

d
〉
, xdγ , e

d
γ}γ∈Γ(mnldj )

)
,

and every emnldj is poly(pd,Υ)-bounded, and omnldj is poly(qd)-bounded if qd > n. Moreover, if s
is an upper bound on the number of monomials in f , then |f(x)| = poly(pD, s). In addition, by
our analysis below (see Claim 6.7), every fd contains at most m = poly(n, s) monomials.

Remark 6.6. [Parameter Setting for Correctness and Robustness] We now describe how to set
the public parameters pD, qD, . . . , pd, qd, . . . , p1 and parameter of χ, which controls its bound Υ,
to satisfy the correctness conditions, and the robustness conditions in Theorem 6.4. First note
that pD can be arbitrary. Next, to set qD, for the correctness conditions, it suffices to set qD to
a sufficiently large polynomial in (Υ, n, pD, s), and for the robustness conditions, it suffices to
ensure that Υ = poly(n, t) and qD is set to a even larger poly(n, t), where t is the length of the
input x encrypted. Overall, qD = poly(Υ, n, pD, s, t).

Next, for every 2 ≤ d ≤ D, to satisfy the correctness condition, we need to set pd to be a
sufficiently large poly(qd+1) and qd be a sufficiently large poly(pd). For the robustness conditions,
we need to ensure that Υ = poly(n, td) and qD even larger, where td = poly(n)t is the length of
input xd encrypted. Overall, it suffices to have pd = poly(pd+1) and qd = poly(pd).

Next, we observe several properties of the above construction.

Linear Private Evaluation-Decryption Function. Recall that the evaluation-decryption function
over the integers is the sum of a public function Pubf,A

≤D
on the ciphertexts c≤D only and a

private function Privf
2,A2

on x1 = (c2, 1)⊗ ((s2)⊗2, 1), which is linear.

Properties of Size and Input-Dependency of f . In essence, the evaluation-decryption function
of DHE iteratively applies the evaluation-decryption function of HE for a sequence of functions
fD = f, . . . , f2 defined above. We observe that these functions have similar sizes as f and
preserve its input-dependency. First, we bound the number of monomials.

Claim 6.7. Let f : Zt → Z be any degree D polynomial with at most s monomials. Then there
exists a polynomial m, such that, for every 2 ≤ d ≤ D, fd : Zt

d → Z defined above contains at
most m(n, s) monomials.

Proof. For d = D, we have fd = f , so the claim clearly holds. For every d < D, fd(xd) =

Privf
d+1,Ad+1

((cd+1, 1)⊗ ((sd+1)⊗d+1, 1)). Its input consists of td = poly(n)td+1 elements. Recall
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that Privf
d+1,Ad+1

is a sum of functions corresponding to different monomials in fd+1, that is,
Privf

d+1,Ad+1
(xd) =

∑
j Privmnld+1

j ,Ad+1

(xd), and each Privmnld+1
j ,Ad+1

has poly(n) size. Thus, the
total number of monomials sd in fd is poly(n)sd+1. Solving the recursive formula gives that
every sd = poly(n, s). By setting m(n, s) = max2≤d≤D s

d, we conclude the claim.

Next we consider a special type of functions f = (g,G) (used later in our construction of FE)
that is specified by a function g and a subset G ⊆ [t] of indexes of input variables, such that,
f(x) = g(xG). We show that every function fd can also be re-written in this form fd = gd(xd

Gd
),

where Gd depends on G, and gd does not. Moreover xd
Gd

depends only on xG (and other variables
s≤D, e≤D,A≤D sampled for encryption), and does not depend on other variables x¬G in x.

Claim 6.8 (Preservation of Input Dependency). Let g : Zl → Z be any degree D function, and G
any subset of [t], and define f : Zt → Z as f(x) = g(xG). For every function fd : Zt

d → Z with
2 ≤ d ≤ D and every xd derived from x and s≤D, e≤D,A≤D, there exists a function gd depending
only on (g,A≤D), and a subset Gd ⊆ [td] depending only on G, such that, fd(xd) = gd(xd

Gd
).

Moreover, xd
Gd

can be computed from xG, s
≤D, e≤D,A≤D.

Proof. We show the claim by induction over d. In the base case d = D, fD(x) = f(x) = g(xG).
Clearly, gD = g and GD = G satisfy the conditions in the claim statement.

Assume that the claim holds for d+ 1, that is, there exists gd+1 depending only on (g,A≤D)
and Gd+1 depending only on G such that fd+1(xd+1) = gd+1

(
xd+1
Gd+1

)
and xd+1

Gd+1 depends only on
xG (and s≤D, e≤D,A≤D). We show that the same holds w.r.t. d for some gd and Gd. Recall that

fd(xd) = Privf
d+1,Ad+1

(
(cd+1, 1)⊗

(
(sd+1)⊗d+1, 1

))
.

If fd+1 depends only on xd+1
Gd+1 , the private evaluation-decryption function Privf

d+1,Ad+1
only

involves ciphertexts encrypting xd+1
Gd+1 , that is, only cd+1

Gd+1 . Thus, it can be written as

fd(xd) = Privg
d+1,Ad+1

((
cd+1
Gd+1 , 1

)
⊗
(
(sd+1)⊗d+1, 1

))
.

Therefore, we can define gd := Privg
d+1,Ad+1

, which depends only on gd+1 and A≤D, and define Gd

so that xd
Gd

=
(
cd+1
Gd+1 , 1

)
⊗
(
(sd+1)⊗d+1, 1

)
, which depends only on Gd+1. Thus, fd(xd) = gd(xd

Gd
).

By the induction hypothesis, we conclude that gd depends only on g,A≤D, and Gd depends only
on G. Furthermore, since xd+1

Gd+1 and hence cd+1
Gd+1 depend only on xG (and s≤D, e≤D,A≤D), so

does xd
Gd

.

Local Structure of Noises after Homomorphic Evaluations. For f(x) = g(xG), based on proper-
ties of fd shown above, we now analyze the structure of noises derived in the evaluation-decryption
function of DHE. We show that every noise efd (or ofd) is a sum of smaller noises

∑
emnldj

(or
∑
omnldj ), each of which can be computed locally from a constant number of variables in

(xG, s
≤D, e≤D, {Adsd}2≤d≤D). Moreover, this local function itself is independent of G.

Claim 6.9 (Additive and Local Structure of Noises). Let g : Zl → Z be any degree D function,
and G any subset of [t], and define f : Zt → Z as f(x) = g(xG). For every x and s≤D, e≤D,A≤D,
and every efd with 2 ≤ d ≤ D defined in equation (10), it holds that

ef
d

=
∑
j

emnldj and ∀d, j, emnldj = ẽd,j(einpd,j),
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where ẽd,j is a function independent of G, and its input einpd,j ⊆
{
xG, s

≤D, e≤D, {Adsd}2≤d≤D
}

is a subset of a constant number of variables satisfying that, for every cdt , if some variable in adt
or edt or

〈
adt , s

d
〉
belongs to einpd,j, then cdt can be computed from einpd,j.

In addition, the same holds for every ofd for 2 ≤ d ≤ D w.r.t. some {õd,j , oinpd,j}.

Proof. We prove the claim w.r.t. ef and emnldj ’s; the proof for of and omnldj ’s follows the same
way.

By Claim 6.8, when f(x) = g(xG), every fd(xd) = gd(xd
Gd

), where gd is independent of G.
The local structure of noises of HE (Claim 6.1) implies that emnldj depends only on variables in
xd that the monomial mnldj in gd depends on, that is,

emnldj = emnldj
(
{
〈
adγ , s

d
〉
, xdγ , e

d
γ}γ∈Γ(mnldj )

)
,

where the computation of emnldj depends only on mnldj and hence is also independent of G.
Since xd = (cd+1, 1)⊗ ((sd+1)⊗d+1, 1), every xdγ depends on at most d+ 1 variables sd+1

l , and

a single variable cd+1
l = b

〈
ad+1
l , sd+1

〉
+ xd+1

l + pd+1e
d
l cpd . Thus, e

mnldj can in turn be computed

from {
〈
adγ , s

d
〉
, edγ}γ∈Γ(mnldj ), and variables {sd+1

l } ∪ {
〈
ad+1
l , sd+1

〉
, xd+1

l , edl } that determine xdγ

for all γ ∈ Γ(mnldj ) (by first recomputing xdγ from the latter and then computing emnldj as before).
Clearly the function computed is still independent of G, and the number of input variables now
increases by a constant multiplicative factor.

Repeat the above to recursively replace variables xργ for ρ = d+ 1, . . . , D as above, until only
variables xDγ = xγ are used. We obtain that emnldj can be computed using a function independent
of G from a subset of variables einpd,j ⊆ {x, s≤D, e≤D, {Adsd}2≤d≤D} that has constant size.
Since, in each recursive iteration, variables

〈
adl , s

d
〉
, xdl , e

d
l related to a ciphertext cdl are always

added together to the set of relevant variables, and later xdl is recursively replaced with variables
sufficient for computing it, we conclude that for every cdt , if edt or

〈
adt , s

d
〉
belongs to einpd,j ,

then cdt can be computed from einpd,j . Thus, the condition in the claim statement also holds, as
einpd,j does not include variables in adt . Finally, since in each recursive iteration, the number
of relevant variables increase by a constant factor, the total number of input variables after at
most D iterations is still a constant.

Finally, we argue that einpd,j contain only xG and no other variables in x. By Claim 6.8, the
input xd

Gd
of gd(xd

Gd
) depends only on xG. Since emnldj depends on at most variables xd

Gd
in xd,

it in turn depends on at most variables xG.

6.3 Construction of DFE

For arbitrary positive integers D, and arbitrary polynomials pD and ` in λ, we now construct a
secret key FE scheme DFEN,S for computing over ZpD the following family DFN,S of polynomials.

• Family DFN,S = {DFN,Sλ } indexed by arbitrary polynomials N,S, contains locality ` = `(λ)

degree D polynomials f : ZNpD → ZMpD of size S = S(λ), mapping inputs of length N = N(λ)
to outputs of length M(λ) ≤ S(λ). We write f = {fi(x)}i∈[M ] to mean that the i’th output
element is computed by the polynomial fi.

We construct DFE = DFEN,S for computing the above family using the following tools.
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• The HE scheme DHE for computing degree D polynomials constructed in Section 6.2.
The public parameters pp = (pD, qD, . . . , p1, χ) satisfy similar conditions described in the
construction of DHE (see Remark 6.6). In particular, the noise distribution is polynomially
Υ-bounded, and all moduli pd, qd are polynomially large. We detail on the setting of the
parameters at the end of the correctness analysis of DFE.

• A collection of η-noisy secret-key FE schemes
{

NFEN
′,S
}
for computing linear functions

ZN
′

Q → ZSQ for some super-polynomial Q and N ′ = poly(λ)N , with weak correctness,
1-key O(µ)-Sel-Sim security, and special-purpose (1− α)-sublinear compactness, i.e., with
ciphertexts of size poly(λ)(N + S1−α). We need the distribution η to be of the form

pDΦ +
∑

2≤d≤D

(
pd ·

∑
j∈[m]

Φd,j + qd ·
∑
j∈[m]

Ψd,j

)
,

where Φ, Φd,1|| · · · ||Φd,m, and Ψd,1|| · · · ||Ψd,m are sampled from distributions Zp̄D , Zpd ,
and Zqd , respectively, and m is the value from Claim 6.7. The distribution Zp̄D is over
ZS , and Zpd and Zqd are distributions over Zm·S . Moreover, the distributions Zp̄D , Zpd ,
and Zqd are (λε2 , µ)-flawed-smudging for Bp̄D -bounded, Bpd-bounded, and Bqd-bounded
distributions, respectively, for some constant ε2 ∈ (0, 1) and polynomial bounds Bp̄D , Bpd ,
and Bqd , which are set below. We further require the distributions Z? to be poly(B?, λ)-
bounded.

Construction of DFEN,S. Using the above tools, our FE scheme DFE consists of the following
algorithms:

• DFE.Setup(1λ), on input the security parameter, generates a master secret key nmsk ←
NFE.Setup(1λ) for the noisy FE scheme, and samples A≤D = {AD, . . . ,A2} randomly.
Output msk = (nmsk,A≤D).

We emphasize that the random matrices Ad used in DHE encryption are sampled by the
setup algorithm, and reused in different encryptions.

• DFE.Enc(msk = (nmsk,A≤D),x), on input x ∈ ZNpD , does:

– Sample s≤D ← DHE.KeyGenpp(1n), where n is a sufficiently large polynomial in λ,
(and pp = (pD, . . . , p1) is as described above).

– Encrypt hct≤D ← DHE.Encpp(s≤D,x ; A≤D, e≤D), using the matrices A≤D contained
in the master secret key, and freshly sampled noises e≤D.

– Generate x1 = (c2, 1)⊗
(
(s2)⊗2, 1

)
.

– Encrypt nct← NFE.Enc(nmsk,x1).

Output Dct = (hct≤D, nct).

• DFE.KeyGen(msk = (nmsk,A≤D), f), on input a degree D polynomial f ∈ DFN,S , does the
following:

– For every i ∈ [M ], let fDi = fi, f
D−1
i , . . . , f2

i be the sequence of functions that the
evaluation-decryption function of DHE when applied to fi generates. They form
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for each d, fd = {fdi }. Since each f has locality `, each fi contains at most s =
poly(λ, `) number of monomials. By Claim 6.7, every component fdi has at most
m = m(n, s) monomials. Recall that Privf

2
i ,A

2
is a linear function. Let Privf

2,A2
:={

Privf
2
i ,A

2}
i∈[M ]

.

– Generate the key nsk← NFE.KeyGen
(
nmsk,Privf

2,A2)
.13

Output Dsk = nsk.

• DFE.Dec(Dsk,Dct) on input Dsk = nsk and Dct = (hct≤D, nct), compute for every 2 ≤ d ≤ D
and for all i, pubdi = Pubf

d
i ,A

d
(cd). Let pubi :=

∑
2≤d≤D pubdi , pub = {pubi}, and let

Ri :=
[
−B̃ − pubi, B̃ − pubi

]
, where B̃ is the polynomial bound derived in the correctness

analysis below. Then compute z = NFE.Dec(nsk, nct,R1, . . . ,RM ) and let z′ := z + pub.
Finally, the output of computing f(x) over ZpD can be computed from z′ as

y =
⌊
f(x)

⌋
pD

=
⌊

z′
⌋
q2,p2,...,qd,pd,...,qD,pD

.

Correctness: The evaluation-decryption function of DHE (see equation (11)) implies that for
every i,∑

2≤d≤D
Pubf

d
i ,A

d
(cd) + Privf

2
i ,A

2
(x1) =

⌊
fi(x)

⌋
PD

+ pDo
fi +

∑
2≤d≤D

(
pde

fdi + qdo
fdi

)
, (12)

where
ofi =

⌊
fi(x)

pD

⌋
, ef

d
i =

∑
j∈[m]

emnldi,j , of
d
i =

∑
j∈[m]

omnldi,j ,

and mnldi,j is one of the (at most) m monomials of fdi . In addition, every emnldi,j is poly(Υ, pd)

bounded, and every omnldi,j is poly(qd) bounded. Therefore, all pubi + Privf
2
i ,A

2
(x1) are bounded

by some polynomial bound B̃. This implies that Privf
2
i ,A

2
(x1) ∈

[
−B̃ − pubi, B̃ − pubi

]
= Ri

for all i. Hence, the weak correctness of NFE implies that

z =
⌊

Privf
2,A2

(x1) + ∆
⌋
Q
,

for some ∆ in the support of η. Therefore,

z′ =
⌊
pub + Privf

2,A2
(x1) + ∆

⌋
Q
.

We rename ofi = ofi , ef
d

i = ef
d
i , of

d

i = of
d
i , ed,ji = emnldi,j , od,ji = omnldi,j , so that we can write

equation (12) in vector form and obtain

z′ =

⌊ ⌊
f(x)

⌋
PD

+ pDof +
∑

2≤d≤D

 pd
∑
j∈[m]

ed,j + qd
∑
j∈[m]

od,j

+ ∆

⌋
Q

.

13The output length of Privf
2,A2

equals M , i.e., the output length of f , whereas NFE supports functions with
output length S. The value M might be smaller than S, in which case we can pad Privf

2,A2

with additional 0
output elements.
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By the definition of η, ∆ is of the form

∆ = pDΦ +
∑

2≤d≤D

(
pd ·

∑
j∈[m]

Φd,j + qd ·
∑
j∈[m]

Ψd,j

)
,

where Φ, Φd,1|| · · · ||Φd,m, and Ψd,1|| · · · ||Ψd,m are in the support of Zp̄D , Zpd , and Zqd , respec-
tively. We thus have

z′ =

⌊⌊
f(x)

⌋
PD

+pD(of +Φ)+
∑

2≤d≤D

(
pd
∑
j∈[m]

(
ed,j + Φd,j

)
+qd

∑
j∈[m]

(
od,j + Ψd,j

))⌋
Q

. (13)

The ed,j ,od,j , and of are Bpd = poly(Υ, pd), Bqd = poly(qd), and Bp̄D = poly(pD, s) < BpD
bounded, respectively. Moreover, every Φd,j ,Ψd,j and Φ is poly(Bpd , λ), poly(Bqd , λ), and
poly(Bp̄D , λ) bounded, respectively. Since the modulus Q is super-polynomial, the modular
operation can be removed from the above equation.

To ensure that y = bf(x)cpD can be computed from z′ via iteratively reducing modulo
q2, p2, . . . , qd, pd, . . . , qD, pD, we need that for every 2 ≤ ρ ≤ D,⌊

f(x)
⌋
PD

+ pD(of + Φ) +
∑

ρ≤d≤D
pd
∑
j∈[m]

(
ed,j + Φd,j

)
+

∑
ρ+1≤d≤D

qd
∑
j∈[m]

(
od,j + Ψd,j

)
is qρ bounded, and

⌊
f(x)

⌋
PD

+ pD(of + Φ) +
∑

ρ+1≤d≤D

(
pd
∑
j∈[m]

(
ed,j + Φd,j

)
+ qd

∑
j∈[m]

(
od,j + Ψd,j

))

is pρ bounded. Since Φd,j ,Ψd,j and Φ are respectively polynomial in the magnitude of ed,j ,od,j

and of , the above conditions can be satisfied by setting parameters as in Remark 6.6. That is,
Υ = poly(n, t = N), qD = poly(Υ, n, pD, s, t = N), pd = poly(qd+1) and qd = poly(pd), where
t = N is the length of the input string x.

Special-purpose sublinear compactness: By the efficiency of the DHE scheme, the size of its
ciphertext is

|hct≤D| = poly(n)N = poly(λ)N,

and the size of x1 = (c2, 1) ⊗
(
(s2)⊗2, 1

)
is also poly(λ)N . The special-purpose sublinear

compactness of NFE further implies that

|nct| ≤ poly(λ)(N + S1−α).

Therefore the overall size of a ciphertext of DFE is

|ct| ≤ poly(λ)(N + S1−α).

Special-purpose simulation security. We show that our DFE scheme satisfies a weak version
of (1-key) simulation security. Roughly speaking, it guarantees that a secret key sk of a function f
and a ciphertext ct of an input x of DFE can be simulated by a universal simulator Sim, using
the output y = f(x), together with some “leakage” of a bounded O(λε2) number of variables
in x. More precisely, since DFE is a secret key encryption scheme, we need to directly consider
the distribution of sk and many ciphertexts ct, and ct1, . . . , ctt, and the simulation additionally
simulates cti’s using the input xi encrypted inside.
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Definition 6.10. We say that DFEN,S satisfies special-purpose µ-simulation security if there
exists an efficient universal simulator Sim such that, for

• every distribution {FN}λ over f ∈ DFN,S ,

• every distribution {X}λ over x in ZNpD ,

• every sequence of vectors {x1, . . . ,xt} where xi ∈ ZNqD ,

there exist correlated random variables (xK ,K, st) sampled (potentially inefficiently) by DSim,
such that the following distributions are µ-indistinguishable,

Real =


f ← FN , x← X

msk← DFE.Setup(1λ)
sk← DFE.KeyGen(msk, f)

ct← DFE.Enc(msk,x)
{cti ← DFE.Enc(msk,xi)}i∈[t]

: f, x, (sk, ct, ct1, . . . , ctt)


λ∈N

,

Ideal =


f ← FN ,

(xK ,K, st)← DSim(f),
x̄← X|xK ,K ,

: f, x̄, Sim
(
st, f, y = f(x̄),x1, . . . ,xt

)
λ∈N

,

and with probability at least 1− µ, |K| ≤ O(λε2`) for some constant ε2 ∈ (0, 1), where ` is the
maximum locality of f ∈ DFN,S .

We next show that our FE scheme DFE satisfies this special-purpose simulation security.

Lemma 6.11. Assume that DHE has µ-robustness for secrets with (1−o(1))n min-entropy, for all
polynomials N ′ and S, NFEN

′,S satisfies 1-key O(µ)-Sel-Sim security. Then, for all polynomials
N and S, DFEN,S satisfies special-purpose O(µ)-simulation security.

Proof. We construct Sim and DSim and show that the corresponding ideal distribution Ideal
is O(µ)-indistinguishable to Real via a sequence of hybrids H0, . . . ,H4, where H0 = Real and
H4 = Ideal. We define Sim and DSim in the description of H4.

Hybrid H0 is exactly the Real distribution. By the construction of DFE, the secret key sk for a
function f is a secret key nsk of the NFE scheme for the function Privf

2,A2
, and a ciphertext

ct = (hct≤D, nct) consists of hct≤D = (A≤D, c≤D) encrypting x, and nct encrypts x1.
Therefore, the distribution of Real is{

f, x, sk = nsk,
(

(A≤D, c≤D), nct
)
,
{(

(A≤D, c≤Di ), ncti
)}

i∈[t]

}
,

where f ← FN , x← X , and all keys and ciphertexts are generated honestly. Note that
the matrices A≤D are shared between different ciphertexts of DFE.

Hybrid H1 is the same as H0, except that the secret key nsk and the ciphertexts nct and
nct1, . . . , nctt of the NFE scheme NFE are now simulated using the simulator NSim. This
yields the following distribution (with items re-ordered).{

f, x, (A≤D, c≤D),
{(

(A≤D, c≤Di )
)}

i∈[t]
,

(
ñsk, ñct, {ñcti}

)
← NSim

(
Privf

2,A2
, Y =

⌊
Privf

2,A2
(x1) + ∆

⌋
Q
, x1

1, . . . ,x
1
t

)}
,
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where ∆ is sampled from the distribution η, and x1 and x1
1, . . . ,x

1
t are the input vectors

encrypted using NFE in each encryption of DFE.

The O(µ)-Sel-Sim-security of NFE implies that H0 and H1 are O(µ)-indistinguishable.

In the correctness analysis, we derived that the following equation holds (see equation (13)):∑
2≤d≤D

Pubf
d,Ad

(cd) + Privf
2,A2

(x1) + ∆

=
⌊
f(x)

⌋
PD

+ pD
(
of + Φ

)
+

∑
2≤d≤D

(
pd
∑
j∈[m]

(
ed,j + Φd,j

)
+ qd

∑
j∈[m]

(
od,j + Ψd,j

))
,

where Φ, Φd,1|| · · · ||Φd,m, and Ψd,1|| · · · ||Ψd,m are sampled from the distributions Zp̄D ,
Zpd , and Zqd , respectively. Therefore,

Y =
⌊
Privf

2,A2
(x1) + ∆

⌋
Q

=

⌊⌊
f(x)

⌋
PD
−

∑
2≤d≤D

Pubf
d,Ad

(cd)

+ pD
(
of + Φ

)
+

∑
2≤d≤D

(
pd
∑
j∈[m]

(
ed,j + Φd,j

)
+ qd

∑
j∈[m]

(
od,j + Ψd,j

))⌋
Q

.

Hybrid H2 is the same as H1, except that we apply the property of (λε2 , µ)-flawed-smudging
distributions Zp̄D , Zpd , and Zqd to argue that the sums of noises and samples from these
distributions hide the noises at most locations, which means only a few variables related to
the generation of HE ciphertexts V =

(
x,A≤D, s≤D, e≤D, {Adsd}

)
are “compromised”.

We will use Lemma 3.18, which states that for noises generated by E(V ), where E is a
function and V ← V is a sample from a distribution, adding E(V ) with a sample Z ← Z
from the flawed-smudging distribution can hide most locations of E(V ) and in turn V . The
set of “compromised” noises Ebad is chosen by a collection of randomized predicates BADρ

— Eρ(V ) is “compromised” if badρ ← BADρ(Eρ(V ), Z) happens to be 1 — and the set of
“compromised” variables VΓ(Ebad) simply consists of those that Ebad depends on. All other
variables V¬Γ(Ebad) are hidden. This is formalized as that given E(V ) +Z, V is distributed
identically to a new sampling V ← V with only VΓ(Ebad) fixed. More precisely, the following
distributions are identical:

D1 =

{
V ← V, Z ← Z

bad← {BADρ(Eρ(V ), Z)}ρ
: (V, E(V ) + Z, bad)

}
,

D2 =


V ← V, Z ← Z

bad← {BADρ(Eρ(V ), Z)}ρ
I = Γ(Ebad), V ← V|VI ,I

:
(
V , E(V ) + Z, bad

) .

To apply this property, we need to specify the relevant V , E, and Z. In H1, the noises are
functions of variables used for producing the DHE ciphertexts. Therefore,

V : x← X , sample A≤D, s≤D, e≤D; output V =
(

x,A≤D, s≤D, e≤D, {Adsd}
)
.
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Then let E = Ef be the function that computes all noises from V , which depends on f :

Ef (V ) :=

({
ed,ji = ẽd,ji (einpd,ji )

}
d,j,i

,
{
od,ji = õd,ji (oinpd,ji )

}
d,j,i

,
{
ofi = õfi (oinpfi )

}
i

)
.

Above every ed,ji , od,ji is computed from variables in einpd,j , oinpd,j defined in Claim 6.9,
each of which contains only a constant number of variables in V . In addition, every
õfi (oinpfi ) computes ofi =

⌊
fi(x)/pD

⌋
. Since f has locality `, oinpfi contains at most `

variables x. Therefore, for every subset Ebad of compromised noises, the subset I = Γ(Ebad)
of compromised input variables that Ebad depends on contains at most O(|bad|1) variables
in (A≤D, s≤D, e≤D, {Adsd}) and at most O(`|bad|1) variables in x. We have

I = Γ(Ebad) =
(
∪
ed,ji ∈Ebad

einpd,ji

)
∪
(
∪
ed,ji ∈Ebad

einpd,ji

)
∪
(
∪
ofi ∈Ebad

oinpfi

)
.

Finally, inH1 the smudging noises are sampled from the product of different flawed-smudging
distributions:

Z :
({

Φd,1|| · · · ||Φd,m ← Zpd
}
d
,
{
Ψd,1|| · · · ||Ψd,m ← Zqd

}
d
, Φ← Zp̄D

)
;

output Z =
{
Φd,j ,Ψd,j ,Φ

}
.

The distributions of the noises
{
ed,ji
}
,
{
od,ji
}
, and

{
ofi
}
are Bpd-, Bqd-, and Bp̄D -bounded

respectively, and Zpd ,Zqd ,Zp̄D are (λε2 , µ)-flawed-smudging for distributions with exactly
these bounds. Note that since the number of d’s are bounded by D, which is a constant, Z
is the product of O(1) distributions. Hence, Lemma 3.15 implies that Z is (O(λε2), O(µ))-
flawed-smudging. Thus, for Ef ,V, there is a collection of randomized predicates {BADρ},
one for each noise output by Ef , such that the above distributions D1 and D2 are identical.
In addition, with probability at least 1 − O(µ), |bad|1 = O(λε2) and I contains at most
O(λε2) variables in (A≤D, s≤D, e≤D, {Adsd}) and at most O(`λε2) variables in x.

The fact that given the sums of noises E(V ) + Z, V is identically distributed to V , a fresh
sample that only agrees with V at locations in I, implies that in H1, all variables can be
replaced with ones computed from the fresh sample V (while keeping the sums of noises
E(V ) + Z the same). This yields the following distribution of H2:

H2 =


f ← FN , V ← V

Z ← Z
bad← {BADρ(E

f
ρ (V ), Z)}ρ

I = Γ(Efbad), V ← V|VI ,I

:

f, x,

(A
≤D

, c≤D),{(
A
≤D

, c≤Di

)}
i∈[t]

,

NSim
(

Privf
2,A

2

, Y ′, x1
1, . . . ,x

1
t

)


,

where all variables with bar on top in the distribution are computed honestly from V , and
Y ′ is the following “hybrid” value, where the sums of noises are generated from V , and
everything else is generated from V :

Y ′ =

⌊⌊
f(x)

⌋
PD
−

∑
2≤d≤D

Pubf
d,A

d

(cd)

+ pD(of + Φ) +
∑

2≤d≤D

(
pd
∑
j∈[m]

(
ed,j + Φd,j

)
+ qd

∑
j∈[m]

(
od,j + Ψd,j

))⌋
Q

.
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The flawed smudging property guarantees that H1 and H2 are identically distributed.

Hybrid H3 is the same as H2, except that we want to use the security of DHE to argue that
ciphertexts c≤D encrypting x in H2 can be replaced with ciphertexts encrypting zero in H3.
However, we cannot apply the security of DHE directly, as the ciphertexts are generated
using variables in V , which are not sampled completely randomly, but randomly up to
V I = VI . (The distribution of VI might not be random and its value may be leaked
through the sums of noises in Y ′.) To circumvent this, we first single out the set S of
ciphertexts cdi =

〈
adi , s

d
〉

+ xdi + pde
d
i such that some variable(s) in adi , or the inner product〈

adi , s
d
〉
, or the noise edi falls in V I = VI — call them the “compromised” ciphertexts. We

then argue that the secret key sd in V has high entropy, and thus by the robustness of
HE, all ciphertexts outside S, whose adi ,

〈
adi , s

d
〉
, and edi are sampled randomly in V , are

indistinguishable to ciphertexts encrypting zero.

More precisely, let S be the subset of ciphertexts cdi such that some variable(s) in adi , or〈
adi , s

d
〉
, or edi are included in V I = VI , or equivalently, are included in einpd,ji or oinpd,ji

for some ed,ji or od,ji in Ebad (oinpf only includes x variables). By Claim 6.9, if a ciphertext
cdi satisfies the above condition w.r.t. some einpd,ji or oinpd,ji , then it can be computed from
that einpd,ji or oinpd,ji . Therefore, given VI , all ciphertexts in S can be computed; this
observation will be useful later.

We now define the hybrid H3 as

H3 =

{
f, x,

(
A
≤D

,
(
c≤D

)
S
,
(
c′
≤D)

¬S

)
,
{(

A
≤D

, c≤Di

)}
i∈[t]

,

NSim
(

Privf
2,A

2

, Y ′, x1
1, . . . ,x

1
t

)}
,

where all variables are generated identically as in H2, except that every ciphertext outside S,
say c′di ∈

(
c′
≤D)

¬S , encrypts 0, that is, c′di =
〈
adi , s

d
〉

+ pde
d
i .

We now show that H2 and H3 are O(µ)-indistinguishable for every fixed sample of
(f, V, Z,bad, I) satisfying that |bad|1 = O(λε2). This implies that H2 and H3 are O(µ)-
indistinguishable, as the condition on |bad|1 holds with probability 1 − O(µ). We first
observe that since VI contains at most O(λε2) variables in (A≤D, s≤D, e≤D, {Adsd}) (and
every variable contains O(log n) bits), the min-entropy of s in V is at least n−O(λε2 log n) =
(1− o(1))n. Next, observe that for every non-compromised ciphertext c′di , none of its adi ,
inner product

〈
adi , s

d
〉
, and noise edi appear in VI , and thus adi and e

d
i are sampled randomly.

Therefore, by the O(µ)-robustness of HE w.r.t. secrets with min-entropy (1 − o(1))n, it
follows that (c′≤D)S in H3 encrypting 0 is indistinguishable to (c≤D)S̄ in H2 encrypting
values derived from x.

Hybrid H4 is the same as H3 except that we define the simulator Sim and distribution DSim,
and rewrite H3 as the ideal distribution. The distribution DSim samples all variables as in
H3, outputs the xK variables that are contained in VI , and includes all variables sampled
in the state st to be passed to Sim. That is,

DSim(f) : V ← V, Z ← Z, bad← {BADρ(E
f
ρ (V ), Z)}ρ, I = Γ(Efbad),

V ← V|VI ,I , let xK be the x variables contained in VI ,

output xK ,K, st = (V,Z, V , bad).
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Next, Sim on input (st, f, y = f(x),x1, . . . ,xt)) generates variables as in H3 as follows:
i) A

≤D is included in V ; ii) (c≤D)S can be computed from VI (as observed above); iii)
(c′
≤D

)S̄ can be computed from A
≤D

, e≤D, s≤D in V (encrypting 0); iv) x1
i and c≤Di depend

on A
≤D, and are otherwise independently sampled; v) Privf

2,A2
depends on f and A

2; vi)
Y ′ can be computed using bf(x)cPD , all ciphertexts generated in ii) and iii), and sums of
noises generated as Ef (V ) + Z. We remark that the computation of Sim depends only on
xK (in step ii)), and is completely independent of xK̄ . Therefore, given the output of Sim,
xK̄ is random conditioned on xK = xK . Therefore, H3 is identical to the following Ideal
distribution, where xK̄ is re-sampled again outside DSim:

f ← FN ,
(xK ,K, st)← DSim(f),

x← X|xK ,K ,
: f,x,Sim (st, f, y = f(x),x1, . . . ,xt)

 ,

where xK is the set of x variables contained in VI , which contains at most O(λε2`) of them.

Overall, we conclude that H0 and H4 are O(µ)-indistinguishable, which implies that DFE has
special-purpose O(µ)-simulation security.

6.3.1 Property of DFE w.r.t. a Special Purpose Function Distribution

In Section 7, we will use DFE to compute functions f sampled from a special-purpose distribution
FN over DFN,S , where the function f is determined by a fixed function g and a distributional
input-output dependency graph G (sampled in FN ), such that every fi(x,x′) equals gi(xG(i),x

′)
and depends on a constant ` = O(1) number of x variables specified by G(i) (the dependency
on x′ variables is arbitrary). In addition, the input x is binary and its distribution is uniformly
random (and the distribution of x′ is independent and arbitrary). When using DFE to compute
functions on inputs from such distributions, the special-purpose simulation security guarantees
that only a small set xK of O(`λε2) x variables get compromised. We now show further that the
locations K of compromised x variables only “weakly depends” on G, in the sense that there is a
set K independent of G such that G(K) contains K.

Special-purpose distributions. The function distribution FN samples a function f = (g,G), where
g : ZN → ZM is a fixed function in DFN,S and G is sampled according to some distribution. For
every input (x,x′) ∈ {0, 1}N ′ ×ZN−N ′pD

for some N ′ ≤ N and every i ∈ [M ], fi(x,x′) is defined
to be gi(xG(i),x

′). Let ` be the locality of f on x, that is, ` = maxi(|G(i)|).
The input distribution X on the other hand is (x,x′)← U{0,1}N′ ×X

′, where x is a randomly
and independently sampled binary string and X ′ is arbitrary.

For any such special-purpose distributions FN and X , the special-purpose O(µ)-simulation
security of DFE implies the existence of an efficient and universal simulator Sim and a distribution
DSim, such that the Real distribution is indistinguishable to the following Ideal distribution:

f = (g,G)← FN ,
((xK , x

′
K′), (K,K

′), st)← DSim(f)
x← U{0,1}N′ |xK ,K ,x

′ ← X ′|x′
K′ ,K

′

:
f, (x,x′),

Sim
(
st, f, y = f(x,x′), (x1,x

′
1), . . . , (xt,xt)

)  .

With probability 1 − O(µ), |K| + |K ′| = O(`λε2). We now show that the locations K of
compromised x variables only weakly depends on the graph G.
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Lemma 6.12. For every λ, every µ that is superpolynomially small, and every pair of special-
purpose distributions FN and X as described above, there exists a random variable K correlated
with (f ← FN , ((xK , x

′
K′), (K,K

′), st) ← DSim(f)), satisfying that i) K is independent of G,
and ii) K ⊆ G(K) and |K| = O(2`λε2) with probability 1−O(

√
µ).

Proof. Recall that DSim operates as follows:

DSim(f) : V ← V, Z ← Z, bad← {BADρ(E
f
ρ (V ), Z)}ρ, I = Γ(Efbad),

V ← V|VI ,I , let xK , x
′
K′ be the x and x′ variables contained in VI ,

output (xK , x
′
K′), (K,K

′), st = (V,Z, V , bad).

Further recall that each noise Efρ (V ) falls into one of the following three cases: It is either ed,ji ,
od,ji , or ofi . By Claim 6.9, for every fi(x) = gi(xG(i),x

′), every ed,ji , od,ji , or ofi can be computed
by i) functions ẽd,ji , or õd,ji , or õfi that are independent of G(i) and independent of G, on ii)
inputs that depend only on xG(i) and variables in (x′, s≤D, e≤D, {Adsd}). Overall, the function
Ef is independent of G and every Efρ (V ) depends on xG(i) for some i.

By the definition of flawed-smudging distributions, the set of randomized predicates {BADρ}
that determines the set of compromised noises depends only on Z, the function E, and the
distribution V (which in turn depends on the distribution of G) of its input, all independent
of the actually sampled graph G. Therefore, every BADρ can be re-written as a randomized
predicate Pρ still independent of G such that

BADρ(Eρ(V ), Z; rρ) = Pρ(xG(i), aux; rρ),

for some i and aux = (x′, s≤D, e≤D, {Adsd}, Z).
With probability 1 − O(µ), the number of BADρ (or equivalently the number of Pρ) that

evaluate to 1 is bounded by O(λε2). Therefore, there is a set of aux and randomness r of all Pρ
predicates that has probability 1 − O(

√
µ) of being sampled, and conditioned on them being

sampled, the number of Pρ(xG(i), aux; r) that outputs 1 is bounded by O(λε2) with probability
1−O(

√
µ) over the choice of x and G.

For any such (aux, r), we have that the expectation of the sum of outputs of Pρ is bounded:

E
x,G

[∑
ρ

Pρ
(
xG(i), aux ; r

)]
= (1−O(

√
µ)) ·O(λε2) +O(

√
µ) · poly(λ, S) = O(λε2).

(The first equality follows as in the rare event of |bad|1 not being bounded by O(λε2), it is still
bounded by the total number of noises which is bounded by poly(λ, S). Since µ is superpoly-
nomially small, the second equality follows.) Furthermore, let Eρ = Ex,G[Pρ(xG(i), aux ; r)] be
the expectation of Pρ itself. Since |G(i)| ≤ ` and the marginal distribution of the binary string
xG(i) is uniform, the expectation Eρ is either zero if Pρ(?, aux; r) is constantly zero, or at least
1/O(2`) otherwise. By the linearity of expectation, the number of ρ s.t. Pρ(?, aux; r) is non-zero
is at most O(2`λε2). We now define the correlated random variable K:

K =
{
i : ∃ρ s.t. Pρ(?, aux; r) is non-zero, and Pρ depends on xG(i)

}
.

Clearly, |K| = O(2`λε2).
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Since the above holds for a set of aux, r that appear with probability 1−O(
√
µ), we have that

with probability 1−O(
√
µ) over the choice of aux and r, |K| = O(2`λε2). We further observe that

K is independent of G, as it only depends on the randomized predicates Pρ, their randomness
r, and aux = (x′, s≤D, e≤D, {

〈
Ad, sd

〉
}, Z)), all of which are independent of G. Finally, the set

of compromised variables K must be a subset of these variables G(K) that non-zero predicates
depend on. Therefore, K is the set promised by the lemma.

7 Functional Encryption for NC1 and Transformation to IO

In this section, we construct sublinearly compact FE schemes for NC1 with standard fully-
selective indistinguishability security, using a constant-locality PRG, the AIK randomized
encoding [AIK04], our special-purpose FE scheme DFE constructed in Section 6, and a new
primitive called bit-fixing homomorphic sharing. Below, we start with introducing the new
primitive and constructing it from multi-key FHE in Section 7.1, and then move to the construction
of FE for NC1 in Section 7.2. Finally, in Section 7.3, we describe how existing results can be
used to transform our FE scheme to IO.

7.1 Bit-Fixing Homomorphic Sharing

A bit-fixing homomorphic sharing scheme has the same syntax as a Homomorphic Secret Sharing
(HSS) scheme introduced by [BGI15,BGI16] — it enables generating a secret sharing x1, . . . , xT
of an input v, and homomorphically evaluating a circuit C on each share separately to obtain
a set of output shares o1, . . . , oT , from which the final output y = C(v) can be reconstructed.
However, the similarity stops here, and the efficiency and security requirements are different.

• Security: similar to homomorphic encryption, HSS assumes that the output shares are
private, and the the shared value v is hidden when the adversary sees only a subset of t
input shares. In contrast, bit-fixing homomorphic sharing requires v to be hidden even to
adversaries knowing all output shares and t2 input shares. Furthermore, security needs to
hold not just for honestly generated input shares, as the name suggests, but also for shares
where t1 bits are fixed to arbitrary values.

• Efficiency: HSS (and homomorphic encryption) schemes have trivial constructions if
reconstruction from the output shares can be as complex as evaluating the circuit itself
(the output share can be an additive sharing of v together with C). Therefore, HSS is only
meaningful when the reconstruction is “simpler” than the computation itself. This is not
the case for bit-fixing homomorphic sharing — the trivial construction of HSS does not
satisfy the above security requirement — and the sharing and reconstruction procedure
can take time proportional the circuit size.

We now present the formal definition:

Definition 7.1. A (T, t1, t2, µ)-bit-fixing homomorphic sharing scheme BF = (BFsetup,BFshare,
BFeval,BFdec) for polynomials T = T (λ), t1 = t1(λ), and t2 = t2(λ) consists of four efficient
algorithms satisfying the following.

Syntax: The four algorithms have the following syntax

76



• BFsetup(1λ, 1s, 1d) is a randomized algorithm that, on input a security parameter λ
and bounds s and d on the function size and depth, respectively, outputs a CRS crs.

• BFshare(crs, v) is a randomized algorithm that on input crs and v ∈ {0, 1}poly(λ),
outputs T input shares x1, . . . , xT of v. Let n = n(λ) be the length of all input shares.

• BFeval(crs, xi, i, f) is a deterministic algorithm that on input crs, a share xi and its
index i, and a function f , represented as a circuit of size s and depth d, outputs an
output share oi.
Without loss of generality, if f has multiple output bits, BFeval is invoked separately
for each output bit. The collection of output shares form oi.

• BFdec(crs, {oi}) is a deterministic algorithm that, on input crs and all output shares,
outputs a string y.

Correctness: For every λ, s, d ∈ N, every input v, and every function f of size s and depth d,

Pr

 crs← BFsetup(1λ, 1s, 1d)
(x1, . . . , xT )← BFshare(crs, v)
∀ i ∈ [T ], oi ← BFeval(crs, xi, i, f)

: BFdec(crs, {oi}) = f(v)

 = 1.

(t1, t2, µ)-bit-fixing-security For all polynomials s and d, every sufficiently large λ ∈ N,
s = s(λ), and d = d(λ), every pair of poly(λ)-bit inputs (v0, v1), every t1-bit string
x∗ ∈ {0, 1}t1 , every set of t1 indexes J ⊆ [n(λ)],14 every set of t2 indexes K ⊆ [T ], every
function f of size s and depth d that does not separate v0 and v1 (i.e., f(v0) = f(v1)), and
every PPT adversary A,

Pr


b← {0, 1}

crs← BFsetup(1λ, 1s, 1d)
(x1, . . . , xT )← BFshare(crs, vb)|x∗,J
∀ i ∈ [T ], oi ← BFeval(crs, xi, i, f)

:
A
(
Binary(x)J , J,
{xi}i∈K , {oi}i∈[T ]

)
= b

 ≤ 1

2
+ µ(λ),

where Binary(x) denotes the binary representation of (x1, . . . , xλ) and Binary(x)J are the
bits at positions in J .

7.1.1 Construction from Threshold Multi-Key FHE

For any T , t1, and t2 with t1 + t2 < T , a bit-fixing homomorphic sharing scheme BF scheme can
be constructed from a threshold multi-key FHE scheme MFHE for functions outputting a bit,
and a pseudorandom function PRF as follows:

• BFsetup(1λ, 1s, 1d) runs params← MFHE.Setup(1λ, 1d) and outputs crs := params.

• BFshare(crs, v) on input v ∈ {0, 1}poly(λ), computes the following:

– (pki, ski)← MFHE.KeyGen(crs) for i ∈ [T ],

– an additive sharing ss1, . . . , ssT of v, i.e., sample uniform bit strings ss1, . . . , ssT−1 of
length |v| each and set ssT = v ⊕

⊕T−1
i=1 ssi,

14Formally, we should only quantify over x∗ and J for which BFshare(crs, vb)|x∗,J is a valid distribution, i.e., for
which the support of BFshare(crs, vb) contains a bit string which coincides with x∗ on the indices in J . We ignore
this subtlety for ease of presentation.
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– cti ← MFHE.Enc(pki, ssi) for i ∈ [T ],
– ĉti ← MFHE.Expand((pk1, . . . , pkT ), i, cti) for i ∈ [T ].

It finally samples PRF keys Ki for i ∈ [T ] and outputs (x1, . . . , xT ), where

xi :=
((

ĉtj , pkj
)
j∈[T ]

, ski,Ki

)
.

• BFeval(crs, xi, i, f) on input crs, xi =
((
ĉtj , pkj

)
j∈[T ]

, ski,Ki

)
, i, and a function f with `

output bits, where fj denotes the function computing the jth output bit, computes for all
j ∈ [`]:

– ĉt
(j)

= MFHE.Eval(crs, f ′j , ĉt1, . . . , ĉtT ), with f ′j(ss1, . . . , ssT ) := fj
(⊕T

i=1 ssi
)

= fj(v),
– ri,j = PRF(Ki, j),

– oi,j = MFHE.PartDec
(
ĉt

(j)
, (pk1, . . . , pkT ), i, ski; ri,j

)
, which means ri,j is used as the

randomness for the algorithm MFHE.PartDec.

It outputs the share oi = (oi,1, . . . , oi,`).

• BFdec(crs, {oi}i∈[T ]) takes as input crs and {oi}i∈[T ] = {oi,j}i∈[T ],j∈[`], computes yj =
MFHE.FinDec(o1,j , . . . , oT,j) for j ∈ [`], and outputs y = (y1, . . . , y`).

Correctness of the construction follows directly from the correctness of decryption of MFHE.
We next show that the scheme is also bit-fixing secure.

Theorem 7.2. If MFHE is µ-semantically secure, has µ-simulatability of partial decryptions,
and PRF is µ-pseudorandom, then BF is

(
t1, t2, O(L · µ)

)
-bit-fixing secure for t1 + t2 < T , where

L is an upper bound on the number of output bits of the function f .

Proof. Let s and d be polynomials, λ ∈ N, s = s(λ), d = d(λ), let v0 and v1 be poly(λ)-
bit inputs, let x∗ ∈ {0, 1}t1 , let J ⊆ [n(λ)] and K ⊆ [T ] with |J | = t1 and |K| = t2, let
f be a function of size s and depth d with ` ≤ L output bits and f(v0) = f(v1), and let
A be a PPT adversary. Now let H0 be the

(
t1, t2, O(L · µ)

)
-bit-fixing-security experiment,

i.e., b ← {0, 1}, crs ← BFsetup(1λ, 1s, 1d), (x1, . . . , xT ) ← BFshare(crs, vb)|x∗,J , ∀i ∈ [T ], oi ←
BFeval(crs, xi, i, f), b′ ← A

(
Binary(x)J , J, {xi}i∈K , {oi}i∈[T ]

)
, and let the output of H0 be 1 if

b′ = b, and 0 otherwise. Note that since |K| = t2 and x∗ fixes only t1 bits, where t1 + t2 < T ,
there exists an i0 ∈ [T ] such that no bit within xi0 gets fixed and i0 /∈ K.

Define H1 to be identical to H0 except that for j ∈ [`], ri0,j in the execution of BFeval(crs, xi0 ,
i0, f) gets replaced by a truly random value. Let APRF be an adversary with access to an oracle,
which is either PRF or a truly random function, and let APRF emulate the experiment toward A,
where instead of running ri0,j = PRF(Ki0 , j), APRF obtains ri0,j by querying its oracle on input j.
Note that this emulation can be done without Ki0 since no bits in xi0 get fixed and A does not
get xi0 as an input. Finally let APRF output 1 if A guesses b correctly, and 0 otherwise. If the
oracle of APRF is PRF, the view of A is identical to its view in H0, and if the oracle is a truly
random function, its view is identical to the one in H1. Hence µ-indistinguishability of PRF
implies

|Pr[H0 = 1]− Pr[H1 = 1]| ≤ O(µ(λ)).

Next, we define for k ∈ {0, . . . , `} the hybrid H2,k to be identical to H1 except that oi0,j for
j ≤ k is produced by the simulator Sim from µ-simulatability of partial decryptions, where Sim
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is given i0, all secret keys except ski0 , ĉt
(j), and fj(v0) = fj(v1). Then, H2,0 is identical to H1

and since the statistical distance between the oi0,j in different hybrids is bounded by O(µ(λ)),
we have

∀k ∈ [`] |Pr[H2,k−1 = 1]− Pr[H2,k = 1]| ≤ O(µ(λ)).

Finally let H3 be identical to H2,` except that BFshare encrypts ⊥ instead of ssi0 to obtain
cti0 . Consider the attacker Asem against the semantic security of MFHE that is given params, a
public key pk∗, and an encryption ct∗ of either ssi0 or ⊥, and then emulates H2,` or H3 by using
pk∗ as pki0 and instead of encrypting ssi0 or ⊥, it uses its input ct∗. Note that this can be done
without ski0 since it is only used in the scheme to compute {oi0,j}j and these are simulated in
both hybrids without ski0 . Finally let Asem output 1 if A guesses b correctly, and 0 otherwise.
We then have that the advantage of Asem is bounded by O(µ(λ)) and thus,

|Pr[H3 = 1]− Pr[H2,` = 1]| ≤ O(µ(λ)).

Note that by the property of the additive sharing, the view of A in H3 is independent of vb
and thus independent of b. Hence, Pr[H3 = 1] = 1/2. Combined with the results above, this
yields Pr[H0 = 1] ≤ 1/2 +O(` · µ) and concludes the proof.

7.2 Construction of FE for NC1

For any fixed logarithmic function Dep(λ) = O(log λ), we construct a family of secret-key FE
schemes {FEN,S} for computing the class of NC1 circuits C with depth Dep = Dep(λ), polynomial
input length N = N(λ), and size S = S(λ). We will show that our schemes are sublinearly
compact, and satisfy 1-key fully-selective µ′-indistinguishability security for any µ′ = 2−o(λ),
using the following building blocks with security levels parameterized by µ = λ−ω(1)µ′.

• A (poly(λ)S1−α,poly(λ)S)-stretch PRG with µ-indistinguishability for some α ∈ (0, 1/2)
with the following structural properties. First, it has constant locality. Secondly, the
function PRG = (P,G) is specified by a single predicate P : {0, 1}` → {0, 1} (as opposed to
many predicates) and an input-output dependency graph G such that

∀i PRGi(sd) = P
(
sdG(i)

)
.

Thirdly, all input nodes in the graph have degree (i.e., locality) bounded by o(S1−α) (note
that the average degree of input nodes is poly(λ)Sα � S1−α when α is a small constant).
Finally, we assume PRG is a fixed function instead of a function family as in Definition 2.8.
Many candidate constant-locality PRGs satisfy these structural properties [Gol00,MST03,
OW14,AL16].

• A (T = λ, t1 = λ/4, t2 = λ/4, µ)-bit-fixing homomorphic sharing scheme BF = (BFsetup,
BFshare,BFeval,BFdec) as constructed in the previous section.

• The AIK randomized encoding [AIK04] RE = (REnc,REval) whose encoding algorithm for
any function f , REnc(f, x ; r) has locality 1 in input bits and locality 3 in the random bits.
The AIK randomized encodings are unconditionally and perfectly secure.

• For some fixed constant locality ` and pD = 2, our special-purpose FE scheme DFEN
′,S′ =

(DFE.Setup,DFE.Enc,DFE.KeyGen,DFE.Dec) for computing locality `, degree D = `, poly-
nomials with input length N ′ and size S′ over Z2, where N ′, S′ are set below. The scheme
is special-purpose (1− α)-sublinearly compact and special-purpose µ2-simulation secure.
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We now describe our FE scheme FEN,S for computing NC1 circuits with depth Dep. Below,
we in-line the analysis of its correctness and (1− α)-sublinear compactness in italic font.

• FE.Setup(1λ): Generate a DFE master secret key Dmsk← DFE.Setup(1λ, pp), and a CRS
for the bit-fixing homomorphic sharing scheme crs ← BFsetup(1λ, 1s, 1Dep), where s is
described below.

Output msk = (Dmsk, crs).

• FE.KeyGen(msk, C): Input circuit C has input-length N , size S, and depth Dep. We
assume for notational convenience that C has exactly S output bits, and assume w.l.o.g.
that every output bit is computed by Ci with some fixed polynomial size s(λ) = poly(λ).15

– Generate a polynomial f as follows:
∗ Divide the output bits of C into M = S1−α (assume for convenience that M
divides S) consecutive chunks I1, . . . , IM , where chunk Ij includes output bits
(j − 1)S/M + 1, . . . , jS/M . For every j ∈ [M ], let CIj = {Ck}k∈Ij denote the
collection of circuits that computes output bits in chunk Ij .
∗ For every j ∈ [M ] and i ∈ [λ], let Dj

i be the circuit that on input the i’th share
xji of the j’th sharing xj of v, homomorphically evaluates CIj , i.e.,

Dj
i (x

j
i ) = BFeval(crs, xji , i, CIj ) = oji .

Since BFeval performs homomorphic evaluation of each component Ci in CIj
separately, and the component size of Ci is s, the size of each input share xji is
poly(λ, s), and the component size of Dj

i is poly(λ, s) (and the overall size of Dj
i

is poly(λ, s)S/M).
∗ Choose a random permutation π : [λ]× [M ]× [φ] → [λMφ]. For every j ∈ [M ]

and i ∈ [λ], let f ji be the following function:

f ji (xji , sd) = REnc
(
Dj
i , x

j
i ; PRG

Πji
(sd)

)
.

Since REnc encodes the computation of every component in Dj
i separately, which

takes poly(λ, s) time, the overall time for encoding Dj
i is |f ji | = poly(λ, s)S/M ,

using at most φ = poly(λ)S/M random coins. Above, PRG
Πji

(sd) contains φ PRG
output bits at locations {π(i, j, k)}k∈[φ], determined by the random permutation π.
Overall, |PRG(sd)| = φλM = poly(λ)S and |sd| = poly(λ)S1−α.

Finally, set

f

({
xj =

{
xji
}
i∈[λ]

}
j∈[M ]

, sd

)
:=
{
f ji (xji , sd)

}
j,i
.

The input length and size of f is N ′ = |{xji}|+ |sd| = poly(λ, s)λM + poly(λ)S1−α =

poly(λ)S1−α and S′ = |f ji |λM = poly(λ)S. Since the AIK randomized encoding
algorithm REnc and PRG both have constant locality, f also has constant locality `.
Moreover, over the field Z2, it has at most degree `.

15If not, one can always use garbled circuits to turn C into another circuit where every output bit is computable
in size poly(λ), at the cost of increasing the size, input length, and output length of the circuit by a multiplicative
poly(λ) factor.

80



– Generate a DFE secret key of f , Dsk← DFE.KeyGen(Dmsk, f).

Output sk = Dsk.

• FE.Enc(msk, v): On input msk = (Dmsk, crs) and v ∈ {0, 1}N , do:

– For every j ∈ [M ], share v using BF, xj =
{
xji
}
i∈[λ]
← BFshare(crs, v).

– Sample randomly a PRG seed sd← {0, 1}poly(λ)S1−α .

– Encrypt X =
(
{xj}j , sd

)
using DFE, Dct← DFE.Enc(Dmsk, X).

Output ct = Dct.

Sublinear Compactness: It follows from the special-purpose (1−α)-sublinear compactness of
DFE that |Dct| = poly(λ)(N ′ + S′1−α) = poly(λ)S1−α. Therefore, FE is (1− α)-sublinearly
compact.

Remark 7.3 (Special Purpose Function and Input Distributions). To show the security of
FE, we need to argue that the ciphertexts of v0 and v1 are indistinguishable at the presence
of a secret key for a circuit C that does not separate them. To generate a secret key for C,
FE.KeyGen generates a DFE secret key for f defined by C, and to encrypt vb for a random b,
FE.Enc uses DFE to encrypt X defined by vb. Consider the distributions FN of f and X
of X. We observe that they have the form of special-purpose distributions as described in
Section 6.3.1.

Specifically, X is a product distribution X ′ × U{0,1}poly(λ)S1−α , where the former samples the
secret sharing x = {xj} of vb and the latter samples the PRG seed sd. Furthermore, f is
defined by a fixed collection of predicates {gρ} and an input-output dependency graph Gπ
depending on a random permutation π. To see this, recall that every output bit i of PRG is
computed using the same predicate P on a subset of seeds G(i). Thus, f ji described above
can be written as

f ji (xji , sd) = REnc
(
Dj
i , x

j
i ; PRG

Πji
(sd) = {P (sdG(π(i,j,k)))}k∈[φ]

)
.

This means the collection of predicates {gρ} is fixed, defined by Dj
i , P , and REnc, and the

input-output dependency graph Gπ is distributional, depending on the random permutation π,
the dependency graph G of PRG, and that of REnc.

• FE.Dec(sk, ct) : On input sk = Dsk and ct = Dct, do

– Decrypt the DFE ciphertext Dct with the secret key Dsk to obtain y = f(X) =
DFE.Dec(Dsk,Dct).

– Parse y = {yji }, and for every j ∈ [M ] and i ∈ [λ], decode yji using REval to obtain
oji = REval(yji ).

– For every j ∈ [M ], decode the output shares {oji}i∈[λ] to obtain the actual output
uj = BFdec(crs, {oji}).

81



Output u = {uj}.

Correctness: By the correctness of DFE, we have

y = f(X) =
{
yji = f ji (xji , sd)

}
j,i
,

yji = REnc(Dj
i , x

j
i ; PRG

Πji
(sd)) .

By the correctness of RE, we have that

oji = REval(yji ) = Dj
i (x

j
i ) = BFeval(crs, xji , i, CIj ) = oji .

By the correctness of BF, we have that uj = CIj (v). This concludes the correctness
analysis.

Next, we show that FE satisfies 1-key fully-selective indistinguishability-security.

Theorem 7.4. For all µ′ = 2−o(λ) and for µ = λ−ω(1)µ′, assume that PRG satisfies µ-
indistinguishability, BF satisfies (λ/4, λ/4, µ)-bit-fixing security, and DFEN

′,S′ satisfies µ2-special-
purpose simulation security. Then, FEN,S above satisfies µ′-Sel-Ind-security.

Proof. Fix any NC1 circuit {C}λ with input-length N , size S, depth Dep, and component-size s.
Fix any polynomial-length sequence of pairs of inputs {{v0

ρ, v
1
ρ}ρ∈[t]}λ s.t. C(v0

ρ) = C(v1
ρ) for

every ρ. We want to show that the following distributions are µ′-indistinguishable for b = 0 and
b = 1: 

(msk,msk)← FE.Setup(1λ, pp)
sk← FE.KeyGen(msk, C){

ctρ ← FE.Enc(msk, vbρ)
}
ρ∈[t]

: sk, {ctρ}ρ∈[t]

 .

To show this, it suffices to show that for every i? ∈ [t], and every PPT adversary A, and every
sufficiently large λ, the following probability is bounded by 1/2 + poly(λ)µ:

Pr



b← {0, 1}
(msk,msk)← FE.Setup(1λ, pp)

sk← FE.KeyGen(msk, C)
ct← FE.Enc(msk, vbi?){

ctρ ← FE.Enc(msk, v1
ρ)
}
ρ<i?{

ctρ ← FE.Enc(msk, v0
ρ)
}
ρ>i?

: A(sk, ct, {ctρ}ρ6=i?) = b


≤ 1

2
+ poly(λ)µ . (14)

For any fixed i? and A, we prove the above via a sequence of hybrids that gradually change the
distribution of the view viewA = (sk, ct, {ctρ}) of A, such that the probability that A guesses b
in the last hybrid is bounded.

Hybrid H0: This hybrid outputs the view viewA of A as generated in equation (14), as well as
all the BF secret sharings x = {xj} generated when encrypting vbi? :

H0 = Real =
{
x = {xj}, viewA = (sk, ct, {ctρ}ρ 6=i?

}
.

Since every sharing xj uniquely determines vbi? , if A is able to predict b, it means it is able
to output b consistent with x. By construction of FE, the secret key sk and ciphertext ct

82



are respectively secret key and ciphertext of DFE for some function f defined by C and
some input X defined by vbi? , i.e.,

sk = Dsk(f), ct = Dct(X), where X = (x, sd),

and similarly ctρ = Dct(Xρ), where Xρ is defined by v1
ρ if ρ < i? and by v0

ρ if ρ > i?.

Hybrid H1 is the same as H0 except that the secret key Dsk and ciphertexts Dct, {Dctρ} of DFE
are simulated. More precisely, let FN be the distribution of f , and X of X in H0. It
follows from the special-purpose µ2-simulation security of DFE that there exist an efficient
universal simulator Sim and correlated random variables (XK ,K, st) sampled by DSim, such
that H0 is µ2-indistinguishable to the following distribution:

H1 =


f ← FN

(XK ,K, st)← DSim(f)

X ← X|XK ,K
:

x = {xj}
viewA = Sim

(
st, f, y = f(X),

{
Xρ

}
ρ 6=i?

)  .

Furthermore, with probability 1−O(µ2), |K| ≤ O(λε2) for some constant ε2 ∈ (0, 1), since
f has constant locality.

Recall that the output y = f(X) consists of many randomized encodings evaluated using
pseudo-random outputs of PRG,

y =
{
yji = REnc(Dj

i , x
j
i ; PRG

Πji
(sd))

}
i,j

.

We would like to invoke the security of RE and PRG to argue that y can be simulated using
the outputs of the encoded computations, oji = Dj

i (x
j
i ). However, this does not hold as

the distribution of sd is not completely random, but random up to agreeing with O(λε2)
compromised sd bits contained in XK output by DSim. Below, we single out these PRG
output bits that depend on one of the compromised sd bits — call them the compromised
PRG output bits as they are not guaranteed to be pseudo-random. Then, we single out
these randomized encodings yji that depend on one of the compromised PRG output bits
— call them the compromised encodings, as they may reveal the input share xji used for
generating it. On the other hand, non-compromised PRG outputs are pseudo-random, and
non-compromised encodings can be simulated using the corresponding output share oji .

More precisely, let sdKsd and xKx denote respectively the compromised seed bits and com-
promised input-share bits contained in XK . As observed in Remark 7.3, the distribution X
of X is the product of the distribution X ′ sampling x and the uniform distribution U over
binary strings of length {0, 1}poly(λ)S1−α . Thus, the bit-fixing distribution X|XK ,K is also a
product distribution

X|XK ,K =
(
x← X ′|xKx ,Kx

)
×
(
sd← U|sdKsd ,Ksd

)
.

In particular, sd is uniformly random at locations outside Ksd (and fixed to sdKsd at
locations in Ksd). Recall that PRG has constant locality and every output bit PRGi is
computed by P (sdG(i)) where G is its input-output dependency graph. Let Kprg be the
indexes of compromised PRG output bits that depend on some of the compromised seed
bits in Ksd, that is,

Kprg = G−1(Ksd) := {l : G(l) ∩Ksd 6= ∅} .
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We next want to argue that PRG6∈Kprg(sd) is µ-indistinguishable to random, using that
sd6∈Ksd is uniformly random. Note that the sampling by DSim does not have to be efficient
(see Definition 6.10). To use the security of PRG, we therefore need a non-uniform reduction,
which is given everything not efficiently samplable as advice. (This is the reason we need
PRG to be a fixed function instead of a function family from which a function is sampled,
since f depends on PRG and DSim(f) should not depend on the security experiment for
PRG.) We then obtain PRG6∈Kprg(sd) ≈µ U . On the other hand, PRGKprg(sd) is not
guaranteed to be pseudorandom.

Furthermore, recall that the (i, j)’th randomized encoding yji is computed using PRG
output bits at locations Πj

i = {π(i, j, k)}k∈[φ]. Let Kre be the indexes (i, j) of compromised
encodings yji that depend on some compromised PRG output bits in PRGKprg(sd), that is,

Kre :=
{

(i, j) : Πj
i ∩Kprg 6= ∅

}
.

Clearly Kre can be efficiently computed from Ksd; for convenience, we overload the notation
to also use it to denote a function Kre = Kre(Ksd).

All non-compromised randomized encodings yji with (i, j) 6∈ Kre use pseudorandom coins.
Thus, by the security of RE, again using a non-uniform reduction, non-compromised
encodings can be simulated from their corresponding outputs: For every (i, j) /∈ Kre,{

yji = REnc
(
Dj
i , x

j
i ; PRG

Πji

(
sd
))}

≈µ
{
ỹji ← RSim

(
oji = Dj

i

(
xji

))}
,

where the output oji is the output share obtained by homomorphically evaluating circuit
CIj on input share xji . Therefore, H1 is O(µ)-indistinguishable to the following hybrid H2.

Hybrid H2 is the same as H1, except that Sim simulates viewA using simulated randomized
encodings at locations outside Kre (and still honestly generated randomized encodings at
locations in Kre):

f ← FN
(XK ,K, st)← DSim(f)

X ← X|XK ,K
:

x = {xj}
viewA = Sim

(
st, f, y′ =

{
y′ji
}
i,j
,
{
Xρ

}
ρ 6=i?

)  ,

where

X =
({

xj
}
, sd
)
, y′ji =

y
j
i = REnc

(
Dj
i , x

j
i ; PRG

Πji

(
sd
))

if (i, j) ∈ Kre ,

ỹji ← RSim
(
oji = Dj

i

(
xji

))
if (i, j) /∈ Kre .

We divided all the randomized encodings into M chunks – the j’th chunk includes yji for
all i ∈ [λ]. These randomized encodings depend on the j’th BF sharing xj = {xji} of vbi? . If
there exists a j s.t. all encodings in the j’th chuck are compromised, then the entire j’th
sharing xj is compromised, which would reveal the randomly chosen bit b. Therefore, to
argue that the adversary A cannot predict b, we must argue that no such j exist. More
precisely, we prove the following lemma that every chunk contains at most λ/4 compromised
encodings with very high probability — that is, compromised encodings are “well-spread”
among different chunks.
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Lemma 7.5. Let f and K be sampled from FN and DSim(f), respectively. We then have
for all µ = 2−o(λ),

Pr
[
∃j, s.t.

∣∣{(i, j)}i∈[λ] ∩ Kre(Ksd)
∣∣ ≥ λ/4] ≤ O(µ).

Proof. As discussed in Remark 7.3, the distribution FN of f and the distribution X of X
are special-purpose distributions as described in Section 6.3.1. In particular, f is defined
by a fixed function g of constant locality `, and a distributional input-output dependency
graph Gπ depending on a random permutation π : [λ]× [M ]× [φ].

For such distributions, Lemma 6.12 guarantees that there exists a correlated random
variable K that is is independent of the graph Gπ and hence the permutation π, and the
set Ksd of compromised seed bits is a subset of Gπ(K). In addition, the size |K| of K is
bounded by O(2`λε2) with probability 1 − O(

√
µ2) = 1 − O(µ). Therefore, to show the

lemma, it suffices to show that

Pr
[
∃j, s.t.

∣∣∣{(i, j)}i∈[λ] ∩ Kre(Gπ(K))
∣∣∣ ≥ λ/4 ] ≤ O(µ).

For every single index ρ, the set Gπ(ρ) specifies the set of seed bits that the ρ’th output
bit of f depends on. Every bit in an AIK randomized encoding depends on at most
three random bits, which in turn are outputs of PRG permuted according to the random
permutation π, thus Gπ(ρ) = G(π(ρ1, ρ2, ρ3)). Therefore, for the set K of indexes, there
exists K′ of size O(|K|), such that, Gπ(K) = G(π(K′)). Recall that Kre(G(π(K′))) includes
all indexes (i, j) of encodings yji that depend on some seed bits in G(π(K′)), more precisely,
G(Πj

i = {π(i, j, k)}k∈[φ]) ∩ G(π(K′)) 6= ∅. Let G−1 ◦ G(i) represent the set of two-hop
neighbors of node i in graph G. Then, the above inequality follows from the following:

Pr
[
∃j, s.t.

∣∣∣π ({(i, j, k)}i∈[λ],k∈[φ]

)
∩
(
G−1 ◦G

(
π(K′)

))∣∣∣ ≥ λ/4 ] ≤ O(µ) = 2−o(λ) .

By our assumption on PRG, the input-output dependency graph G of PRG has n =
poly(λ)S1−α input nodes, m = poly(λ)S output nodes. Furthermore, the degrees of the
input nodes are bounded by L < o(S1−α), and the degrees of the output nodes are bounded
by some constant l. The set {(i, j, k)}i∈[λ],k∈[φ] has size t = poly(λ)Sα and K′ has size
s = O(λε2) with probability 1 − O(µ). Importantly, both sets are independent of the
random permutation π. Furthermore, we have slLt ≤ m − s − t for sufficiently large S
(relative to λ) and α < 1/2 with probability 1 − O(µ). Hence, the inequality follows
immediately from the following claim.

Claim 7.6. Let G be a bipartite graph with n input nodes and m output nodes, where the
degrees of the input and output nodes are bounded by L and l, respectively. Let T, S ⊆ [m]
be sets of size t and s, respectively, such that s ≤ t and slLt ≤ m− s− t , and let B ≥ s+ 2.
We then have over the choice of a random permutation π over the output nodes (i.e.,
π : [m]→ [m]),

Pr
π

[∣∣π(T ) ∩
(
G−1 ◦G (π(S))

)∣∣ ≥ B ]
≤ exp

(
−B − s− 1

3

)
.
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Proof. Since π(S) ⊆ G−1 ◦G (π(S)), we have π(T ∩S) ⊆ π(T )∩
(
G−1 ◦G (π(S))

)
for all π.

We therefore need to bound the probability of∣∣π(T \ S) ∩
(
G−1 ◦G (π(S))

)∣∣ ≥ B − |T ∩ S|.
The random experiment can equivalently be described as follows: First, assign to each j ∈ S
a random, distinct j′ ∈ [m]. Let S′ be the set of all these j′, and let Ŝ := G−1◦G(S′). Then,
assign to each v ∈ T \ S a random, distinct v′ ∈ [m] \ S′. Since

∣∣Ŝ∣∣ ≤ slL, the probability
that the first of these v′ is in Ŝ is at most slL

m−s . The second v′ is then chosen from a set of
size m− s− 1 since it must be different from the first v′. Hence, the probability that it is
in Ŝ is at most slL

m−s−1 . Using |T \S| ≤ t, this implies that the probability of any v′ landing
in Ŝ is at most slL

m−s−t . While the assignments of the v′ are not independent (because they
must be distinct), whether they are in Ŝ or not only depends on previous outcomes in the
sense that the probability gets smaller if previous v′ are in Ŝ (since less elements in Ŝ are
available). One can therefore define independent random variables X1, . . . , X|T\S|, where
each Xi is 1 with probability slL

m−s−t , and 0 otherwise, such that the probability of Xi = 1

upper bounds the probability of the ith v′ being in Ŝ. This shows that

Pr
π

[∣∣π(T \ S) ∩
(
G−1 ◦G (π(S))

)∣∣ ≥ B − |T ∩ S|]
≤ Pr

[
X1 + . . .+X|T\S| ≥ B − |T ∩ S|

]
≤ Pr

[
X1 + . . .+X|T\S| ≥ B − s

]
.

Note that the expected value of X1 + . . .+X|T\S| is ν := slL
m−s−t · |T \ S| ≤

slLt
m−s−t ≤ 1. Let

δ := B−s
ν − 1. Since ν ≤ 1 and B ≥ s + 2, we have δ ≥ 1. Hence, the Chernoff bound

implies

Pr
[
X1 + . . .+X|T\S| ≥ B − s

]
= Pr

[
X1 + . . .+X|T\S| ≥ (1 + δ)ν

]
≤ exp(−δν/3).

Again using ν ≤ 1, we obtain δν = B − s− ν ≥ B − s− 1, which concludes the proof of
the claim.

This also concludes the proof of Lemma 7.5.

We now bound the probability that the PPT adversary A, on input viewA, is able to guess
the random bit b underlying x = {xj} in H2.

Claim 7.7. For every PPT adversary A,

Pr
[(
{xj}, viewA

)
← H2 : b← A(view) ∧ x1 shares vbi?

]
≤ 1/2 + poly(λ)µ.

Proof. Fix any f and any (XK ,K, st) in the support of DSim(f) such that |K| = O(λε2) and
for all j,

∣∣{(i, j)}i∈[λ] ∩Kre

∣∣ ≤ λ/4. By Lemma 7.5 and the properties of DSim, such f and
(XK ,K, st) are sampled with probability 1−O(µ). Conditioned on them being sampled, H2

further samples X|XK ,K , which samples M sharings {xj} of vbi? for a randomly chosen bit b,
conditioned on at most O(λε2) compromised bits xKx contained in XK . Observe that the
inputs to Sim depend only on output shares {oji}(i,j)6∈Kre (for simulating non-compromised
encodings), and input shares {xji}(i,j)∈Kre (for generating compromised encodings). Since
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|K| = O(λε2) and
∣∣{(i, j)}i∈[λ] ∩Kre

∣∣ ≤ λ/4 for all j, we have for every sharing xj , that
at most O(λε2) bits of it are fixed, and at most λ/4 input shares xji are revealed to Sim.
Therefore, it follows from the (λ/4, λ/4, µ)-bit-fixing security of BF (and the fact that there
are at most a polynomial number of sharings) that the probability that A, receiving the
output of Sim, can predict b is at most 1/2 + poly(λ)µ. This concludes the proof of the
claim.

Finally, from the fact that H0 and H2 are O(µ)-indistinguishable, we conclude that A receiving
the view generated in H0 can only predict b with probability 1/2 + poly(λ)µ:

Pr
[(
{xj}, viewA

)
← H0 : b← A(view) ∧ x1 shares vb

]
≤ 1/2 + poly(λ)µ.

This concludes the proof of the theorem.

7.3 From Secret-Key Ciphertext-Compact FE to IO

We describe how to apply previous works to transform our secret-key (1−α)-sublinearly ciphertext-
compact FE for NC1 with subexponential (1-key) Sel-Ind-security to IO. The first FE to IO
transformation was by Ananth and Jain [AJ15], and Bitansky and Vaikuntanathan [BV15], which,
however, requires public-key (1 − α)-sublinearly compact FE. Our FE is secret key and only
satisfies a weaker notion of ciphertext-compactness, which only requires the ciphertext-size, instead
of the encryption time, to be bounded by poly(λ,N)S1−α. Fortunately, following their works,
Bitansky, Nishimaki, Passelegue, and Wichs [BNPW16] showed how to use sublinearly compact
secret-key FE to construct IO, assuming subexponential LWE. In fact, their transformation also
works for FE with only sublinear ciphertext-compactness.

In slightly more detail, they showed how to transform such FE into IO with exponential
efficiency, called XIO [LPST16b], whose obfuscated circuits have size poly(|C|, λ)2(1−β)n where
|C| and n are respectively the size and input-length of the original circuit and β is an arbitrary
constant in (0, 1) — that is, the size of the obfuscated circuit is sublinear in the size of the truth
table of the original circuit.

Theorem 7.8 (Following from Remark 3.1 in [BNPW16] (also see Construction 2 in Section 7.2
in the full version of [BLP17])). If there exists sublinearly ciphertext-compact FE for NC1 with
subexponential Sel-Ind-security, then there exists subexponentially secure XIO for NC1.

Lin, Pass, Seth, and Telang [LPST16b] showed that, despite of having exponentially large
obfuscated circuits, XIO implies fully-efficient IO, assuming subexponential LWE.

Theorem 7.9 ( [LPST16b]). Assume subexponential security of the LWE assumption. If there
exists subexponentially secure XIO for NC1, then there exists subexponentially secure IO for
P/poly.

Combining our sublinearly ciphertext-compact FE schemes for NC1 with the above two
theorems gives IO for P/poly.

8 Weakening Requirements on Flawed-Smudging Distributions

In this section, we show how flawed-smudging distributions in our constructions can be replaced
by something weaker, namely distributions X that are flawed-smudging only with some small
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probability ε. This can be formalized as follows: there exists an event bad with probability 1− ε
such that X conditioned on ¬bad is flawed-smudging. For our construction, we only need
ε = 1/poly(λ). As we argue below, using such distributions in our construction yields an FE
scheme that is secure with probability ε′ = poly(ε). We then show how to amplify the security
of that FE scheme. The basic idea is to use a bit-fixing homomorphic sharing to share the input
and encrypt each share using an independent FE scheme. We use a sharing scheme that tolerates
leakage of all but one share. Thus, since each FE scheme is secure with probability 1/poly(λ),
polynomially many shares are sufficient to guarantee that at least one of them remains secure.

8.1 Flawed-Smudging Distributions with Small Probability

We first give a formal definition of a distribution that is flawed-smudging with probability ε.

Definition 8.1. Let ` be a positive integer and let X and E be distributions over Z`. Further
let K ∈ N and let µ, ε ∈ [0, 1]. We say that X is (K,µ)-flawed-smudging for E with probability ε
if there exists an event bad such that Pr[bad] = 1− ε and the conditional distribution X|¬bad is
(K,µ)-flawed-smudging for E .

Remark 8.2. The definition above implies that if a distribution X is flawed-smudging with
probability ε, then X is (1− ε)-indistinguishable from a flawed-smudging distribution, namely
X ′ := X|¬bad: For any distinguisher D, and for X ← X , and X ′ ← X ′,∣∣Pr[D(X) = 1]− Pr[D(X ′) = 1]

∣∣
=
∣∣Pr[bad] · Pr[D(X) = 1 | bad] + Pr[¬bad] · Pr[D(X) = 1 | ¬bad]− Pr[D(X ′) = 1]

∣∣
=
∣∣Pr[bad] · Pr[D(X) = 1 | bad] + (1− Pr[bad]) · Pr[D(X ′) = 1]− Pr[D(X ′) = 1]

∣∣
≤ Pr[bad] = 1− ε.

The reverse implication, however, does not necessarily hold, i.e., assuming X is flawed-smudging
with probability ε is a stronger assumption than assuming that X is (1− ε)-indistinguishable
from a flawed-smudging distribution. The reason is that the event bad in Definition 8.1 depends
only on X, but not on the random coins of the distinguisher D. In contrast to that, ∆RGs by
Ananth et al. [AJKS18] are defined via computational indistinguishability between distributions.
Therefore, our amplification in Section 8.3 is simpler than the corresponding amplification
in [AJKS18], which needs to amplify computational security.

8.2 Using Weaker Distributions in Previous Constructions

We now describe how the weaker distributions from Definition 8.1 can be used in our previous
constructions. We start with the construction of FE for constant degree polynomials in Section 6.3.
This construction uses an η-noisy secret-key FE scheme NFE, where η is of the form

pDΦ +
∑

2≤d≤D

(
pd ·

∑
j∈[m]

Φd,j + qd ·
∑
j∈[m]

Ψd,j

)
,

and Φ, Φd,1|| · · · ||Φd,m, and Ψd,1|| · · · ||Ψd,m are sampled from the (λε2 , µ)-flawed-smudging
distributions Zp̄D , Zpd , and Zqd , respectively. We now assume that Zp̄D , {Zpd}2≤d≤D, and
{Zqd}2≤d≤D are only (λε2 , µ)-flawed-smudging with probability ε = 1/poly(λ) each, and denote
the resulting distribution by η̃, and the corresponding NFE scheme by ÑFE. Then, there exist
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events bad? for ? ∈ {p̄D, pd, qd | 2 ≤ d ≤ D} such that Pr[bad?] = 1 − ε and Z?|¬bad? is
(λε2 , µ)-flawed-smudging. We define the event

bad′ := badp̄D ∪
⋃

2≤d≤D

(
badpd ∪ badqd

)
.

We then have that conditioned on the event ¬bad′, all the distributions above are flawed-smudging,
and since D is a constant,

ε′ := Pr[¬bad′] = ε2D−1 = 1/poly(λ).

Let D̃FE be the scheme constructed when NFE in the construction in Section 6.3 is replaced
by ÑFE. Note that the proof of special-purpose simulation security of the scheme DFE (see
Lemma 6.11) only uses the flawed-smudging property of the distributions in one η from a single
NFE ciphertext (in Hybrid H2). Hence, the overall security of the scheme D̃FE holds conditioned
on the event ¬bad′ for the corresponding distribution η̃. We summarize this in the following
lemma (cf. Lemma 6.11).

Lemma 8.3. Assume that DHE has µ-robustness for secrets with (1− o(1))n min-entropy, for all
polynomials N ′ and S, ÑFEN

′,S satisfies 1-key O(µ)-Sel-Sim security. Then, for all polynomials
N and S, for every distribution {FN}λ over f ∈ DFN,S, every distribution {X}λ over x in ZNpD ,
and every sequence of vectors {x1, . . . ,xt}, where xi ∈ ZNqD , there exists a (potentially inefficient)
DSim sampling (xK ,K, st), such that the following distributions are O(µ)-indistinguishable:

f ← FN , x← X
msk← D̃FE.Setup(1λ)

sk← D̃FE.KeyGen(msk, f)

ct← D̃FE.Enc(msk,x){
cti ← D̃FE.Enc(msk,xi)

}
i∈[t]

: f, x, (sk, ct, ct1, . . . , ctt)

∣∣∣∣∣∣∣∣∣∣∣
¬bad′


λ∈N

,


f ← FN ,

(xK ,K, st)← DSim(f),
x̄← X|xK ,K ,

: f, x̄, Sim (st, f, y = f(x̄),x1, . . . ,xt)


λ∈N

,

where bad′ is the event corresponding to the distribution η̃ of the ÑFE ciphertext in ct with
Pr[¬bad′] = ε′, and with probability at least 1− µ, |K| ≤ O(λε2`) for some constant ε2 ∈ (0, 1),
where ` is the maximum locality of f ∈ DFN,S.

We refer to this as O(µ)-security with probability ε′ for D̃FE.

Next, we consider the construction of FE for NC1 in Section 7.2. The construction of FE uses
DFE, which we now replace by D̃FE to obtain the scheme F̃E. In Theorem 7.4, µ′-Sel-Ind-security
of FE is proven by first proving equation (14), which only requires indistinguishability of a single
pair of FE ciphertexts, which each correspond to a single DFE ciphertext. The security of DFE is
then used only once to show that hybrids H0 and H1 are indistinguishable. Using Lemma 8.3,
we can thus conclude that H0 for F̃E conditioned on ¬bad′ is indistinguishable from H1. As in
the proof of Theorem 7.4, H1 and H2 are indistinguishable and in H2, the adversary’s advantage
to guess the bit b can be bounded. Hence, the equivalent of equation (14) for F̃E holds when
conditioning on ¬bad′. Note, however, that one cannot obtain µ′-Sel-Ind-security of F̃E, which
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requires indistinguishability of polynomially many ciphertext pairs, since that would require
polynomially many bad events to not occur. The following lemma summarizes our observation
(cf. Theorem 7.4).

Lemma 8.4. For µ = 2−o(λ), assume that PRG satisfies µ-indistinguishability, BF satis-
fies (λ/4, λ/4, µ)-bit-fixing security, and D̃FEN

′,S′ satisfies µ2-security with probability ε′ from
Lemma 8.3. Let {C}λ be NC1 circuits with input-length N , size S, depth Dep, and component-
size s, let {vρ}ρ∈[t],λ∈N be a polynomial-length sequence of inputs, and let {v?0, v?1}λ be inputs such
that C(v?0) = C(v?1). Then, for every PPT adversary A and for all sufficiently large λ,

Pr


b← {0, 1}

(msk,msk)← F̃E.Setup(1λ, pp)

sk← F̃E.KeyGen(msk, C)

ct? ← F̃E.Enc(msk, v?b ){
ctρ ← F̃E.Enc(msk, vρ)

}
ρ∈[t]

: A
(
sk, ct?, {ctρ}ρ∈[t]

)
= b

∣∣∣∣∣∣∣∣∣∣∣
¬bad′

 ≤
1

2
+ poly(λ)µ ,

where bad′ is the event for the distribution in the ciphertext ct?.
We refer to this as poly(λ)µ-security with probability ε′ for F̃E.

8.3 Amplifying Security

We finally show how to construct a µ′-Sel-Ind-secure scheme FE from F̃E. As mentioned before,
the main idea of this construction is to share the inputs with a bit-fixing homomorphic sharing
scheme and to encrypt each share with an independent instance of F̃E. A technical issue we have
to deal with is that Lemma 8.4 only guarantees indistinguishability security for F̃E instead of
simulation security. We use the technique from [DCIJ+13,ABSV15] to resolve this as follows:
Ciphertexts encrypt a flag that is always 0 in an honest execution. We generate keys for functions
that check this flag and evaluate the regular function if the flag is 0, but otherwise decrypt a
ciphertext of a symmetric encryption scheme that is embedded in the function. This allows us to
embed the actual function output into the secret keys and then use indistinguishability security
to change the ciphertexts to encrypting the zero-string with the flag set to 1.

For any fixed logarithmic function Dep(λ) = O(log λ), we construct a family of secret-key
FE schemes

{
FEN,S

}
for computing the class of NC1 circuits C with depth Dep = Dep(λ),

polynomial input length N = N(λ), and size S = S(λ) using the following building blocks.

• The scheme F̃EN
′,S′ =

(
F̃E.Setup, F̃E.Enc, F̃E.KeyGen, F̃E.Dec

)
described above for comput-

ing locality `, degree D = `, polynomials with input length N ′ and size S′ over Z2, where
N ′ and S′ are set below.

• A (T = log(µ)/ log(1− ε′), t1 = 0, t2 = T − 1, µ)-bit-fixing homomorphic sharing scheme
BF = (BFsetup,BFshare,BFeval,BFdec), that has CRS and input shares with sizes inde-
pendent of the size of supported functions. Note that since BFsetup takes the size and
depth of the functions as input, these values can in general depend on the function size.
In our construction in Section 7.1.1, however, they only depend on the depth and not on
the size of the functions. Furthermore, we require for any f corresponding to a circuit
of size S that BFeval(crs, ·, i, f) is a circuit of size poly(λ)S. This is also the case for our
construction in Section 7.1.1 when instantiated with the MFHE scheme from [MW16].
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Note that since limn→∞(1− 1/n)n = 1/e, we have limn→∞ n log(1− 1/n) = −1. Hence, n
and −1/ log(1− 1/n) have the same asymptotic behavior. This implies that −1/ log(1− ε′)
is poly(λ) since ε′ = 1/poly(λ). Therefore, T = log(µ)/ log(1− ε′) is also polynomial in λ.

• A symmetric encryption scheme Sym with µ-IND-CPA security and deterministic decryption
algorithm in NC1.

Construction of FE. Our scheme FE consists of the following algorithms:

• FE.Setup(1λ) on input a security parameter 1λ, generates T F̃E master secret keys m̃ski ←
F̃E.Setup(1λ) and symmetric encryption keys Ki ← Sym.KeyGen(1λ) for i ∈ [T ], and a CRS
for the bit-fixing homomorphic sharing scheme crs← BFsetup(1λ, 1S , 1Dep).

It outputs msk =
(
{m̃ski,Ki}i∈[T ], crs

)
.

• FE.Enc(msk, v) on input msk =
({

m̃ski,Ki

}
i∈[T ]

, crs
)
and v ∈ {0, 1}N , shares v using BF,

{xi}i∈[T ] ← BFshare(crs, v). Then, for every i ∈ [T ], it encrypts xi, 0|Ki|, and flag := 0

using F̃E:
cti ← F̃E.Enc

(
m̃ski,

(
xi, 0

|Ki|, flag = 0
))
.

It finally outputs ct = {cti}i∈[T ].

• FE.KeyGen(msk, f) on input msk =
({

m̃ski,Ki

}
i∈[T ]

, crs
)
and a function f represented as

a circuit with input-length N , size S, and depth Dep, does for i ∈ [T ]:

– Let gf,i be the function that on input the i’th share xi of the sharing x of v, homo-
morphically evaluates f , i.e.,

gf,i(xi) = BFeval(crs, xi, i, f) = oi.

– Compute ci ← Sym.Enc
(
Ki, 0

|oi|
)
, where |oi| is the length of an output share.

– Let hf,i,ci be the function that on input (xi,Ki, flag) evaluates y = gf,i(xi) if flag = 0,
and if flag = 1, computes y = Sym.Dec(Ki, ci):

hf,i,ci(xi,Ki, flag) := (1− flag) · gf,i(xi) + flag · Sym.Dec(Ki, ci).

– Generate a F̃E secret key for hf,i,ci , s̃ki ← F̃E.KeyGen
(
m̃ski, hf,i,ci

)
.

Output sk =
{

s̃ki
}
i∈[T ]

.

Since the sizes of input shares of BF do not depend on the sizes of the supported functions,
the length of an input to hf,i,ci is N

′ = |xi|+ poly(λ) = poly(λ,N). Furthermore, by our
assumption on BFeval, the size of BFeval(crs, ·, i, f) is poly(λ)S. Hence, the size of hf,i,ci is
also S′ = poly(λ)S.

• FE.Dec(sk, ct) on input sk =
{

s̃ki
}
i∈[T ]

and ct = {cti}i∈[T ], computes oi ← F̃E.Dec
(
s̃ki, cti

)
for i ∈ [T ], and then outputs y ← BFdec

(
crs, {oi}i∈[T ]

)
.
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Correctness. Let f be a function represented as a circuit with input-length N , size S, and
depth Dep, and let x be an input. Further let msk ← FE.Setup(1λ), ct ← FE.Enc(msk, x),
sk ← FE.KeyGen(msk, f), and y ← FE.Dec(sk, ct). We then have by correctness of F̃E that oi
computed by FE.Dec equals

oi = hf,i,ci
(
xi, 0

|Ki|, flag = 0
)

= BFeval(crs, xi, i, f),

for {xi}i∈[T ] ← BFshare(crs, v). Since FE.Dec outputs y ← BFdec
(
crs, {oi}i∈[T ]

)
, the correctness

of BF implies that y = f(v).

Sublinear compactness. The size of a ciphertext ct = {cti}i∈[T ] is T = poly(λ) times the
size of an F̃E ciphertext cti. The (1− α)-sublinearly compactness of F̃E implies that cti has size
poly(λ,N ′) · S′1−α = poly(λ,N) · S1−α. Thus, FE is (1− α)-sublinearly compact.

Single-key, fully selective indistinguishability security. We finally prove that FE is µ′-
Sel-Ind-secure.

Theorem 8.5. For all µ′ = 2−o(λ) and for µ = λ−ω(1)µ′, assume that Sym is µ-IND-CPA secure,
BF satisfies (T = log(µ)/ log(1−ε′), t1 = 0, t2 = T −1, µ)-bit-fixing security, and F̃EN

′,S′ satisfies
poly(λ)µ-security with probability ε′ from Lemma 8.4. Then, FEN,S satisfies µ′-Sel-Ind-security.

Proof. Let {f}λ be functions with input-length N , size S, and depth Dep, and let {{v0
ρ, v

1
ρ}ρ∈[t]}λ

be a polynomially long sequence of inputs such that f(v0
ρ) = f(v1

ρ) for every ρ. As in the proof
of Theorem 7.4, it suffices to show that for every i? ∈ [t], every PPT adversary A, and every
sufficiently large λ, the following probability is bounded by 1/2 + poly(λ)µ:

Pr



b← {0, 1}
(msk,msk)← FE.Setup(1λ)

sk← FE.KeyGen(msk, f)
ct∗ ← FE.Enc(msk, vbi?){

ctρ ← FE.Enc(msk, v1
ρ)
}
ρ<i?{

ctρ ← FE.Enc(msk, v0
ρ)
}
ρ>i?

: A(sk, ct∗, {ctρ}ρ 6=i?) = b


≤ 1

2
+ poly(λ)µ .

For any fixed i? and A, we prove the above via a sequence of hybrids changing the view
viewA = (sk, ct∗, {ctρ}) of A, such that the probability that A guesses b in the last hybrid is
bounded.

Hybrid H0: In this hybrid, viewA is the real distribution with all values generated honestly. In
particular, we have sk =

{
s̃ki
}
i∈[T ]

with s̃ki ← F̃E.KeyGen
(
m̃ski, hf,i,ci

)
,

hf,i,ci(xi,Ki, flag) = (1− flag) · BFeval(crs, xi, i, f) + flag · Sym.Dec(Ki, ci),

and ci ← Sym.Enc
(
Ki, 0

|oi|
)
. Furthermore, ct∗ = {ct∗i }i∈[T ] with

ct∗i ← F̃E.Enc
(
m̃ski,

(
x∗i , 0

|Ki|, flag = 0
))
,

and {x∗i }i∈[T ] ← BFshare
(
crs, vbi?

)
.
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Hybrid H1 is the same as H0 except that we replace the symmetric ciphertexts ci for i ∈ [T ]
with encryptions of oi = BFeval(crs, x∗i , i, f):

ci ← Sym.Enc(Ki, oi).

Note that Ki is only used to generate ci, which is never decrypted. We can therefore apply
the security of Sym. Since we change T = poly(λ) ciphertexts, µ-IND-CPA-security of Sym
implies that the hybrids H0 and H1 are poly(λ)µ-indistinguishable.

Hybrid H2: By the security of F̃E, there are independent events bad′1, . . . ,bad′T such that
conditioned on ¬bad′i, the ciphertext ct∗i is poly(λ)µ-indistinguishable from an encryption
of a different value that evaluates to the same as the value encrypted in ct∗i under hf,i,ci .
We define H2 to be identical to H1, but it additionally samples bad′1, . . . ,bad′T and for
every i with ¬bad′i, it replaces ct∗i by

ct∗i ← F̃E.Enc
(
m̃ski,

(
0|x
∗
i |,Ki, flag = 1

))
.

We have by construction hf,i,ci
(
0|x
∗
i |,Ki, flag = 1

)
= oi = hf,i,ci

(
x∗i , 0

|Ki|, flag = 0
)
. Hence,

we can use the poly(λ)µ-security with probability ε′ from Lemma 8.4 to conclude that H1

and H2 are poly(λ)µ-indistinguishable.

We finally bound the advantage of A guessing b in H2. Note that the view of A in H2 only
depends on oi and is otherwise independent of x∗i for all i with ¬bad′i. Thus, if ¬bad′i occurs
for at least one i, we can use the security of BF to conclude that A can guess b with probability
at most 1/2 + µ. For each i, Pr[bad′i] = 1− ε′. Hence, the probability that bad′i occurs for all
i ∈ [T ] is

Pr

[ ∧
i∈[T ]

bad′i

]
= (1− ε′)T = (1− ε′)

log µ
log(1−ε′) = µ.

Therefore, the probability that A guesses b correctly in H2 is at most 1/2 + 2µ. Note that
sampling the events bad′i in Hybrid H2 is not necessarily efficient. Hence, to reduce to the security
of BF, we need a non-uniform reduction that receives the bad′i together with the distributions η̃i
as advice.

Overall, we can conclude thatA cannot guess b with probability better than 1/2+poly(λ)µ.
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